1
|
Lizzi G, Fasana S, Grilli G, Quaglia G, Pedrazzoli S, Graziosi G, Catelli E, Musa L, Rapi MC, Lupini C. High prevalence and genetic heterogeneity of adenoviruses at a psittacine breeding facility. Vet Res Commun 2024; 48:4113-4122. [PMID: 39264573 PMCID: PMC11538262 DOI: 10.1007/s11259-024-10533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
A polymerase chain reaction (PCR) survey was performed at an amateur parrot breeding facility in Italy to investigate the presence and molecular characteristics of adenoviruses. Eighty psittacine birds, belonging to seven parrot species, were sampled by cloacal swabs; in addition, 15 livers were collected from specimens that were found dead. Seventy-two out of 95 samples collected were positive for adenoviruses, with a prevalence rate of 75.8%. All seven psittacine species tested positive for at least one genus of the family Adenoviridae; notably, adenoviral infection was found for the first time in the hooded parrot (Psephotellus dissimilis). Based on the sequences and phylogenetic analysis, 57 sequences were psittacine adenovirus 2, seven sequences were duck adenovirus 1 and two sequences were identified as psittacine adenovirus 5. The six remaining sequences showed low nucleotide and amino acid identity with the reference strains of accepted species or types, revealing the presence of novel adenoviruses belonging to the genera Aviadenovirus, Barthadenovirus and Siadenovirus. There were identical adenovirus sequences in both apparently healthy and dead birds suggesting that further investigation into the role and impact of these viruses on the health of psittacine birds is warranted.
Collapse
Affiliation(s)
- Gabriele Lizzi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia (BO), 40064, Italy.
| | - Simone Fasana
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università 6, Lodi, 26900, Italy
| | - Guido Grilli
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università 6, Lodi, 26900, Italy
| | - Giulia Quaglia
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia (BO), 40064, Italy
| | - Sara Pedrazzoli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia (BO), 40064, Italy
| | - Giulia Graziosi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia (BO), 40064, Italy
| | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia (BO), 40064, Italy
| | - Laura Musa
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università 6, Lodi, 26900, Italy
| | - Maria Cristina Rapi
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università 6, Lodi, 26900, Italy
| | - Caterina Lupini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia (BO), 40064, Italy
| |
Collapse
|
2
|
Klukowski N, Eden P, Uddin MJ, Sarker S. Virome of Australia's most endangered parrot in captivity evidenced of harboring hitherto unknown viruses. Microbiol Spectr 2024; 12:e0305223. [PMID: 38047696 PMCID: PMC10783009 DOI: 10.1128/spectrum.03052-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/24/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE The impact of circulating viruses on the critically endangered, orange-bellied parrot (OBP) population can be devastating. The OBP already faces numerous threats to its survival in the wild, including habitat loss, predation, and small population impacts. Conservation of the wild OBP population is heavily reliant on supplementation using OBPs from a managed captive breeding program. These birds may act as a source for introduction of a novel disease agent to the wild population that may affect survival and reproduction. It is, therefore, essential to monitor and assess the health of OBPs and take appropriate measures to prevent and control the spread of viral infections. This requires knowledge of the existing virome to identify novel and emerging viruses and support development of appropriate measures to manage associated risk. By monitoring and protecting these animals from emerging viral diseases, we can help ensure their ongoing survival and preserve the biodiversity of our planet.
Collapse
Affiliation(s)
- Natalie Klukowski
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Paul Eden
- Wildlife Conservation and Science, Zoos Victoria, Werribee, Victoria, Australia
| | - Muhammad Jasim Uddin
- School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, Australia
- Center for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Subir Sarker
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
3
|
Athukorala A, Lacasse C, Curtiss JB, Phalen DN, Sarker S. Characterisation of a novel aviadenovirus associated with disease in tawny frogmouths (Podargus strigoides). Virology 2023; 588:109904. [PMID: 37856912 DOI: 10.1016/j.virol.2023.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Aviadenoviruses are widespread in wild birds but rarely cause disease in nature. However, when naïve species are exposed to poultry or aviaries, aviadenoviruses can lead to disease outbreaks. This study characterised a novel aviadenovirus infection in a native Australian bird, the tawny frogmouth (Podargus strigoides) during an outbreak investigation. The identified complete genome of aviadenovirus, named tawny frogmouth aviadenovirus A (TwAviAdV-A) was 41,175 bp in length containing 52 putative genes. TwAviAdV-A exhibits the common aviadenovirus genomic organisation but with a notable monophyletic subclade in the phylogeny. The TwAviAdV-A virus was hepatotrophic and the six frogmouths presented to the wildlife hospitals in South Eastern Queensland most commonly exhibited regurgitation (in four frogmouths). Three were died or euthanized, two recovered, and one showed no signs. The detection of TwAviAdV-A in frogmouths coming into care re-emphasizes the need for strict biosecurity protocols in wildlife hospitals and care facilities.
Collapse
Affiliation(s)
- Ajani Athukorala
- Department of Microbiology, Anatomy, Physiology, And Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Claude Lacasse
- RSPCA Queensland, 139 Wacol Station Road, Wacol, Queensland, 4076, Australia.
| | - Jeffrey B Curtiss
- IDEXX Laboratories, 3 Overend Street, East Brisbane, Queensland, 4169, Australia.
| | - David N Phalen
- Sydney School of Veterinary Science, University of Sydney, Camden, New South Wales, Australia; Schubot Exotic Bird Health, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, 77843-4467, USA.
| | - Subir Sarker
- Department of Microbiology, Anatomy, Physiology, And Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, 3086, Australia; Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
4
|
Williams RAJ, Sánchez-Llatas CJ, Doménech A, Madrid R, Fandiño S, Cea-Callejo P, Gomez-Lucia E, Benítez L. Emerging and Novel Viruses in Passerine Birds. Microorganisms 2023; 11:2355. [PMID: 37764199 PMCID: PMC10536639 DOI: 10.3390/microorganisms11092355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
There is growing interest in emerging viruses that can cause serious or lethal disease in humans and animals. The proliferation of cloacal virome studies, mainly focused on poultry and other domestic birds, reveals a wide variety of viruses, although their pathogenic significance is currently uncertain. Analysis of viruses detected in wild birds is complex and often biased towards waterfowl because of the obvious interest in avian influenza or other zoonotic viruses. Less is known about the viruses present in the order Passeriformes, which comprises approximately 60% of extant bird species. This review aims to compile the most significant contributions on the DNA/RNA viruses affecting passerines, from traditional and metagenomic studies. It highlights that most passerine species have never been sampled. Especially the RNA viruses from Flaviviridae, Orthomyxoviridae and Togaviridae are considered emerging because of increased incidence or avian mortality/morbidity, spread to new geographical areas or hosts and their zoonotic risk. Arguably poxvirus, and perhaps other virus groups, could also be considered "emerging viruses". However, many of these viruses have only recently been described in passerines using metagenomics and their role in the ecosystem is unknown. Finally, it is noteworthy that only one third of the viruses affecting passerines have been officially recognized.
Collapse
Affiliation(s)
- Richard A. J. Williams
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Christian J. Sánchez-Llatas
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
| | - Ana Doménech
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Ricardo Madrid
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Sergio Fandiño
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Pablo Cea-Callejo
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| | - Esperanza Gomez-Lucia
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
- Deparment of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology, and Microbiology, School of Biology, Complutense University of Madrid (UCM), C. de José Antonio Nováis, 12, 28040 Madrid, Spain; (C.J.S.-L.); (R.M.); (P.C.-C.); (L.B.)
- “Animal Viruses” Research Group, Complutense University of Madrid, 28040 Madrid, Spain; (A.D.); (S.F.); (E.G.-L.)
| |
Collapse
|
5
|
A screening of wild bird samples enhances our knowledge about the biodiversity of avian adenoviruses. Vet Res Commun 2023; 47:297-303. [PMID: 35661294 PMCID: PMC9873698 DOI: 10.1007/s11259-022-09931-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/25/2022] [Indexed: 01/28/2023]
Abstract
Wild birds are threatened by anthropic effects on a global scale, and their adenoviruses might contribute to their endangerment. Thus, it is important to reveal the real biodiversity of avian adenoviruses, as, unfortunately, this research topic is far from being prioritized. The turkey hemorrhagic enteritis is an economically important disease causing high mortalities, and its causative siadenoviral agent is only distantly related to other avian siadenoviruses in phylogenetic analyses. Both to enhance our knowledge about the biodiversity of wild bird adenoviruses and to possibly trace back the origin of the turkey hemorrhagic enteritis virus, numerous Hungarian wild bird samples were screened for adenoviruses using PCR, and the detected strains were typed molecularly. The screening revealed numerous new adenovirus types, several of which represent novel adenovirus species as well, in the genera Atadenovirus, Aviadenovirus and Siadenovirus.
Collapse
|
6
|
Zadravec M, Račnik J, Slavec B, Ballmann MZ, Kaján GL, Doszpoly A, Zorman-Rojs O, Marhold C, Harrach B. Novel adenoviruses from captive psittacine birds in Slovenia. Comp Immunol Microbiol Infect Dis 2022; 90-91:101902. [DOI: 10.1016/j.cimid.2022.101902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
|
7
|
Gellért Á, Benkő M, Harrach B, Peters M, Kaján GL. The genome and phylogenetic analyses of tit siadenoviruses reveal both a novel avian host and viral species. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105326. [PMID: 35779784 DOI: 10.1016/j.meegid.2022.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/10/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
In both a Eurasian blue tit (Cyanistes caeruleus) and a great tit (Parus major), found dead in North Rhine-Westphalia, Germany, intranuclear inclusion bodies were observed in the kidneys during the histologic examination. Siadenoviruses were detected in both samples, and the nucleotide sequence of the partial DNA polymerase, obtained from the blue tit, was almost identical with that of great tit adenovirus type 1, reported from Hungary previously. The sequence, derived from the German great tit sample was more similar to great tit adenovirus 2, yet divergent enough to forecast the possible establishment of a novel viral type and species. Therefore, the complete genome was subjected to next generation sequencing. The annotation revealed a typical siadenoviral genome layout, and phylogenetic analyses proved the distinctness of the novel virus type: great tit adenovirus 3. We propose the establishment of a new species (Siadenovirus carbocapituli) within the genus Siadenovirus to contain great tit adenovirus types 2 and 3. As both of the newly-detected viruses originated from histologically confirmed cases, and several siadenoviruses have been associated with avian nephritis earlier, we assume that the renal pathology might have been also of adenoviral origin. Additionally, we performed structural studies on two virus-coded proteins. The viral sialidase and the fiber knob were modeled using the AlphaFold2 program. According to the results of the sialic acid docking studies, the fiber trimer of the new great tit adenovirus 3 binds this acid with good affinity. As sialic acid is expressed in the kidney, it can be hypothesized that it is used during the receptor binding and entry of the virus. Strong binding of sialic acid was also predictable for the viral sialidase albeit its enzymatic activity remains disputable since, within its catalytic site, an asparagine residue was revealed instead of the conserved aspartic acid.
Collapse
Affiliation(s)
- Ákos Gellért
- Veterinary Medical Research Institute, Eötvös Loránd Research Network, 1581 Budapest, P.O. box 18, Hungary
| | - Mária Benkő
- Veterinary Medical Research Institute, Eötvös Loránd Research Network, 1581 Budapest, P.O. box 18, Hungary
| | - Balázs Harrach
- Veterinary Medical Research Institute, Eötvös Loránd Research Network, 1581 Budapest, P.O. box 18, Hungary
| | - Martin Peters
- Chemical and Veterinary Investigation Office Westphalia, Zur Taubeneiche 10-12, 59821 Arnsberg, Germany
| | - Győző L Kaján
- Veterinary Medical Research Institute, Eötvös Loránd Research Network, 1581 Budapest, P.O. box 18, Hungary.
| |
Collapse
|
8
|
Adenoviruses in Avian Hosts: Recent Discoveries Shed New Light on Adenovirus Diversity and Evolution. Viruses 2022; 14:v14081767. [PMID: 36016389 PMCID: PMC9416666 DOI: 10.3390/v14081767] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
While adenoviruses cause infections in a wide range of vertebrates, members of the genus Atadenovirus, Siadenovirus, and Aviadenovirus predominantly infect avian hosts. Several recent studies on avian adenoviruses have encouraged us to re-visit previously proposed adenovirus evolutionary concepts. Complete genomes and partial DNA polymerase sequences of avian adenoviruses were extracted from NCBI and analysed using various software. Genomic analyses and constructed phylogenetic trees identified the atadenovirus origin from an Australian native passerine bird in contrast to the previously established reptilian origin. In addition, we demonstrated that the theories on higher AT content in atadenoviruses are no longer accurate and cannot be considered as a species demarcation criterion for the genus Atadenovirus. Phylogenetic reconstruction further emphasised the need to reconsider siadenovirus origin, and we recommend extended studies on avian adenoviruses in wild birds to provide finer evolutionary resolution.
Collapse
|
9
|
Marques GN, Cota JB, Leal MO, Silva NU, Flanagan CA, Crosta L, Tavares L, Oliveira M. First Documentation of Exophiala spp. Isolation in Psittaciformes. Animals (Basel) 2022; 12:ani12131699. [PMID: 35804598 PMCID: PMC9264867 DOI: 10.3390/ani12131699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/19/2022] Open
Abstract
Several fungi species are reported to act as opportunistic agents of infection in avian species. After the isolation of Exophiala spp., a dematiaceous fungal pathogen associated with a mucosal lesion in a military macaw (Ara militar), samples were collected from another 24 birds of the order Psittaciformes to study the possibility of Exophiala spp. being part of the commensal microbiota of these animals or its possible association with other clinical conditions. Swab samples were collected from the trachea and/or choanae of the birds and inoculated in Sabouraud chloramphenicol agar for fungal isolation. After incubation, fungal species were identified through their macroscopic and microscopic morphology. The presence of Exophiala spp. was identified in 15 of the 25 birds sampled and no statistical association was found between the clinical record of the birds and the fungal isolation. Our results suggest that Exophiala spp. can colonize the upper respiratory airways of psittaciform birds and has a low pathogenic potential in these animals. To the authors’ knowledge, this is the first report of Exophiala spp. isolation from samples of the upper respiratory tract of Psittaciformes.
Collapse
Affiliation(s)
- Gonçalo N. Marques
- Zoomarine Portugal, E.N. 125, Km 65, 8201-864 Guia, Portugal; (G.N.M.); (M.O.L.); (N.U.S.); (C.A.F.)
| | - João B. Cota
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Da Universidade Técnica, 1300-477 Lisbon, Portugal; (J.B.C.); (L.T.)
- Laboratório Associado Para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Miriam O. Leal
- Zoomarine Portugal, E.N. 125, Km 65, 8201-864 Guia, Portugal; (G.N.M.); (M.O.L.); (N.U.S.); (C.A.F.)
| | - Nuno U. Silva
- Zoomarine Portugal, E.N. 125, Km 65, 8201-864 Guia, Portugal; (G.N.M.); (M.O.L.); (N.U.S.); (C.A.F.)
| | - Carla A. Flanagan
- Zoomarine Portugal, E.N. 125, Km 65, 8201-864 Guia, Portugal; (G.N.M.); (M.O.L.); (N.U.S.); (C.A.F.)
| | - Lorenzo Crosta
- AEZAVEC (Avian, Exotic and Zoo Animal Veterinary Consultants), 22040 Tirol, Italy;
| | - Luís Tavares
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Da Universidade Técnica, 1300-477 Lisbon, Portugal; (J.B.C.); (L.T.)
- Laboratório Associado Para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Manuela Oliveira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Av. Da Universidade Técnica, 1300-477 Lisbon, Portugal; (J.B.C.); (L.T.)
- Laboratório Associado Para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
10
|
Metatranscriptomic Comparison of Viromes in Endemic and Introduced Passerines in New Zealand. Viruses 2022; 14:v14071364. [PMID: 35891346 PMCID: PMC9321414 DOI: 10.3390/v14071364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
New Zealand/Aotearoa has many endemic passerine birds vulnerable to emerging infectious diseases. Yet little is known about viruses in passerines, and in some countries, including New Zealand, the virome of wild passerines has been only scarcely researched. Using metatranscriptomic sequencing we characterised the virome of New Zealand endemic and introduced species of passerine. Accordingly, we identified 34 possible avian viruses from cloacal swabs of 12 endemic and introduced bird species not showing signs of disease. These included a novel siadenovirus, iltovirus, and avastrovirus in the Eurasian blackbird (Turdus merula, an introduced species), song thrush (Turdus philomelos, introduced) and silvereye/tauhou (Zosterops lateralis, introduced), respectively. This is the first time novel viruses from these genera have been identified in New Zealand, likely reflecting prior undersampling. It also represents the first identification of an iltovirus and siadenovirus in blackbirds and thrushes globally. These three viruses were only found in introduced species and may pose a risk to endemic species if they were to jump species boundaries, particularly the iltoviruses and siadenoviruses that have a prior history of disease associations. Further virus study and surveillance are needed in New Zealand avifauna, particularly in Turdus populations and endemic species.
Collapse
|
11
|
Surphlis AC, Dill-Okubo JA, Harrach B, Waltzek T, Subramaniam K. Genomic characterization of psittacine adenovirus 2, a siadenovirus identified in a moribund African grey parrot (Psittacus erithacus). Arch Virol 2022; 167:911-916. [PMID: 35103853 DOI: 10.1007/s00705-021-05341-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022]
Abstract
Here, we report the complete genome sequence of psittacine adenovirus 2 from a moribund African grey parrot (Psittacus erithacus) with neurological signs and systemic inflammation. The complete siadenovirus genome is 25,386 bp in size. The results of genetic and phylogenetic analyses support its classification as a member of a novel species within the genus Siadenovirus. This study represents the first report of the genome sequence of an adenovirus from an African grey parrot.
Collapse
Affiliation(s)
- Austin C Surphlis
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Jennifer A Dill-Okubo
- Florida Department of Agriculture and Consumer Services, Bronson Animal Disease Diagnostic Laboratory, Kissimmee, FL, USA
| | - Balázs Harrach
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Thomas Waltzek
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA. .,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Chang WS, Rose K, Holmes EC. Meta-transcriptomic analysis of the virome and microbiome of the invasive Indian myna ( Acridotheres tristis) in Australia. One Health 2021; 13:100360. [PMID: 34917744 PMCID: PMC8666354 DOI: 10.1016/j.onehlt.2021.100360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/03/2022] Open
Abstract
Invasive species exert a serious impact on native fauna and flora and have become the target of eradication and management efforts worldwide. Invasive avian species can also be important pathogen reservoirs, although their viromes and microbiomes have rarely been studied. As one of the top 100 invasive pest species globally, the expansion of Indian mynas (Acridotheres tristis) into peri-urban and rural environments, in conjunction with increasing free-ranging avian agricultural practices, may increase the risk of microbial pathogens jumping species boundaries. Herein, we used a meta-transcriptomic approach to explore the microbes present in brain, liver and large intestine of 16 invasive Indian myna birds in Sydney, Australia. From this, we discovered seven novel viruses from the families Adenoviridae, Caliciviridae, Flaviviridae, Parvoviridae and Picornaviridae. Interestingly, each of the novel viruses identified shared less than 80% genomic similarity with their closest relatives from other avian species, indicative of a lack of detectable virus transmission between invasive mynas to native or domestic species. Of note, we also identified two coccidian protozoa, Isospora superbusi and Isospora greineri, from the liver and gut tissues of mynas. Overall, these data demonstrate that invasive mynas can harbor a diversity of viruses and other microorganisms such that ongoing pathogen surveillance in this species is warranted.
Collapse
Affiliation(s)
- Wei-Shan Chang
- School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Karrie Rose
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Australian Registry of Wildlife Health, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Edward C Holmes
- School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.,Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Gainor K, Becker AAMJ, Malik YS, Ghosh S. First Report on Detection and Molecular Characterization of Adenoviruses in the Small Indian Mongoose ( Urva auropunctata). Viruses 2021; 13:v13112194. [PMID: 34835000 PMCID: PMC8622525 DOI: 10.3390/v13112194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Using a broad-range nested PCR assay targeting the DNA-dependent DNA polymerase (pol) gene, we detected adenoviruses in 17 (20.48%) out of 83 fecal samples from small Indian mongooses (Urva auropunctata) on the Caribbean island of St. Kitts. All 17 PCR amplicons were sequenced for the partial pol gene (~300 bp, hereafter referred to as Mon sequences). Fourteen of the 17 Mon sequences shared maximum homology (98.3-99.6% and 97-98.9% nucleotide (nt) and deduced amino acid (aa) sequence identities, respectively) with that of bovine adenovirus-6 (species Bovine atadenovirus E). Mongoose-associated adenovirus Mon-39 was most closely related (absolute nt and deduced aa identities) to an atadenovirus from a tropical screech owl. Mon-66 shared maximum nt and deduced aa identities of 69% and 71.4% with those of atadenoviruses from a spur-thighed tortoise and a brown anole lizard, respectively. Phylogenetically, Mon-39 and Mon-66 clustered within clades that were predominated by atadenoviruses from reptiles, indicating a reptilian origin of these viruses. Only a single mongoose-associated adenovirus, Mon-34, was related to the genus Mastadenovirus. However, phylogenetically, Mon-34 formed an isolated branch, distinct from other mastadenoviruses. Since the fecal samples were collected from apparently healthy mongooses, we could not determine whether the mongoose-associated adenoviruses infected the host. On the other hand, the phylogenetic clustering patterns of the mongoose-associated atadenoviruses pointed more towards a dietary origin of these viruses. Although the present study was based on partial pol sequences (~90 aa), sequence identities and phylogenetic analysis suggested that Mon-34, Mon-39, and Mon-66 might represent novel adenoviruses. To our knowledge, this is the first report on the detection and molecular characterization of adenoviruses from the mongoose.
Collapse
Affiliation(s)
- Kerry Gainor
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, 00265 Basseterre, St. Kitts and Nevis, West Indies; (K.G.); (A.A.M.J.B.)
| | - Anne A. M. J. Becker
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, 00265 Basseterre, St. Kitts and Nevis, West Indies; (K.G.); (A.A.M.J.B.)
| | - Yashpal S. Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, 141004 Ludhiana, India;
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, 00265 Basseterre, St. Kitts and Nevis, West Indies; (K.G.); (A.A.M.J.B.)
- Correspondence: or ; Tel.: +1-(869)-4654161 (ext. 401-1202)
| |
Collapse
|
14
|
Metagenomic detection and characterisation of multiple viruses in apparently healthy Australian Neophema birds. Sci Rep 2021; 11:20915. [PMID: 34686748 PMCID: PMC8536680 DOI: 10.1038/s41598-021-00440-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022] Open
Abstract
Emerging viral pathogens are a significant concern, with potential consequences for human, animal and environmental health. Over the past several decades, many novel viruses have been found in animals, including birds, and often pose a significant threat to vulnerable species. However, despite enormous interest in virus research, little is known about virus communities (viromes) in Australian Neophema birds. Therefore, this study was designed to characterise the viromes of Neophema birds and track the evolutionary relationships of recently emerging psittacine siadenovirus F (PsSiAdV-F) circulating in the critically endangered, orange-bellied parrot (OBP, Neophema chrysogaster), using a viral metagenomic approach. This study identified 16 viruses belonging to the families Adenoviridae, Circoviridae, Endornaviridae, Picobirnaviridae and Picornaviridae. In addition, this study demonstrated a potential evolutionary relationship of a PsSiAdV-F sequenced previously from the critically endangered OBP. Strikingly, five adenoviral contigs identified in this study show the highest identities with human adenovirus 2 and human mastadenovirus C. This highlights an important and unexpected aspects of the avian virome and warrants further studies dedicated to this subject. Finally, the findings of this study emphasise the importance of testing birds used for trade or in experimental settings for potential pathogens to prevent the spread of infections.
Collapse
|
15
|
Genomic Characterisation of a Highly Divergent Siadenovirus (Psittacine Siadenovirus F) from the Critically Endangered Orange-Bellied Parrot ( Neophema chrysogaster). Viruses 2021; 13:v13091714. [PMID: 34578295 PMCID: PMC8472863 DOI: 10.3390/v13091714] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023] Open
Abstract
Siadenoviruses have been detected in wild and captive birds worldwide. Only nine siadenoviruses have been fully sequenced; however, partial sequences for 30 others, many of these from wild Australian birds, are also described. Some siadenoviruses, e.g., the turkey siadenovirus A, can cause disease; however, most cause subclinical infections. An example of a siadenovirus causing predominately subclinical infections is psittacine siadenovirus 2, proposed name psittacine siadenovirus F (PsSiAdV-F), which is enzootic in the captive breeding population of the critically endangered orange-bellied parrot (OBP, Neophema chrysogaster). Here, we have fully characterised PsSiAdV-F from an OBP. The PsSiAdV-F genome is 25,392 bp in length and contained 25 putative genes. The genome architecture of PsSiAdV-F exhibited characteristics similar to members within the genus Siadenovirus; however, the novel PsSiAdV-F genome was highly divergent, showing highest and lowest sequence similarity to skua siadenovirus A (57.1%) and psittacine siadenovirus D (31.1%), respectively. Subsequent phylogenetic analyses of the novel PsSiAdV-F genome positioned the virus into a phylogenetically distinct sub-clade with all other siadenoviruses and did not show any obvious close evolutionary relationship. Importantly, the resulted tress continually demonstrated that novel PsSiAdV-F evolved prior to all known members except the frog siadenovirus A in the evolution and possibly the ancestor of the avian siadenoviruses. To date, PsSiAdV-F has not been detected in wild parrots, so further studies screening PsSiAdV-F in wild Australian parrots and generating whole genome sequences of siadenoviruses of Australian native passerine species is recommended to fill the siadenovirus evolutionary gaps.
Collapse
|
16
|
Hubálek Z. Pathogenic microorganisms associated with gulls and terns (Laridae). JOURNAL OF VERTEBRATE BIOLOGY 2021. [DOI: 10.25225/jvb.21009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Zdeněk Hubálek
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; e-mail:
| |
Collapse
|
17
|
Niczyporuk JS, Kozdrun W, Czekaj H, Piekarska K, Stys-Fijoł N. Isolation and molecular characterization of Fowl adenovirus strains in Black grouse: First reported case in Poland. PLoS One 2020; 15:e0234532. [PMID: 32991587 PMCID: PMC7523988 DOI: 10.1371/journal.pone.0234532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/01/2020] [Indexed: 11/21/2022] Open
Abstract
This article describes the isolation, molecular characterization, and genotyping of two fowl adenovirus (FAdVs) strains with GenBank Accession numbers (MT478054, JSN-G033-18-L and MT478055, JSN-G033-18-B) obtained from the internal organs of black grouse (Lyrurus tetrix). This study also reveals the first confirmation of fowl adenovirus in Poland, supporting one of the hypotheses about the probability of fowl adenovirus interspecies transmission. The adenovirus strain sequences were investigated via phylogenetic analysis and were found to have an overall mean pairwise distance of 2.189. The heterogeneity, Relative Synonymous Codon Usage (RSCU), codon composition, and nucleotide frequencies were examined. Statistical analyses and Tajima’s test for the examined sequences were carried out. The Maximum Likelihood for the examined sequences substitutions was performed. The results of the sequence analysis identified MT478054, JSN-G033-18-L and MT478055, JSN-G033-18-B as strains of fowl adenovirus 2/11/D, with the Fowl adenovirus D complete sequence showing a 93% match. Wild birds may act as a natural reservoir for FAdVs and likely play an important role in the spreading of these viruses in the environment. The findings reported here suggest horizontal transmission within and between avian species.
Collapse
Affiliation(s)
| | - Wojciech Kozdrun
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Hanna Czekaj
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Karolina Piekarska
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Natalia Stys-Fijoł
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy, Poland
| |
Collapse
|
18
|
Athukorala A, Forwood JK, Phalen DN, Sarker S. Molecular Characterisation of a Novel and Highly Divergent Passerine Adenovirus 1. Viruses 2020; 12:v12091036. [PMID: 32957674 PMCID: PMC7551158 DOI: 10.3390/v12091036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 01/16/2023] Open
Abstract
Wild birds harbour a large number of adenoviruses that remain uncharacterised with respect to their genomic organisation, diversity, and evolution within complex ecosystems. Here, we present the first complete genome sequence of an atadenovirus from a passerine bird that is tentatively named Passerine adenovirus 1 (PaAdV-1). The PaAdV-1 genome is 39,664 bp in length, which was the longest atadenovirus to be sequenced, to the best of our knowledge, and contained 42 putative genes. Its genome organisation was characteristic of the members of genus Atadenovirus; however, the novel PaAdV-1 genome was highly divergent and showed the highest sequence similarity with psittacine adenovirus-3 (55.58%). Importantly, PaAdV-1 complete genome was deemed to contain 17 predicted novel genes that were not present in any other adenoviruses sequenced to date, with several of these predicted novel genes encoding proteins that harbour transmembrane helices. Subsequent analysis of the novel PaAdV-1 genome positioned phylogenetically to a distinct sub-clade with all others sequenced atadenoviruses and did not show any obvious close evolutionary relationship. This study concluded that the PaAdV-1 complete genome described here is not closely related to any other adenovirus isolated from avian or other natural host species and that it should be considered a separate species.
Collapse
Affiliation(s)
- Ajani Athukorala
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Jade K. Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
| | - David N. Phalen
- Sydney School of Veterinary Science, University of Sydney, Camden, NSW 2570, Australia;
- Schubot Exotic Bird Health, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843-4467, USA
| | - Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia;
- Correspondence: ; Tel.: +61-3-9479-2317; Fax: +61-3-9479-1222
| |
Collapse
|