1
|
Weary TE, Mehta KPM, Goldberg TL. Novel Gammapapillomavirus type in the nasal cavity of a wild red colobus (Piliocolobus tephrosceles). Access Microbiol 2024; 6:000866.v3. [PMID: 39165252 PMCID: PMC11334581 DOI: 10.1099/acmi.0.000866.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/01/2024] [Indexed: 08/22/2024] Open
Abstract
Papillomaviruses (PVs) are double-stranded, circular, epitheliotropic DNA viruses causing benign warts (papillomas) or inducing dysplasia that can progress to cancer. Although they have been identified in all vertebrate taxa, most classified types are human PVs (HPVs); relatively little is known about PVs in other species. Here we characterize a novel Gammapapillomavirus type, PtepPV1, from a nasal swab of a wild red colobus (Piliocolobus tephrosceles) in Kibale National Park, Uganda. The virus has a genome of 6576 bases, encoding the seven canonical early (E) ORFs (E6, E7, E1, E2, E4, E1^E4 and E8^E2) and two late (L) ORFs (L1 and L2) of the gammapapillomaviruses, and is 81.0% similar to HPV-mSK_118, detected in a cutaneous wart from an immunocompromised human patient, in the L1 gene at the amino acid level. Alphapapillomaviruses (genus Alphapapillomavirus) cause anogenital carcinomas such as cervical cancer and have been described previously in several nonhuman primates. However, the first gammapapillomavirus (genus Gammapapillomavirus), which cause transient cutaneous infections, was not described until 2019 in a healthy rhesus macaque (Macaca mulatta) genital swab. The new virus from red colobus, PtepPV1, has many genomic features encoded by high-risk oncogenic PVs, such as the E7 gene LXSXE and CXXC motifs, suggesting potential for pRb and zinc-finger binding, respectively. To our knowledge, PtepPV1 is also the first reported nonhuman primate PV found in the nasal cavity. PtepPV1 expands the known host range, geographical distribution, tissue tropism and biological characteristics of nonhuman primate PVs.
Collapse
Affiliation(s)
- Taylor E. Weary
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA
| | - Kavi P. M. Mehta
- Department of Comparative Biosciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA
| |
Collapse
|
2
|
Dunay E, Rukundo J, Atencia R, Cole MF, Cantwell A, Emery Thompson M, Rosati AG, Goldberg TL. Viruses in saliva from sanctuary chimpanzees (Pan troglodytes) in Republic of Congo and Uganda. PLoS One 2023; 18:e0288007. [PMID: 37384730 PMCID: PMC10310015 DOI: 10.1371/journal.pone.0288007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Pathogen surveillance for great ape health monitoring has typically been performed on non-invasive samples, primarily feces, in wild apes and blood in sanctuary-housed apes. However, many important primate pathogens, including known zoonoses, are shed in saliva and transmitted via oral fluids. Using metagenomic methods, we identified viruses in saliva samples from 46 wild-born, sanctuary-housed chimpanzees at two African sanctuaries in Republic of Congo and Uganda. In total, we identified 20 viruses. All but one, an unclassified CRESS DNA virus, are classified in five families: Circoviridae, Herpesviridae, Papillomaviridae, Picobirnaviridae, and Retroviridae. Overall, viral prevalence ranged from 4.2% to 87.5%. Many of these viruses are ubiquitous in primates and known to replicate in the oral cavity (simian foamy viruses, Retroviridae; a cytomegalovirus and lymphocryptovirus; Herpesviridae; and alpha and gamma papillomaviruses, Papillomaviridae). None of the viruses identified have been shown to cause disease in chimpanzees or, to our knowledge, in humans. These data suggest that the risk of zoonotic viral disease from chimpanzee oral fluids in sanctuaries may be lower than commonly assumed.
Collapse
Affiliation(s)
- Emily Dunay
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary / Chimpanzee Trust, Entebbe, Uganda
| | - Rebeca Atencia
- Jane Goodall Institute Congo, Pointe-Noire, Republic of Congo
| | - Megan F. Cole
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Averill Cantwell
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Melissa Emery Thompson
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Alexandra G. Rosati
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
3
|
Genetic Characterization of a Novel Equus caballus Papillomavirus Isolated from a Thoroughbred Mare. Viruses 2023; 15:v15030650. [PMID: 36992359 PMCID: PMC10059215 DOI: 10.3390/v15030650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Papillomaviruses (PVs) are small, non-enveloped viruses, ubiquitous across the animal kingdom. PVs induce diverse forms of infection, such as cutaneous papillomas, genital papillomatosis, and carcinomas. During a survey on the fertility status of a mare, a novel Equus caballus PV (EcPV) has been identified using Next Generation Sequencing, and it was further confirmed with genome-walking PCR and Sanger sequencing. The complete circular genome 7607 bp long shares 67% average percentage of identity with EcPV9, EcPV2, EcPV1, and EcPV6, justifying a new classification as Equus caballus PV 10 (EcPV10). All EcPV genes are conserved in EcPV10, and phylogenetic analysis indicates that EcPV10 is closely related to EcPV9 and EcPV2, genus Dyoiota 1. A preliminary EcPV10 genoprevalence study, carried out on 216 horses using Real Time PCRs, suggested a low incidence of this isolate (3.7%) compared to EcPVs of the same genus such as EcPV2 and EcPV9 in the same horse population. We hypothesize a transmission mechanism different from the one observed in the closely related EcPV9 and EcPV2 that particularly infect Thoroughbreds. This horse breed is usually submitted to natural mating, thus indicating a possible sexual diffusion. No differences were detected for breeds in terms of susceptibility to EcPV10. Further studies are needed to investigate the molecular mechanisms behind the host and EcPV10 infection to explain the reduced viral spread.
Collapse
|
4
|
Vanmechelen B, Lahoreau J, Dendauw P, Nicolier A, Maes P. Co-infection of distinct papillomavirus types in a captive North American porcupine. Virol J 2023; 20:12. [PMID: 36658615 PMCID: PMC9850686 DOI: 10.1186/s12985-023-01972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Only two cases of papillomavirus infections in North American porcupines (Erethizon dorsatum) have been described thus far, and molecular investigation linked these cases to two distinct papillomavirus species. METHODS In this report, we present the clinical, histological and molecular investigation of a third case of a porcupine papillomavirus infection. Papillomatous lesions occurred on the upper and lower lip of an otherwise healthy three-year old female that was kept in captivity. Within one month, the lesions progressed into exophytic black nodules, followed by a temporary stabilization and ultimately spontaneous regression within seven months of their initial observation. PCR-based screening using specific primers for Erethizon dorsatum papillomavirus 1 and 2 revealed the presence of both these virus types, after which nanopore sequencing was used to determine the complete sequences of the two virus genomes. RESULTS One of the genomes shares 99.9% similarity with the only known sequence for Erethizon dorsatum papillomavirus 1, while the second represents a distinct lineage of Erethizon dorsatum papillomavirus 2, sharing only 93.3% similarity with the previously discovered strain. CONCLUSIONS This report marks the first observation of a papillomavirus co-infection in a North American porcupine, although the individual contribution of the two virus types to the clinical presentation was not assessed.
Collapse
Affiliation(s)
- Bert Vanmechelen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1040, 3000, Leuven, Belgium.
| | | | | | - Alexandra Nicolier
- VetDiagnostics, Avenue de la Victoire 3, 69260 Charbonnières-Les-Bains, France
| | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1040, 3000, Leuven, Belgium.
| |
Collapse
|
5
|
Nino Barreat JG, Kamada AJ, Reuben de Souza C, Katzourakis A. Discovery of novel papillomaviruses in the critically endangered Malayan and Chinese pangolins. Biol Lett 2023; 19:20220464. [PMID: 36596463 PMCID: PMC9810420 DOI: 10.1098/rsbl.2022.0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
Pangolins are scaly and toothless mammals which are distributed across Africa and Asia. Currently, the Malayan, Chinese and Philippine pangolins are designated as critically endangered species. Although few pangolin viruses have been described, their viromes have received more attention following the discovery that they harbour sarbecoviruses related to SARS-CoV-2. Using large-scale genome mining, we discovered novel lineages of papillomaviruses infecting the Malayan and Chinese pangolins. We were able to assemble three complete circular papillomavirus genomes with an intact coding capacity and five additional L1 genes encoding the major capsid protein. Phylogenetic analysis revealed that seven out of eight L1 sequences formed a monophyletic group which is the sister lineage to the Tupaia belangeri papillomavirus 1, isolated from Yunnan province in China. Additionally, a single L1 sequence assembled from a Chinese pangolin was placed in a clade closer to Alphapapillomavirus and Omegapapillomavirus. Examination of the SRA data from 95 re-sequenced genomes revealed that 49.3% of Malayan pangolins and 50% of Chinese pangolins were positive for papillomavirus reads. Our results indicate that pangolins in South-East Asia are the hosts of diverse and highly prevalent papillomaviruses, and highlight the value of in silico mining of host sequencing data for the discovery of novel viruses.
Collapse
|
6
|
Abstract
Upon infection, DNA viruses can be sensed by pattern recognition receptors (PRRs), leading to the activation of type I and III interferons to block infection. Therefore, viruses must inhibit these signaling pathways, avoid being detected, or both. Papillomavirus virions are trafficked from early endosomes to the Golgi apparatus and wait for the onset of mitosis to complete nuclear entry. This unique subcellular trafficking strategy avoids detection by cytoplasmic PRRs, a property that may contribute to the establishment of infection. However, as the capsid uncoats within acidic endosomal compartments, the viral DNA may be exposed to detection by Toll-like receptor 9 (TLR9). In this study, we characterized two new papillomaviruses from bats and used molecular archeology to demonstrate that their genomes altered their nucleotide compositions to avoid detection by TLR9, providing evidence that TLR9 acts as a PRR during papillomavirus infection. Furthermore, we showed that TLR9, like other components of the innate immune system, is under evolutionary selection in bats, providing the first direct evidence for coevolution between papillomaviruses and their hosts. Finally, we demonstrated that the cancer-associated human papillomaviruses show a reduction in CpG dinucleotides within a TLR9 recognition complex.
Collapse
|
7
|
Rosenbaum CS, Wünschmann A, Armién AG, Schott R, Singh VK, Mor SK. Novel papillomavirus in a mallard duck with mesenchymal chondroid dermal tumors. J Vet Diagn Invest 2022; 34:231-236. [PMID: 35090373 PMCID: PMC8921809 DOI: 10.1177/10406387221075607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Papillomaviruses, which are epitheliotropic and may induce epithelial tumors, have been identified in several avian species, including ducks. An adult female mallard duck (Anas platyrhynchos) was admitted to a wildlife rehabilitation center with 2 beige, well-demarcated, firm masses: one in the subcutis under a wing, and the other on a digit of the right foot. After euthanasia, the masses were fixed in formalin for histologic examination. Both tumors had a lobular organization with cartilage cores surrounded by densely cellular interlacing bundles of spindle cells. Neoplastic chondroblasts in both masses, particularly the digital mass, contained basophilic intranuclear inclusion bodies, which consisted of assembly complexes of icosahedral virions of 44-nm diameter. Next-generation sequencing allowed whole genome assembly of a novel papillomavirus (Anas platyrhynchos papillomavirus 2) related most closely to Fulmarus glacialis papillomavirus 1 (59.49% nucleotide identity). Our case supports the observation that certain papillomaviruses can productively infect mesenchymal cells and induce neoplasia.
Collapse
Affiliation(s)
- Claire S. Rosenbaum
- Minnesota Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Arno Wünschmann
- Arno Wünschmann, Department of Veterinary Population Medicine/Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, 1333 Gortner Ave, St. Paul, MN 55108, USA.
| | - Aníbal G. Armién
- California Animal Health & Food Safety Laboratory System (CAHFS), University of California–Davis, Davis, CA, USA
| | - Renee Schott
- Wildlife Rehabilitation Center of Minnesota, Roseville, MN, USA
| | - Vikash K. Singh
- Minnesota Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Sunil K. Mor
- Minnesota Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
8
|
Wang L, Guo S, Zeng B, Wang S, Chen Y, Cheng S, Liu B, Wang C, Wang Y, Meng Q. Draft Genome Assembly and Annotation for Cutaneotrichosporon dermatis NICC30027, an Oleaginous Yeast Capable of Simultaneous Glucose and Xylose Assimilation. MYCOBIOLOGY 2022; 50:69-81. [PMID: 35291590 PMCID: PMC8890563 DOI: 10.1080/12298093.2022.2038844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
The identification of oleaginous yeast species capable of simultaneously utilizing xylose and glucose as substrates to generate value-added biological products is an area of key economic interest. We have previously demonstrated that the Cutaneotrichosporon dermatis NICC30027 yeast strain is capable of simultaneously assimilating both xylose and glucose, resulting in considerable lipid accumulation. However, as no high-quality genome sequencing data or associated annotations for this strain are available at present, it remains challenging to study the metabolic mechanisms underlying this phenotype. Herein, we report a 39,305,439 bp draft genome assembly for C. dermatis NICC30027 comprised of 37 scaffolds, with 60.15% GC content. Within this genome, we identified 524 tRNAs, 142 sRNAs, 53 miRNAs, 28 snRNAs, and eight rRNA clusters. Moreover, repeat sequences totaling 1,032,129 bp in length were identified (2.63% of the genome), as were 14,238 unigenes that were 1,789.35 bp in length on average (64.82% of the genome). The NCBI non-redundant protein sequences (NR) database was employed to successfully annotate 11,795 of these unigenes, while 3,621 and 11,902 were annotated with the Swiss-Prot and TrEMBL databases, respectively. Unigenes were additionally subjected to pathway enrichment analyses using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups of proteins (COG), Clusters of orthologous groups for eukaryotic complete genomes (KOG), and Non-supervised Orthologous Groups (eggNOG) databases. Together, these results provide a foundation for future studies aimed at clarifying the mechanistic basis for the ability of C. dermatis NICC30027 to simultaneously utilize glucose and xylose to synthesize lipids.
Collapse
Affiliation(s)
- Laiyou Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Shuxian Guo
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Bo Zeng
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Shanshan Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Yan Chen
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Shuang Cheng
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Bingbing Liu
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Chunyan Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, China
| | - Yu Wang
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Qingshan Meng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Trevino V, Oyervides M, Ramírez-Correa GA, Garza L. Generating human papillomavirus (HPV) reference databases to maximize genomic mapping. Arch Virol 2022; 167:57-65. [PMID: 34668074 DOI: 10.1007/s00705-021-05256-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/13/2021] [Indexed: 01/14/2023]
Abstract
Genomic experiments analyzing human papillomaviruses (HPVs) require a carefully selected list of sequences as a reference database to map millions of reads. The available sources, such as the Papillomavirus Episteme (PaVE), are organized based on variations in the L1 gene rather than the whole HPV sequence. Moreover, the PaVE process uses complex multiple sequence alignments containing hundreds or thousands of sequences. These issues complicate the generation of a reference database for genomics, leading to the generation of per-analysis-defined databases. Here, we propose a de novo strategy considering all HPV sequences reported in the NCBI database to define a subset of highly representative HPV sequences. The strategy is based on oligonucleotide frequency profiling of the whole sequence followed by hierarchical clustering. Using data from HPV capture experiments, we demonstrate that this strategy selects suitable sequences as a reference database to map most mappable reads unambiguously. We provide some recommendations to improve HPV mapping. The generated .fasta files can be accessed at https://github.com/vtrevino/HPV-Ref-Genomes .
Collapse
Affiliation(s)
- Victor Trevino
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, 64710, Monterrey, Nuevo León, Mexico.
| | - Mariel Oyervides
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, 64849, Monterrey, Nuevo León, Mexico
| | - Genaro A Ramírez-Correa
- Department of Molecular Science, UT Health Rio Grande Valley, McAllen, TX, 78502, USA.,Division of Cardiology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lourdes Garza
- Centro Universitario Contra el Cáncer (CUCC), Servicio de Oncología, Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio Gonzáalez", 64460, Monterrey, Nuevo León, Mexico
| |
Collapse
|