1
|
Ebinger A, Santos PD, Pfaff F, Dürrwald R, Kolodziejek J, Schlottau K, Ruf V, Liesche-Starnecker F, Ensser A, Korn K, Ulrich R, Fürstenau J, Matiasek K, Hansmann F, Seuberlich T, Nobach D, Müller M, Neubauer-Juric A, Suchowski M, Bauswein M, Niller HH, Schmidt B, Tappe D, Cadar D, Homeier-Bachmann T, Haring VC, Pörtner K, Frank C, Mundhenk L, Hoffmann B, Herms J, Baumgärtner W, Nowotny N, Schlegel J, Ulrich RG, Beer M, Rubbenstroth D. Lethal Borna disease virus 1 infections of humans and animals - in-depth molecular epidemiology and phylogeography. Nat Commun 2024; 15:7908. [PMID: 39256401 PMCID: PMC11387626 DOI: 10.1038/s41467-024-52192-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Borna disease virus 1 (BoDV-1) is the causative agent of Borna disease, a fatal neurologic disorder of domestic mammals and humans, resulting from spill-over infection from its natural reservoir host, the bicolored white-toothed shrew (Crocidura leucodon). The known BoDV-1-endemic area is remarkably restricted to parts of Germany, Austria, Switzerland and Liechtenstein. To gain comprehensive data on its occurrence, we analysed diagnostic material from suspected BoDV-1-induced encephalitis cases based on clinical and/or histopathological diagnosis. BoDV-1 infection was confirmed by RT-qPCR in 207 domestic mammals, 28 humans and seven wild shrews. Thereby, this study markedly raises the number of published laboratory-confirmed human BoDV-1 infections and provides a first comprehensive summary. Generation of 136 new BoDV-1 genome sequences from animals and humans facilitated an in-depth phylogeographic analysis, allowing for the definition of risk areas for zoonotic BoDV-1 transmission and facilitating the assessment of geographical infection sources. Consistent with the low mobility of its reservoir host, BoDV-1 sequences showed a remarkable geographic association, with individual phylogenetic clades occupying distinct areas. The closest genetic relatives of most human-derived BoDV-1 sequences were located at distances of less than 40 km, indicating that spill-over transmission from the natural reservoir usually occurs in the patient´s home region.
Collapse
Affiliation(s)
- Arnt Ebinger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Pauline D Santos
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Ralf Dürrwald
- Robert Koch Institute, Department of Infectious Diseases, Unit 17 Influenza and Other Respiratory Viruses, National Reference Centre for Influenza, Berlin, Germany
| | - Jolanta Kolodziejek
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Viktoria Ruf
- Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Friederike Liesche-Starnecker
- Department of Neuropathology, Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
- Pathology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Armin Ensser
- Institute of Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Klaus Korn
- Institute of Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Reiner Ulrich
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Jenny Fürstenau
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Kaspar Matiasek
- Section of Clinical & Comparative Neuropathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Florian Hansmann
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Torsten Seuberlich
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Daniel Nobach
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
- Chemical and Veterinary Analysis Agency Stuttgart (CVUAS), Fellbach, Germany
| | - Matthias Müller
- Bavarian Health and Food Safety Authority, Erlangen, Germany
| | | | - Marcel Suchowski
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- Bavarian Health and Food Safety Authority, Oberschleißheim, Germany
| | - Markus Bauswein
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Hans-Helmut Niller
- Institute for Medical Microbiology, Regensburg University, Regensburg, Germany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and Hygiene, Regensburg University Hospital, Regensburg, Germany
| | - Dennis Tappe
- Bernhard Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Daniel Cadar
- Bernhard Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Timo Homeier-Bachmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Viola C Haring
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kirsten Pörtner
- Robert Koch Institute, Department of Infectious Disease Epidemiology, Berlin, Germany
| | - Christina Frank
- Robert Koch Institute, Department of Infectious Disease Epidemiology, Berlin, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Norbert Nowotny
- Institute of Virology, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Jürgen Schlegel
- Department of Neuropathology, School of Medicine, Institute of Pathology, Technical University Munich, Munich, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Dennis Rubbenstroth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.
| |
Collapse
|
2
|
Asin J, Calvete C, Uzal FA, Crossley BM, Duarte MD, Henderson EE, Abade dos Santos F. Rabbit hemorrhagic disease virus 2, 2010-2023: a review of global detections and affected species. J Vet Diagn Invest 2024; 36:617-637. [PMID: 39344909 PMCID: PMC11457751 DOI: 10.1177/10406387241260281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
Rabbit hemorrhagic disease virus 2/genotype GI.2 (RHDV2/GI.2; Caliciviridae, Lagovirus) causes a highly contagious disease with hepatic necrosis and disseminated intravascular coagulation in several Leporidae species. RHDV2 was first detected in European rabbits (Oryctolagus cuniculus) in France in 2010 and has since spread widely. We gather here data on viral detections reported in various countries and affected species, and discuss pathology, genetic differences, and novel diagnostic aspects. RHDV2 has been detected almost globally, with cases reported in Europe, Africa, Oceania, Asia, and North America as of 2023. Since 2020, large scale outbreaks have occurred in the United States and Mexico and, at the same time, cases have been reported for the first time in previously unaffected countries, such as China, Japan, Singapore, and South Africa, among others. Detections have been notified in domestic and wild European rabbits, hares and jackrabbits (Lepus spp.), several species of cottontail and brush rabbits (Sylvilagus spp.), pygmy rabbits (Brachylagus idahoensis), and red rock rabbits (Pronolagus spp.). RHDV2 has also been detected in a few non-lagomorph species. Detection of RHDV2 causing RHD in Sylvilagus spp. and Leporidae species other than those in the genera Oryctolagus and Lepus is very novel. The global spread of this fast-evolving RNA virus into previously unexploited geographic areas increases the likelihood of host range expansion as new species are exposed; animals may also be infected by nonpathogenic caliciviruses that are disseminated by almost all species, and with which genetic recombination may occur.
Collapse
Affiliation(s)
- Javier Asin
- California Animal Health and Food Safety Laboratory, University of California–Davis, San Bernardino, CA, USA
| | - Carlos Calvete
- Animal Science Department, Agri-Food Research and Technology Centre of Aragon (CITA), Agri-Food Institute of Aragón (IA2), Zaragoza, Spain
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory, University of California–Davis, San Bernardino, CA, USA
| | | | | | - Eileen E. Henderson
- California Animal Health and Food Safety Laboratory, University of California–Davis, San Bernardino, CA, USA
| | - Fábio Abade dos Santos
- National Institute for Agrarian and Veterinary Research (INIAV), Oeiras, Portugal
- Faculty of Veterinary Medicine, Lusofona University, Lisboa, Portugal
| |
Collapse
|
3
|
Abrantes J, Bertagnoli S, Cavadini P, Esteves PJ, Gavier-Widén D, Hall RN, Lavazza A, Le Gall-Reculé G, Mahar JE, Marchandeau S, Lopes AM. Comment on Shah et al. Genetic Characteristics and Phylogeographic Dynamics of Lagoviruses, 1988-2021. Viruses 2023, 15, 815. Viruses 2024; 16:927. [PMID: 38932219 PMCID: PMC11209181 DOI: 10.3390/v16060927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Shah and colleagues [...].
Collapse
Affiliation(s)
- Joana Abrantes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (J.A.); (P.J.E.)
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
| | - Stéphane Bertagnoli
- Laboratoire Interactions Hôtes-Agents Pathogènes, Université de Toulouse, INRAE, ENVT, CEDEX 3, 31076 Toulouse, France;
| | - Patrizia Cavadini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 25124 Brescia, Italy; (P.C.); (A.L.)
- WOAH Reference Laboratory for Rabbit Haemorrhagic Disease, Via Bianchi 7/9, 25124 Brescia, Italy
| | - Pedro J. Esteves
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (J.A.); (P.J.E.)
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- CITS—Center of Investigation in Health Technologies, CESPU, 4585-116 Gandra, Portugal
| | - Dolores Gavier-Widén
- Swedish Veterinary Agency (SVA), 75189 Uppsala, Sweden;
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, 75007 Uppsala, Sweden
| | - Robyn N. Hall
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Canberra, ACT 2601, Australia;
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia
- Ausvet Pty Ltd., Canberra, ACT 2617, Australia
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 25124 Brescia, Italy; (P.C.); (A.L.)
- WOAH Reference Laboratory for Rabbit Haemorrhagic Disease, Via Bianchi 7/9, 25124 Brescia, Italy
| | - Ghislaine Le Gall-Reculé
- Ploufragan-Plouzané-Niort Laboratory, Avian & Rabbit Virology, Immunology & Parasitology Unit, French Agency for Food, Environmental and Occupational Health and Safety (Anses), 22440 Ploufragan, France;
| | - Jackie E. Mahar
- Commonwealth Scientific and Industrial Research Organisation, Australian Animal Health Laboratory and Health and Biosecurity, Geelong, VIC 3220, Australia;
| | | | - Ana M. Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; (J.A.); (P.J.E.)
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- UMIB—Unit for Multidisciplinary Research in Biomedicine, ICBAS—School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
- ITR—Laboratory for Integrative and Translational Research in Population Health, 4050-600 Porto, Portugal
| |
Collapse
|
4
|
Tokarz-Deptuła B, Kulus J, Baraniecki Ł, Stosik M, Deptuła W. Characterisation of Lagovirus europaeus GI-RHDVs (Rabbit Haemorrhagic Disease Viruses) in Terms of Their Pathogenicity and Immunogenicity. Int J Mol Sci 2024; 25:5342. [PMID: 38791380 PMCID: PMC11120834 DOI: 10.3390/ijms25105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Rabbit haemorrhagic disease viruses (RHDV) belong to the family Caliciviridae, genus Lagovirus europaeus, genogroup GI, comprising four genotypes GI.1-GI.4, of which the genotypes GI.1 and GI.2 are pathogenic RHD viruses, while the genotypes GI.3 and GI.4 are non-pathogenic RCV (Rabbit calicivirus) viruses. Among the pathogenic genotypes GI.1 and GI.2 of RHD viruses, an antigenic variant of RHDV, named RHDVa-now GI.1a-RHDVa, was distinguished in 1996; and in 2010, a variant of RHDV-named RHDVb, later RHDV2 and now GI.2-RHDV2/b-was described; and recombinants of these viruses were registered. Pathogenic viruses of the genotype GI.1 were the cause of a disease described in 1984 in China in domestic (Oryctolagus (O.) cuniculus domesticus) and wild (O. cuniculus) rabbits, characterised by a very rapid course and a mortality rate of 90-100%, which spread in countries all over the world and which has been defined since 1989 as rabbit haemorrhagic disease. It is now accepted that GI.1-RHDV, including GI.1a-RHDVa, cause the predetermined primary haemorrhagic disease in domestic and wild rabbits, while GI.2-RHDV2/b cause it not only in rabbits, including domestic rabbits' young up to 4 weeks and rabbits immunised with rabbit haemorrhagic disease vaccine, but also in five various species of wild rabbits and seven different species of hares, as well as wild ruminants: mountain muskoxen and European badger. Among these viruses, haemagglutination-positive, doubtful and harmful viruses have been recorded and described and have been shown to form phylogenogroups, immunotypes, haematotypes and pathotypes, which, together with traits that alter and expand their infectious spectrum (rabbit, hare, wild ruminant, badger and various rabbit and hare species), are the determinants of their pathogenicity (infectivity) and immunogenicity and thus shape their virulence. These relationships are the aim of our consideration in this article.
Collapse
Affiliation(s)
| | - Jakub Kulus
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (W.D.)
| | - Łukasz Baraniecki
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | - Michał Stosik
- Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Gora, 65-516 Zielona Gora, Poland;
| | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.K.); (W.D.)
| |
Collapse
|
5
|
Hall RN, Trought K, Strive T, Duckworth JA, Jenckel M. First Detection and Circulation of RHDV2 in New Zealand. Viruses 2024; 16:519. [PMID: 38675862 PMCID: PMC11053765 DOI: 10.3390/v16040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Rabbit haemorrhage disease virus 2 (RHDV2) is a highly pathogenic lagovirus that causes lethal disease in rabbits and hares (lagomorphs). Since its first detection in Europe in 2010, RHDV2 has spread worldwide and has been detected in over 35 countries so far. Here, we provide the first detailed report of the detection and subsequent circulation of RHDV2 in New Zealand. RHDV2 was first detected in New Zealand in 2018, with positive samples retrospectively identified in December 2017. Subsequent time-resolved phylogenetic analysis suggested a single introduction into the North Island between March and November 2016. Genetic analysis identified a GI.3P-GI.2 variant supporting a non-Australian origin for the incursion; however, more accurate identification of the source of the incursion remains challenging due to the wide global distribution of the GI.3P-GI.2 variant. Furthermore, our analysis suggests the spread of the virus between the North and South Islands of New Zealand at least twice, dated to mid-2017 and around 2018. Further phylogenetic analysis also revealed a strong phylogeographic pattern. So far, no recombination events with endemic benign New Zealand rabbit caliciviruses have been identified. This study highlights the need for further research and surveillance to monitor the distribution and diversity of lagoviruses in New Zealand and to detect incursions of novel variants.
Collapse
Affiliation(s)
- Robyn N. Hall
- CSIRO Health & Biosecurity, Acton, ACT 2601, Australia
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia
- Ausvet Pty Ltd., Fremantle, WA 6160, Australia;
| | - Katherine Trought
- Manaaki Whenua-Landcare Research, Lincoln 7608, New Zealand; (K.T.); (J.A.D.)
| | - Tanja Strive
- CSIRO Health & Biosecurity, Acton, ACT 2601, Australia
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia
| | - Janine A. Duckworth
- Manaaki Whenua-Landcare Research, Lincoln 7608, New Zealand; (K.T.); (J.A.D.)
| | - Maria Jenckel
- CSIRO Health & Biosecurity, Acton, ACT 2601, Australia
| |
Collapse
|
6
|
Almeida T, Lopes AM, Estruch J, Rouco C, Cavadini P, Neimanis A, Gavier-Widén D, Le Gall-Reculé G, Velarde R, Abrantes J. A new HaCV-EBHSV recombinant lagovirus circulating in European brown hares (Lepus europaeus) from Catalonia, Spain. Sci Rep 2024; 14:2872. [PMID: 38311618 PMCID: PMC10838927 DOI: 10.1038/s41598-024-53201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
In 2020/2021, several European brown hare syndrome virus (EBHSV) outbreaks were recorded in European hares (Lepus europaeus) from Catalonia, Spain. Recombination analysis combined with phylogenetic reconstruction and estimation of genetic distances of the complete coding sequences revealed that 5 strains were recombinants. The recombination breakpoint is located within the non-structural protein 2C-like RNA helicase (nucleotide position ~ 1889). For the genomic fragment upstream of the breakpoint, a non-pathogenic EBHSV-related strain (hare calicivirus, HaCV; GII.2) was the most closely related sequence; for the rest of the genome, the most similar strains were the European brown hare syndrome virus (EBHSV) strains recovered from the same 2020/2021 outbreaks, suggesting a recent origin. While the functional impact of the atypical recombination breakpoint remains undetermined, the novel recombinant strain was detected in different European brown hare populations from Catalonia, located 20-100 km apart, and seems to have caused a fatal disease both in juvenile and adult animals, confirming its viability and ability to spread and establish infection. This is the first report of a recombination event involving HaCV and EBHSV and, despite the recombination with a non-pathogenic strain, it appears to be associated with mortality in European brown hares, which warrants close monitoring.
Collapse
Affiliation(s)
- Tereza Almeida
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Ana M Lopes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR, Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Josep Estruch
- Wildlife Ecology & Health Group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Carlos Rouco
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain
| | - Patrizia Cavadini
- WOAH Reference Laboratory for Rabbit Haemorrhagic Disease, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Aleksija Neimanis
- Department of Pathology and Wildlife Diseases, National Veterinary Institute, 75189, Uppsala, Sweden
| | - Dolores Gavier-Widén
- Swedish Veterinary Agency (SVA), 75189, Uppsala, Sweden
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences (SLU), Box 7028, 75007, Uppsala, Sweden
| | - Ghislaine Le Gall-Reculé
- Avian and Rabbit Virology, Immunology and Parasitology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (Anses), 22440, Ploufragan, France
| | - Roser Velarde
- Wildlife Ecology & Health Group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Joana Abrantes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Portugal.
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002, Porto, Portugal.
| |
Collapse
|
7
|
Cavadini P, Trogu T, Velarde R, Lavazza A, Capucci L. Recombination between non-structural and structural genes as a mechanism of selection in lagoviruses: The evolutionary dead-end of an RHDV2 isolated from European hare. Virus Res 2024; 339:199257. [PMID: 38347757 PMCID: PMC10654597 DOI: 10.1016/j.virusres.2023.199257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 02/15/2024]
Abstract
The genus Lagovirus, belonging to the family Caliciviridae, emerged around the 1980s. It includes highly pathogenic species, rabbit hemorrhagic disease virus (RHDV/GI.1) and European brown hare syndrome virus (EBHSV/GII.1), which cause fatal hepatitis, and nonpathogenic viruses with enteric tropism, rabbit calicivirus (RCV/GI.3,4) and hare calicivirus (HaCV/GII.2). Lagoviruses have evolved along two independent genetic lineages: GI (RHDV and RCV) in rabbits and GII (EBHSV and HaCV) in hares. To be emphasized is that genomes of lagoviruses, like other caliciviruses, are highly conserved at RdRp-VP60 junctions, favoring intergenotypic recombination events at this point. The recombination between an RCV (genotype GI.3), donor of non-structural (NS) genes, and an unknown virus, donor of structural (S) genes, likely led to the emergence of a new lagovirus in the European rabbit, called RHDV type 2 (GI.2), identified in Europe in 2010. New RHDV2 intergenotypic recombinants isolated in rabbits in Europe and Australia originated from similar events between RHDV2 (GI.2) and RHDV (GI.1) or RCV (GI.3,4). RHDV2 (GI.2) rapidly spread worldwide, replacing RHDV and showing several lagomorph species as secondary hosts. The recombination events in RHDV2 viruses have led to a number of viruses with very different combinations of NS and S genes. Recombinant RHDV2 with NS genes from hare lineage (GII) was recently identified in the European hare. This study investigated the first RHDV2 (GI.2) identified in Italy in European hare (RHDV2_Bg12), demonstrating that it was a new virus that originated from the recombination between RHDV2, as an S-gene donor and a hare lagovirus, not yet identified but presumably nonpathogenic, as an NS gene donor. When rabbits were inoculated with RHDV2_Bg12, neither deaths nor seroconversions were recorded, demonstrating that RHDV2_Bg12 cannot infect the rabbit. Furthermore, despite intensive and continuous field surveillance, RHDV2_Bg12 has never again been identified in either hares or rabbits in Italy or elsewhere. This result showed that the host specificity of lagoviruses can depend not only on S genes, as expected until today, but potentially also on some species-specific NS gene sequences. Therefore, because RHDV2 (GI.2) infects several lagomorphs, which in turn probably harbor several specific nonpathogenic lagoviruses, the possibility of new speciation, especially in those other than rabbits, is real. RHDV2 Bg_12 demonstrated this, although the attempt apparently failed.
Collapse
Affiliation(s)
- Patrizia Cavadini
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna Via Bianchi 9, 25124 Brescia, Italy
| | - Tiziana Trogu
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna Via Bianchi 9, 25124 Brescia, Italy
| | - Roser Velarde
- Wildlife Ecology & Health group (WEH) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna Via Bianchi 9, 25124 Brescia, Italy.
| | - Lorenzo Capucci
- Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna Via Bianchi 9, 25124 Brescia, Italy
| |
Collapse
|
8
|
Peng NYG, Hall RN, Huang N, West P, Cox TE, Mahar JE, Mason H, Campbell S, O’Connor T, Read AJ, Patel KK, Taggart PL, Smith IL, Strive T, Jenckel M. Utilizing Molecular Epidemiology and Citizen Science for the Surveillance of Lagoviruses in Australia. Viruses 2023; 15:2348. [PMID: 38140589 PMCID: PMC10747141 DOI: 10.3390/v15122348] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Australia has multiple lagoviruses with differing pathogenicity. The circulation of these viruses was traditionally determined through opportunistic sampling events. In the lead up to the nationwide release of RHDVa-K5 (GI.1aP-GI.1a) in 2017, an existing citizen science program, RabbitScan, was augmented to allow members of the public to submit samples collected from dead leporids for lagovirus testing. This study describes the information obtained from the increased number of leporid samples received between 2015 and 2022 and focuses on the recent epidemiological interactions and evolutionary trajectory of circulating lagoviruses in Australia between October 2020 and December 2022. A total of 2771 samples were tested from January 2015 to December 2022, of which 1643 were lagovirus-positive. Notable changes in the distribution of lagovirus variants were observed, predominantly in Western Australia, where RHDV2-4c (GI.4cP-GI.2) was detected again in 2021 after initially being reported to be present in 2018. Interestingly, we found evidence that the deliberately released RHDVa-K5 was able to establish and circulate in wild rabbit populations in WA. Overall, the incorporation of citizen science approaches proved to be a cost-efficient method to increase the sampling area and enable an in-depth analysis of lagovirus distribution, genetic diversity, and interactions. The maintenance of such programs is essential to enable continued investigations of the critical parameters affecting the biocontrol of feral rabbit populations in Australia, as well as to enable the detection of any potential future incursions.
Collapse
Affiliation(s)
- Nias Y. G. Peng
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Canberra, ACT 2601, Australia; (N.Y.G.P.); (R.N.H.); (N.H.); (H.M.); (I.L.S.); (T.S.)
| | - Robyn N. Hall
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Canberra, ACT 2601, Australia; (N.Y.G.P.); (R.N.H.); (N.H.); (H.M.); (I.L.S.); (T.S.)
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia; (P.W.); (A.J.R.); (K.K.P.); (P.L.T.)
- Ausvet Pty Ltd., Canberra, ACT 2617, Australia
| | - Nina Huang
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Canberra, ACT 2601, Australia; (N.Y.G.P.); (R.N.H.); (N.H.); (H.M.); (I.L.S.); (T.S.)
| | - Peter West
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia; (P.W.); (A.J.R.); (K.K.P.); (P.L.T.)
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange, NSW 2880, Australia;
| | - Tarnya E. Cox
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange, NSW 2880, Australia;
| | - Jackie E. Mahar
- School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia;
- Commonwealth Scientific and Industrial Research Organisation, Australian Animal Health Laboratory and Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Hugh Mason
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Canberra, ACT 2601, Australia; (N.Y.G.P.); (R.N.H.); (N.H.); (H.M.); (I.L.S.); (T.S.)
| | - Susan Campbell
- Department of Primary Industries and Regional Development WA, Albany, WA 6630, Australia;
| | - Tiffany O’Connor
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia; (P.W.); (A.J.R.); (K.K.P.); (P.L.T.)
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia
| | - Andrew J. Read
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia; (P.W.); (A.J.R.); (K.K.P.); (P.L.T.)
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2568, Australia
| | - Kandarp K. Patel
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia; (P.W.); (A.J.R.); (K.K.P.); (P.L.T.)
- Invasive Species Unit, Department of Primary Industries and Regions SA, Urrbrae, SA 5064, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA 5371, Australia
| | - Patrick L. Taggart
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia; (P.W.); (A.J.R.); (K.K.P.); (P.L.T.)
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, Queanbeyan, NSW 2620, Australia
| | - Ina L. Smith
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Canberra, ACT 2601, Australia; (N.Y.G.P.); (R.N.H.); (N.H.); (H.M.); (I.L.S.); (T.S.)
| | - Tanja Strive
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Canberra, ACT 2601, Australia; (N.Y.G.P.); (R.N.H.); (N.H.); (H.M.); (I.L.S.); (T.S.)
- Centre for Invasive Species Solutions, Bruce, ACT 2617, Australia; (P.W.); (A.J.R.); (K.K.P.); (P.L.T.)
| | - Maria Jenckel
- Commonwealth Scientific and Industrial Research Organisation, Health and Biosecurity, Canberra, ACT 2601, Australia; (N.Y.G.P.); (R.N.H.); (N.H.); (H.M.); (I.L.S.); (T.S.)
| |
Collapse
|
9
|
Domanico M, Cavadini P, Nardini R, Cecca D, Mastrandrea G, Eleni C, Galietta V, Attili L, Pizzarelli A, Onorati R, Amoruso C, Stilli D, Pacchiarotti G, Merzoni F, Caprioli A, Ricci I, Battisti A, Lavazza A, Scicluna MT. Pathological and virological insights from an outbreak of European brown hare syndrome in the Italian hare ( Lepus corsicanus). Front Microbiol 2023; 14:1250787. [PMID: 37928681 PMCID: PMC10622795 DOI: 10.3389/fmicb.2023.1250787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
European brown hare syndrome (EBHS) is a highly contagious and fatal viral disease, mainly affecting European brown hares (Lepus europaeus). The etiological agent, EBHS virus (EBHSV), belongs to the Lagovirus genus within the Caliciviridae family. The Italian hare (Lepus corsicanus) is endemic to Central-Southern Italy and Sicily and is classified as a vulnerable species. L. corsicanus is known to be susceptible to EBHS, but virological data available is scarce due to the few cases detected so far. In this study, we describe the occurrence of EBHS in two free-ranging L. corsicanus, found dead in a protected area of Central Italy. The two hares were identified as L. corsicanus using phenotypic criteria and confirmed through mitochondrial DNA analysis. Distinctive EBHS gross lesions were observed at necropsy and confirmed by subsequent histological examination. EBHSV was detected in the livers of the two animals initially using an antigen detection ELISA, followed by an EBHSV-specific reverse transcription-PCR, thus confirming the viral infection as the probable cause of death. The EBHS viruses detected in the two hares were identical, as based on blast analysis performed for the VP60 sequences and showed 98.86% nucleotide identity and 100% amino acid identity with strain EBHSV/GER-BY/EI97.L03477/2019, isolated in Germany in 2019. Phylogenetic analysis places our virus in group B, which includes strains that emerged after the mid-1980s. This study supports previous reports of EBHS in L. corsicanus and further expands the knowledge of the pathological and virological characteristics of the etiological agent. The ability of EBHSV to cause a fatal disease in the Italian hare represents a serious threat to the conservation of this vulnerable species, especially in populations kept in enclosed protected areas.
Collapse
Affiliation(s)
- Mariagiovanna Domanico
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri” (IZSLT), Rome, Italy
| | - Patrizia Cavadini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Brescia, Italy
| | - Roberto Nardini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri” (IZSLT), Rome, Italy
| | - Daniele Cecca
- Segretariato Generale della Presidenza della Repubblica—Servizio Tenuta di Castelporziano, Rome, Italy
| | - Giovanni Mastrandrea
- Segretariato Generale della Presidenza della Repubblica—Servizio Tenuta di Castelporziano, Rome, Italy
| | - Claudia Eleni
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri” (IZSLT), Rome, Italy
| | - Valentina Galietta
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri” (IZSLT), Rome, Italy
| | - Lorenzo Attili
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri” (IZSLT), Rome, Italy
| | - Antonella Pizzarelli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri” (IZSLT), Rome, Italy
| | - Roberta Onorati
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri” (IZSLT), Rome, Italy
| | - Cristina Amoruso
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri” (IZSLT), Rome, Italy
| | - Donatella Stilli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri” (IZSLT), Rome, Italy
| | - Giulia Pacchiarotti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri” (IZSLT), Rome, Italy
| | - Francesca Merzoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Brescia, Italy
| | - Andrea Caprioli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri” (IZSLT), Rome, Italy
| | - Ida Ricci
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri” (IZSLT), Rome, Italy
| | - Antonio Battisti
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri” (IZSLT), Rome, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), Brescia, Italy
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri” (IZSLT), Rome, Italy
| |
Collapse
|
10
|
Tanikawa T, Watanabe S, Mikami O, Miyazaki A. Genetics of the rabbit haemorrhagic disease virus strains responsible for rabbit haemorrhagic disease outbreaks in Japan between 2000 and 2020. J Gen Virol 2023; 104. [PMID: 37159399 DOI: 10.1099/jgv.0.001846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Rabbit haemorrhagic disease (RHD) is a highly contagious and fatal disease in rabbits caused by the rabbit haemorrhagic disease virus (RHDV), which includes two genotypes, RHDV-GI.1 and RHDV2-GI.2. RHDVs tend to recombine among different strains, resulting in significant genetic evolution. This study evaluated the genetics of Japanese RHDV strains associated with six outbreaks between 2000 and 2020 using whole-genome sequencing, genomic recombination and phylogenetic analyses. Genomic recombination analysis using near-complete genomic sequences revealed that two Japanese strains detected in 2000 and 2002 were non-recombinant GI.1 (variant RHDVa-GI.1a) strains of different origins, most closely related to strains identified in PR China in 1997 and the USA in 2001, respectively. In contrast, four recent Japanese GI.2 strains detected between 2019 and 2020 were recombinant viruses harbouring structural protein (SP) genes from GI.2 strains and non-SP (NSP) genes from a benign rabbit calicivirus (RCV) strain of genotype RCV-E1-GI.3 (GI.3P-GI.2) or an RHDV G1-GI.1b variant (GI.1bP-GI.2). Phylogenetic analysis based on SP and NSP regions revealed that the GI.1bP-GI.2 recombinant virus detected in Ehime prefecture and the GI.3P-GI.2 recombinant viruses detected in Ibaraki, Tochigi and Chiba prefectures were most closely related to recombinant viruses identified in Australia in 2017 and Germany in 2017, respectively. These results suggested that past RHD outbreaks in Japan did not result from the evolution of domestic RHDVs but rather represented incursions of foreign RHDV strains, implying that Japan is constantly at risk of RHDV incursion from other countries.
Collapse
Affiliation(s)
- Taichiro Tanikawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Satoko Watanabe
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Osamu Mikami
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Ayako Miyazaki
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
11
|
Shah PT, Bahoussi AN, Yang C, Yao G, Dong L, Wu C, Xing L. Genetic Characteristics and Phylogeographic Dynamics of Lagoviruses, 1988-2021. Viruses 2023; 15:v15040815. [PMID: 37112796 PMCID: PMC10143477 DOI: 10.3390/v15040815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Rabbit haemorrhagic disease virus (RHDV), European brown hare syndrome virus (EBHSV), rabbit calicivirus (RCV), and hare calicivirus (HaCV) belong to the genus Lagovirus of the Caliciviridae family that causes severe diseases in rabbits and several hare (Lepus) species. Previously, Lagoviruses were classified into two genogroups, e.g., GI (RHDVs and RCVs) and GII (EBHSV and HaCV) based on partial genomes, e.g., VP60 coding sequences. Herein, we provide a robust phylogenetic classification of all the Lagovirus strains based on full-length genomes, grouping all the available 240 strains identified between 1988 and 2021 into four distinct clades, e.g., GI.1 (classical RHDV), GI.2 (RHDV2), HaCV/EBHSV, and RCV, where the GI.1 clade is further classified into four (GI.1a-d) and GI.2 into six sub-clades (GI.2a-f). Moreover, the phylogeographic analysis revealed that the EBHSV and HaCV strains share their ancestor with the GI.1, while the RCV shares with the GI.2. In addition, all 2020-2021 RHDV2 outbreak strains in the USA are connected to the strains from Canada and Germany, while RHDV strains isolated in Australia are connected with the USA-Germany haplotype RHDV strain. Furthermore, we identified six recombination events in the VP60, VP10, and RNA-dependent RNA polymerase (RdRp) coding regions using the full-length genomes. The amino acid variability analysis showed that the variability index exceeded the threshold of 1.00 in the ORF1-encoded polyprotein and ORF2-encoded VP10 protein, respectively, indicating significant amino acid drift with the emergence of new strains. The current study is an update of the phylogenetic and phylogeographic information of Lagoviruses that may be used to map the evolutionary history and provide hints for the genetic basis of their emergence and re-emergence.
Collapse
Affiliation(s)
- Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Amina Nawal Bahoussi
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Caiting Yang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Guanhan Yao
- Department of Molecular Genetics and Development, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Li Dong
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan 030006, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
12
|
Faehndrich M, Klink JC, Roller M, Wohlsein P, Raue K, Strube C, Prenger-Berninghoff E, Ewers C, Capucci L, Lavazza A, Tomaso H, Schnitzler JG, Siebert U. Status of Infectious Diseases in Free-Ranging European Brown Hares ( Lepus europaeus) Found Dead between 2017 and 2020 in Schleswig-Holstein, Germany. Pathogens 2023; 12:239. [PMID: 36839511 PMCID: PMC9959346 DOI: 10.3390/pathogens12020239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The European brown hare (Lepus europaeus) is a quite adaptable species, but populations have been decreasing for several decades in different countries, including Germany. To investigate infectious diseases as possible influences on observed population decline in the German federal state Schleswig-Holstein, 118 deceased free-ranging European brown hares were collected between 2017 and 2020 and underwent detailed postmortem examination with extended sampling. Infectious diseases were a major cause of death (34.7%). The number of juveniles found exceeded the adult ones. The main pathomorphological findings were hepatitis (32.8%), pneumonia (22.2%), nephritis (19.1%), liver necrosis (12.9%), and enteritis (40.7%). An unusual main finding was steatitis (20.9%) of unknown origin. Animals were mainly emaciated and showed high infection rates with Eimeria spp. (91.3%) and Trichostrongylus spp. (36.2%). European Brown Hare Syndrome Virus reached an epidemic status with few fatal infections (4.2%) and high seroprevalence (64.9%), whereas the prevalence of Rabbit Haemorrhagic Disease Virus 2 was very low (0.8%) in hares in Schleswig-Holstein. Pathogens such as Yersinia pseudotuberculosis (5.9%), Pasteurella multocida (0.8%), and Staphylococcus aureus (3.4%) only caused sporadic deaths. This study illustrates the wide distribution of various infectious pathogens with high mortality and even zoonotic potential. Infectious diseases need to be considered as an important influence on population dynamics in Schleswig-Holstein.
Collapse
Affiliation(s)
- Marcus Faehndrich
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Jana C. Klink
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Marco Roller
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Peter Wohlsein
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Katharina Raue
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Ellen Prenger-Berninghoff
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Lorenzo Capucci
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via Bianchi 7/9, 25124 Brescia, Italy
| | - Antonio Lavazza
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, Via Bianchi 7/9, 25124 Brescia, Italy
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut—Federal Research Institute for Animal Health (FLI), Naumburger Strasse 96a, 07743 Jena, Germany
| | - Joseph G. Schnitzler
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| |
Collapse
|
13
|
European Brown Hare Syndrome in Poland: Current Epidemiological Situation. Viruses 2022; 14:v14112423. [PMID: 36366520 PMCID: PMC9698305 DOI: 10.3390/v14112423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
European brown hare syndrome (EBHS) is one of the main causes of mortality in brown hares (Lepus europaeus) and mountain hares (Lepus timidus) in Europe. Since the mid-1990s, this highly lethal and contagious plague has been widespread in many European countries, contributing to a drastic decline in the number of free-living and farmed hares. A second lagovirus, able to infect some species of hares is rabbit haemorrhagic disease virus 2 (RHDV2; GI.2) recognised in 2010, a new viral emergence of RHDV (GI.1) which is known to be responsible for haemorrhagic disease in rabbits-RHD. The aim of this study was to evaluate the current EBHS epidemiological situation on the basis of the presence of antibodies to European brown hare syndrome virus (EBHSV) and anti-RHDV2 antibodies in sera collected from free-ranging hares in Central and Southeastern Poland in 2020-2021. Additionally, studies on the presence of EBHSV and RHDV2 antigens or their genetic material in the blood and internal organs taken from brown hares between 2014 - 2021 have been carried out. The results of the serological examination showed nearly 88% of tested blood samples were positive for EBHSV antibodies. No EBHSV was identified in the examined hares using virological and molecular tests. The positive results of EBHS serological studies confirmed the circulation and maintenance of EBHSV in free-living brown hares in Poland. However, no serological, virological or molecular evidence was obtained indicating that the brown hares tested had been in contact with RHDV2.
Collapse
|
14
|
Perera KD, Johnson D, Lovell S, Groutas WC, Chang KO, Kim Y. Potent Protease Inhibitors of Highly Pathogenic Lagoviruses: Rabbit Hemorrhagic Disease Virus and European Brown Hare Syndrome Virus. Microbiol Spectr 2022; 10:e0014222. [PMID: 35766511 PMCID: PMC9430360 DOI: 10.1128/spectrum.00142-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022] Open
Abstract
Rabbit hemorrhagic disease (RHD) and European brown hare syndrome (EBHS) are highly contagious diseases caused by lagoviruses in the Caliciviridae family. These infectious diseases are associated with high mortality and a serious threat to domesticated and wild rabbits and hares, including endangered species such as riparian brush rabbits (Sylvilagus bachmani riparius). In the United States (U.S.), only isolated cases of RHD had been reported until Spring 2020. However, RHD caused by GI.2/rabbit hemorrhagic disease virus (RHDV)2/b was unexpectedly reported in April 2020 in New Mexico and has subsequently spread to several U.S. states, infecting wild rabbits and hares and making it highly likely that RHD will become endemic in the U.S. Vaccines are available for RHD; however, there is no specific treatment for this disease. Lagoviruses encode a 3C-like protease (3CLpro), which is essential for virus replication and a promising target for antiviral drug development. We have previously generated focused small-molecule libraries of 3CLpro inhibitors and demonstrated the in vitro potency and in vivo efficacy of some protease inhibitors against viruses encoding 3CLpro, including caliciviruses and coronaviruses. Here, we report the development of the enzyme and cell-based assays for the 3CLpro of GI.1c/RHDV, recombinant GI.3P-GI.2 (RHDV2/b), and GII.1/European brown hare syndrome virus (EBHSV) as well as the identification of potent lagovirus 3CLpro inhibitors, including GC376, a protease inhibitor being developed for feline infectious peritonitis. In addition, structure-activity relationship study and homology modeling of the 3CLpro and inhibitors revealed that lagovirus 3CLpro share similar structural requirements for inhibition with other calicivirus 3CLpro. IMPORTANCE Rabbit hemorrhagic disease (RHD) and European brown hare syndrome (EBHS) are viral diseases that affect lagomorphs with significant economic and ecological impacts. RHD vaccines are available, but specific antiviral treatment for these viral infections would be a valuable addition to the current control measures. Lagoviruses encode 3C-like protease (3CLpro), which is essential for virus replication and an attractive target for antiviral drug discovery. We have screened and identified potent small-molecule inhibitors that block lagovirus 3CLpro in the enzyme- and cell-based assays. Our results suggest that these compounds have the potential for further development as antiviral drugs for lagoviruses.
Collapse
Affiliation(s)
- Krishani Dinali Perera
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - David Johnson
- Computational Chemical Biology Core, The University of Kansas, Lawrence, Kansas, USA
| | - Scott Lovell
- Protein Structure Laboratory, The University of Kansas, Lawrence, Kansas, USA
| | - William C. Groutas
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas, USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
15
|
Mahar JE, Jenckel M, Huang N, Smertina E, Holmes EC, Strive T, Hall RN. Frequent intergenotypic recombination between the non-structural and structural genes is a major driver of epidemiological fitness in caliciviruses. Virus Evol 2021; 7:veab080. [PMID: 34754513 PMCID: PMC8570162 DOI: 10.1093/ve/veab080] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/14/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022] Open
Abstract
The diversity of lagoviruses (Caliciviridae) in Australia has increased considerably in recent years. By the end of 2017, five variants from three viral genotypes were present in populations of Australian rabbits, while prior to 2014 only two variants were known. To understand the evolutionary interactions among these lagovirus variants, we monitored their geographical distribution and relative incidence over time in a continental-scale competition study. Within 3 years of the incursion of rabbit haemorrhagic disease virus 2 (RHDV2, denoted genotype GI.1bP-GI.2 [polymerase genotype]P-[capsid genotype]) into Australia, two novel recombinant lagovirus variants emerged: RHDV2-4e (genotype GI.4eP-GI.2) in New South Wales and RHDV2-4c (genotype GI.4cP-GI.2) in Victoria. Although both novel recombinants contain non-structural genes related to those from benign, rabbit-specific, enterotropic viruses, these variants were recovered from the livers of both rabbits and hares that had died acutely. This suggests that the determinants of host and tissue tropism for lagoviruses are associated with the structural genes, and that tropism is intricately connected with pathogenicity. Phylogenetic analyses demonstrated that the RHDV2-4c recombinant emerged independently on multiple occasions, with five distinct lineages observed. Both the new RHDV2-4e and -4c recombinant variants replaced the previous dominant parental RHDV2 (genotype GI.1bP-GI.2) in their respective geographical areas, despite sharing an identical or near-identical (i.e. single amino acid change) VP60 major capsid protein with the parental virus. This suggests that the observed replacement by these recombinants was not driven by antigenic variation in VP60, implicating the non-structural genes as key drivers of epidemiological fitness. Molecular clock estimates place the RHDV2-4e recombination event in early to mid-2015, while the five RHDV2-4c recombination events occurred from late 2015 through to early 2017. The emergence of at least six viable recombinant variants within a 2-year period highlights the high frequency of these events, detectable only through intensive surveillance, and demonstrates the importance of recombination in lagovirus evolution.
Collapse
Affiliation(s)
- Jackie E Mahar
- Marie Bashir Institute for Infectious Disease and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Maria Jenckel
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, ACT 2601, Australia
| | - Nina Huang
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, ACT 2601, Australia
| | - Elena Smertina
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, ACT 2601, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Disease and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Tanja Strive
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, ACT 2601, Australia
| | - Robyn N Hall
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation, Black Mountain, ACT 2601, Australia
| |
Collapse
|
16
|
Phylogenetic Analysis of European Brown Hare Syndrome Virus Strains from Poland (1992-2004). Viruses 2021; 13:v13101999. [PMID: 34696431 PMCID: PMC8539919 DOI: 10.3390/v13101999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/19/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
European brown hare syndrome (EBHS) is lethal to several species of free-living hares worldwide. The genetic characterization of its virus (EBHSV) strains in European circulation and epidemiological knowledge of EBHSV infections is not yet complete. The study determined the nucleotide sequences of the genomes of EBHSV strains from Poland and analyzed their genetic and phylogenetic relationships to a group of hare lagoviruses. The genome of five virus strains detected in Poland between 1992 and 2004 was obtained by RT-PCR and sequencing of the obtained amplicons. The genetic relationships of the EBHSV strains were analyzed using the full genome and VP60 gene sequences. Additionally, the amino acid sequence of the VP60 gene was analyzed to identify mutations specific to recognized EBHSV subgroups. Partial amplification of the virus open reading frame (ORF)1 and ORF2 regions obtained nearly complete nucleotide genome sequences of the EBHSV strains. Phylogenetic analysis placed them in a GII.1 cluster with other European strains related to nonpathogenic hare caliciviruses. VP60 gene analysis allocated these EBHSV strains to the G1.2, G2.2–2.3 or G3 virus genetic groups. The amino acid sequence differences in the entire genome ranged from 1.1 to 2.6%. Compared to a reference French EBHSV-GD strain, 22 variable amino acid sites were identified in the VP60 region of the Polish strains, but only six were in VP10. Single amino acid changes appeared in different sequence positions among Polish and other European virus strains from different genetic groups, as well as in VP10 sequences of nonpathogenic hare caliciviruses. The results of the study showed a high genetic homogeneity of EBHSV strains from Poland despite their different location occurrence and initial detection times. These strains are also phylogenetically closely related to other EBHSV strains circulating in Europe, likely confirming the slow evolutionary dynamics of this lagovirus species.
Collapse
|
17
|
Ben Chehida F, Lopes AM, Côrte-Real JV, Sghaier S, Aouini R, Messadi L, Abrantes J. Multiple Introductions of Rabbit Hemorrhagic Disease Virus Lagovirus europaeus/GI.2 in Africa. BIOLOGY 2021; 10:883. [PMID: 34571760 PMCID: PMC8471427 DOI: 10.3390/biology10090883] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
Rabbit hemorrhagic disease (RHD) causes high mortality and morbidity in European rabbits (Oryctolagus cuniculus). In Africa, the presence of the causative agent, the rabbit hemorrhagic disease virus (RHDV), was first confirmed in 1992 (genotype Lagovirus europaeus/GI.1). In 2015, the new genotype Lagovirus europaeus/GI.2 (RHDV2/b) was detected in Tunisia. Currently, GI.2 strains are present in several North and Sub-Saharan African countries. Considerable economic losses have been observed in industrial and traditional African rabbitries due to RHDV. Like other RNA viruses, this virus presents high recombination rates, with the emergence of GI.2 being associated with a recombinant strain. Recombination events have been detected with both pathogenic (GI.1b and GII.1) and benign (GI.3 and GI.4) strains. We obtained complete genome sequences of Tunisian GI.2 strains collected between 2018 and 2020 and carried out phylogenetic analyses. The results revealed that Tunisian strains are GI.3P-GI.2 strains that were most likely introduced from Europe. In addition, the results support the occurrence of multiple introductions of GI.2 into Africa, stressing the need for characterizing complete genome sequences of the circulating lagoviruses to uncover their origin. Continued monitoring and control of rabbit trade will grant a better containment of the disease and reduce the disease-associated economic losses.
Collapse
Affiliation(s)
- Faten Ben Chehida
- Laboratory of Microbiology, Immunology and General Pathology, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; (F.B.C.); (R.A.); (L.M.)
| | - Ana M. Lopes
- CIBIO/InBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal; (A.M.L.); (J.V.C.-R.)
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Unidade Multidisciplinar de Investigação Biomédica (UMIB), Universidade do Porto, 4050-313 Porto, Portugal
| | - João V. Côrte-Real
- CIBIO/InBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal; (A.M.L.); (J.V.C.-R.)
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Soufien Sghaier
- Department of Virology, Institution of Agricultural Research and Higher Education, Tunisian Institute of Veterinary Research (IRVT), University of Tunis El Manar, Tunis 1006, Tunisia;
| | - Rim Aouini
- Laboratory of Microbiology, Immunology and General Pathology, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; (F.B.C.); (R.A.); (L.M.)
| | - Lilia Messadi
- Laboratory of Microbiology, Immunology and General Pathology, Institution of Agricultural Research and Higher Education, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, Sidi Thabet 2020, Tunisia; (F.B.C.); (R.A.); (L.M.)
| | - Joana Abrantes
- CIBIO/InBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal; (A.M.L.); (J.V.C.-R.)
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| |
Collapse
|
18
|
Abrantes J, Lopes AM. A Review on the Methods Used for the Detection and Diagnosis of Rabbit Hemorrhagic Disease Virus (RHDV). Microorganisms 2021; 9:972. [PMID: 33946292 PMCID: PMC8146303 DOI: 10.3390/microorganisms9050972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/10/2023] Open
Abstract
Since the early 1980s, the European rabbit (Oryctolagus cuniculus) has been threatened by the rabbit hemorrhagic disease (RHD). The disease is caused by a lagovirus of the family Caliciviridae, the rabbit hemorrhagic disease virus (RHDV). The need for detection, identification and further characterization of RHDV led to the development of several diagnostic tests. Owing to the lack of an appropriate cell culture system for in vitro propagation of the virus, much of the methods involved in these tests contributed to our current knowledge on RHD and RHDV and to the development of vaccines to contain the disease. Here, we provide a comprehensive review of the RHDV diagnostic tests used since the first RHD outbreak and that include molecular, histological and serological techniques, ranging from simpler tests initially used, such as the hemagglutination test, to the more recent and sophisticated high-throughput sequencing, along with an overview of their potential and their limitations.
Collapse
Affiliation(s)
- Joana Abrantes
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal;
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
| | - Ana M. Lopes
- CIBIO/InBio-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, 4485-661 Vairão, Portugal;
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS)/Unidade Multidisciplinar de Investigação Biomédica (UMIB), Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|