1
|
Chen Q, Zhou Q, Yang S, Pan F, Tao H, Wen Y, Chao Y, Xie C, Ou W, Guo D, Li Y, Zhang X. Identification of adenosine analogues as nsp14 N7‑methyltransferase inhibitors for treating coronaviruses infection. Bioorg Chem 2024; 153:107894. [PMID: 39490138 DOI: 10.1016/j.bioorg.2024.107894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 10/14/2024] [Indexed: 11/05/2024]
Abstract
Coronaviruses are RNA viruses that have coevolved with humans and animals over time, exhibiting high mutation rates and mortality rates upon epidemic outbreaks. The nonstructural protein (nsp14) is crucial for various coronaviruses processes, including genome replication, protein translation, virus particle assembly, and evasion of host immunity via RNA methylation modification. In this study, a series of adenosine analogs were designed, synthesized, and evaluated for their inhibitory activities. Among them, MTI013 exhibited the strongest nsp14 MTase inhibition and antiviral activity, with an IC50 of 10.33 μM in HCoV-229E-infected Huh7 cells, along with low cytotoxicity. When combined with the RdRp inhibitor ATV014, MTI013 showed a synergistic antiviral effect, indicating its potential both as a standalone therapy and in combination treatments. Furthermore, MTI013 displayed high selectivity against the SARS-CoV-2 nsp10-nsp16 complex and five human methyltransferases. These results offer valuable structural insights for future exploration of nsp14 as a drug target for SARS-CoV-2 and other coronaviruses.
Collapse
Affiliation(s)
- Qishu Chen
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China
| | - Qifan Zhou
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China.
| | - Sidi Yang
- Guangzhou National Laboratory, Guangzhou, Guangdong Province 510005, China
| | - Fan Pan
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China
| | - Hongqi Tao
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China
| | - Yuanmei Wen
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China
| | - Yang Chao
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China
| | - Cailing Xie
- Guangzhou National Laboratory, Guangzhou, Guangdong Province 510005, China
| | - Weixin Ou
- Guangzhou National Laboratory, Guangzhou, Guangdong Province 510005, China
| | - Deyin Guo
- Guangzhou National Laboratory, Guangzhou, Guangdong Province 510005, China.
| | - Yingjun Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510180, China.
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China.
| |
Collapse
|
2
|
Liu QR, Duan DF, Yan W, Zhang HY, Ding XL, Wang SB, Tang XR, Ao XL, Chen XL, Cao JY, Zhang RP, Hou B. LC/MS-guided isolation and GNPS procedures to identify flavonoid of HCoV-OC43 inhibitors. Fitoterapia 2024; 177:106077. [PMID: 38906387 DOI: 10.1016/j.fitote.2024.106077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
The screening of based target compounds supported by LC/MS, MS/MS and Global Natural Products Social (GNPS) used to identify the compounds 1-10 of Butea monsperma. They were evaluated in human malignant embryonic rhabdomyoma cells (RD cells) infected with Human coronavirus OC43 (HCoV-OC43) and showed significant inhibitory activity. Target inhibition tests showed that compounds 6 and 8 inhibited the proteolytic enzyme 3CLpro, which is widely present in coronavirus and plays an important role in the replication process, with an effective IC50 value. The study confirmed that dioxymethylene of compound 8 may be a key active fragment in inhibiting coronavirus (EC50 7.2 μM, SI > 139.1). The results have led to identifying natural bioactive compounds for possible inhibiting HCoV-OC43 and developing drug for Traditional Chinese Medicine (TCM).
Collapse
Affiliation(s)
- Qian-Ru Liu
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Ding-Fu Duan
- Hubei Jiangxia Laboratory, Wuhan 430200, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China
| | - Wei Yan
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Hai-Ying Zhang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Xiao-Lin Ding
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Shu-Bing Wang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Xiao-Rui Tang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Xuan-Li Ao
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Xing-Long Chen
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China
| | - Jun-Yuan Cao
- Hubei Jiangxia Laboratory, Wuhan 430200, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei 430071, PR China.
| | - Rong-Ping Zhang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China.
| | - Bo Hou
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming 650500, PR China.
| |
Collapse
|
3
|
Chatow L, Nudel A, Eyal N, Lupo T, Ramirez S, Zelinger E, Nesher I, Boxer R. Terpenes and cannabidiol against human corona and influenza viruses-Anti-inflammatory and antiviral in vitro evaluation. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 41:e00829. [PMID: 38318445 PMCID: PMC10840330 DOI: 10.1016/j.btre.2024.e00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/19/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
The activity of the terpenes and Cannabidiol (CBD) against human coronavirus (HCoV) strain OC43 and influenza A (H1N1) was evaluated in human lung fibroblasts (MRC-5 cells). Also, we examined whether these ingredients inhibit pro-inflammatory cytokines in peripheral blood mononuclear cells (PBMC). The tested preparations exhibited both anti-inflammatory and antiviral effects. The combination of terpenes was effective against both HCoV-OC43 and influenza A (H1N1) virus. The addition of CBD improved the antiviral activity in some, but not all cases. This variation in activity may suggest an antiviral mechanism. In addition, there was a strong correlation between the quantitative results from a cell-viability assay and the cytopathic effect after 72 h, as observed under a microscope. The anti-inflammatory properties of terpenes were demonstrated using a pro-inflammatory cytokine-inhibition assay, which revealed significant cytokine inhibition and enhanced by the addition of CBD.
Collapse
Affiliation(s)
| | - Adi Nudel
- Eybna Technologies Ltd., Kfar Saba, Israel
| | - Nadav Eyal
- Eybna Technologies Ltd., Kfar Saba, Israel
| | - Tal Lupo
- Eybna Technologies Ltd., Kfar Saba, Israel
| | | | - Einat Zelinger
- CSI Center for Scientific Imaging Faculty of Agriculture, Hebrew University, Rehovot, Israel
| | | | - Richard Boxer
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
4
|
Weber MN, da Silva MS. Corona- and Paramyxoviruses in Bats from Brazil: A Matter of Concern? Animals (Basel) 2023; 14:88. [PMID: 38200819 PMCID: PMC10778288 DOI: 10.3390/ani14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Chiroptera are one of the most diverse mammal orders. They are considered reservoirs of main human pathogens, where coronaviruses (CoVs) and paramyxoviruses (PMVs) may be highlighted. Moreover, the growing number of publications on CoVs and PMVs in wildlife reinforces the scientific community's interest in eco-vigilance, especially because of the emergence of important human pathogens such as the SARS-CoV-2 and Nipha viruses. Considering that Brazil presents continental dimensions, is biologically rich containing one of the most diverse continental biotas and presents a rich biodiversity of animals classified in the order Chiroptera, the mapping of CoV and PMV genetics related to human pathogens is important and the aim of the present work. CoVs can be classified into four genera: Alphacoronavirus, Betacoronavirus, Deltacoronavirus and Gammacoronavirus. Delta- and gammacoronaviruses infect mainly birds, while alpha- and betacoronaviruses contain important animal and human pathogens. Almost 60% of alpha- and betacoronaviruses are related to bats, which are considered natural hosts of these viral genera members. The studies on CoV presence in bats from Brazil have mainly assayed phyllostomid, molossid and vespertilionid bats in the South, Southeast and North territories. Despite Brazil not hosting rhinophilid or pteropodid bats, which are natural reservoirs of SARS-related CoVs and henipaviruses, respectively, CoVs and PMVs reported in Brazilian bats are genetically closely related to some human pathogens. Most works performed with Brazilian bats reported alpha-CoVs that were closely related to other bat-CoVs, despite a few reports of beta-CoVs grouped in the Merbecovirus and Embecovirus subgenera. The family Paramyxoviridae includes four subfamilies (Avulavirinae, Metaparamyxovirinae, Orthoparamyxovirinae and Rubulavirinae), and bats are significant drivers of PMV cross-species viral transmission. Additionally, the studies that have evaluated PMV presence in Brazilian bats have mainly found sequences classified in the Jeilongvirus and Morbillivirus genera that belong to the Orthoparamyxovirinae subfamily. Despite the increasing amount of research on Brazilian bats, studies analyzing these samples are still scarce. When surveying the representativeness of the CoVs and PMVs found and the available genomic sequences, it can be perceived that there may be gaps in the knowledge. The continuous monitoring of viral sequences that are closely related to human pathogens may be helpful in mapping and predicting future hotspots in the emergence of zoonotic agents.
Collapse
Affiliation(s)
- Matheus Nunes Weber
- Laboratório de Microbiologia Molecular, Universidade FEEVALE, Novo Hamburgo 93525-075, RS, Brazil;
| | | |
Collapse
|
5
|
Karami H, Sadeghi K, Zadheidar S, Saadatmand F, Mirsalehi N, Ardestani NH, Kalantari S, Farahmand M, Yavarian J, Mokhtari‐Azad T. Surveillance of endemic coronaviruses during the COVID‐19 pandemic in Iran, 2021–2022. Influenza Other Respir Viruses 2023; 17:e13128. [PMID: 36970571 PMCID: PMC10037967 DOI: 10.1111/irv.13128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/02/2023] [Indexed: 03/26/2023] Open
Abstract
Background Human coronaviruses (HCoVs) 229E, OC43, HKU1, and NL63 are common viruses that continuously circulate in the human population. Previous studies showed the circulation of HCoVs during the cold months in Iran. We studied the circulation of HCoVs during coronavirus disease 2019 (COVID‐19) pandemic to find the impact of pandemic on the circulation of these viruses. Methods As a cross‐sectional survey conducted during 2021 to 2022, of all throat swabs sent to Iran National Influenza Center from patients with severe acute respiratory infection, 590 samples were selected to test for HCoVs using one‐step real‐time RT‐PCR. Results Overall, 28 out of 590 (4.7%) tested samples were found to be positive for at least one HCoVs. HCoV‐OC43 was the most common (14/590 or 2.4%), followed by HCoV‐HKU1 (12/590 or 2%) and HCoV‐229E (4/590 or 0.6%), while HCoV‐NL63 was not detected. HCoVs were detected in patients of all ages and throughout the study period with peaks in the cold months of the year. Conclusions Our multicenter survey provides insight into the low circulation of HCoVs during the COVID‐19 pandemic in Iran in 2021/2022. Hygiene habits and social distancing measures might have important role in decreasing of HCoVs transmission. We believe that surveillance studies are needed to track the pattern of HCoVs distributions and detect changes in the epidemiology of such viruses to set out strategies in order to timely control the future outbreaks of HCoVs throughout the nation.
Collapse
Affiliation(s)
- Hassan Karami
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Kaveh Sadeghi
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Sevrin Zadheidar
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Fatemeh Saadatmand
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Negar Mirsalehi
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Nima Hoveidi Ardestani
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Shirin Kalantari
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Mohammad Farahmand
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Jila Yavarian
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
- Research Center for Antibiotic Stewardship & Antimicrobial ResistanceTehran University of Medical SciencesTehranIran
| | - Talat Mokhtari‐Azad
- Department of Virology, School of Public HealthTehran University of Medical SciencesTehranIran
| |
Collapse
|
6
|
Hurtado-Tamayo J, Requena-Platek R, Enjuanes L, Bello-Perez M, Sola I. Contribution to pathogenesis of accessory proteins of deadly human coronaviruses. Front Cell Infect Microbiol 2023; 13:1166839. [PMID: 37197199 PMCID: PMC10183600 DOI: 10.3389/fcimb.2023.1166839] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023] Open
Abstract
Coronaviruses (CoVs) are enveloped and positive-stranded RNA viruses with a large genome (∼ 30kb). CoVs include essential genes, such as the replicase and four genes coding for structural proteins (S, M, N and E), and genes encoding accessory proteins, which are variable in number, sequence and function among different CoVs. Accessory proteins are non-essential for virus replication, but are frequently involved in virus-host interactions associated with virulence. The scientific literature on CoV accessory proteins includes information analyzing the effect of deleting or mutating accessory genes in the context of viral infection, which requires the engineering of CoV genomes using reverse genetics systems. However, a considerable number of publications analyze gene function by overexpressing the protein in the absence of other viral proteins. This ectopic expression provides relevant information, although does not acknowledge the complex interplay of proteins during virus infection. A critical review of the literature may be helpful to interpret apparent discrepancies in the conclusions obtained by different experimental approaches. This review summarizes the current knowledge on human CoV accessory proteins, with an emphasis on their contribution to virus-host interactions and pathogenesis. This knowledge may help the search for antiviral drugs and vaccine development, still needed for some highly pathogenic human CoVs.
Collapse
Affiliation(s)
| | | | | | | | - Isabel Sola
- *Correspondence: Melissa Bello-Perez, ; Isabel Sola,
| |
Collapse
|
7
|
Faye MN, Barry MA, Jallow MM, Wade SF, Mendy MP, Sy S, Fall A, Kiori DE, Ndiaye NK, Goudiaby D, Diamanka A, Niang MN, Dia N. Epidemiology of Non-SARS-CoV2 Human Coronaviruses (HCoVs) in People Presenting with Influenza-like Illness (ILI) or Severe Acute Respiratory Infections (SARI) in Senegal from 2012 to 2020. Viruses 2022; 15:20. [PMID: 36680061 PMCID: PMC9864203 DOI: 10.3390/v15010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/03/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
In addition to emerging coronaviruses (SARS-CoV, MERS, SARS-CoV-2), there are seasonal human coronaviruses (HCoVs): HCoV-OC43, HCoV-229E, HCoV-NL63 and HCoV-HKU1. With a wide distribution around the world, HCoVs are usually associated with mild respiratory disease. In the elderly, young children and immunocompromised patients, more severe or even fatal respiratory infections may be observed. In Africa, data on seasonal HCoV are scarce. This retrospective study investigated the epidemiology and genetic diversity of seasonal HCoVs during nine consecutive years of influenza-like illness surveillance in Senegal. Nasopharyngeal swabs were collected from ILI outpatients or from SARI hospitalized patients. HCoVs were diagnosed by qRT-PCR and the positive samples were selected for molecular characterization. Among 9337 samples tested for HCoV, 406 (4.3%) were positive: 235 (57.9%) OC43, 102 (25.1%) NL63, 58 (14.3%) 229E and 17 (4.2%) HKU1. The four types circulated during the study period and a peak was noted between November and January. Children under five were the most affected. Co-infections were observed between HCoV types (1.2%) or with other viruses (76.1%). Genetically, HCoVs types showed diversity. The results highlighted that the impact of HCoVs must be taken into account in public health; monitoring them is therefore particularly necessary both in the most sensitive populations and in animals.
Collapse
Affiliation(s)
- Modeste Name Faye
- Département de Virologie, Institut Pasteur de Dakar, Dakar 12900, Senegal
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Dakar 12900, Senegal
| | - Mamadou Aliou Barry
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 12900, Senegal
| | - Mamadou Malado Jallow
- Département de Virologie, Institut Pasteur de Dakar, Dakar 12900, Senegal
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Dakar 12900, Senegal
| | - Serigne Fallou Wade
- Ecole Supérieure des Sciences Agricoles et de l’Alimentation (ES2A), Université Amadou Makhtar MBOW de Dakar (UAM), Dakar 12900, Senegal
| | - Marie Pedapa Mendy
- Département de Virologie, Institut Pasteur de Dakar, Dakar 12900, Senegal
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Dakar 12900, Senegal
| | - Sara Sy
- Département de Virologie, Institut Pasteur de Dakar, Dakar 12900, Senegal
| | - Amary Fall
- Département de Virologie, Institut Pasteur de Dakar, Dakar 12900, Senegal
| | - Davy Evrard Kiori
- Département de Virologie, Institut Pasteur de Dakar, Dakar 12900, Senegal
| | | | - Deborah Goudiaby
- Département de Virologie, Institut Pasteur de Dakar, Dakar 12900, Senegal
| | - Arfang Diamanka
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta DIOP de Dakar, Dakar 12900, Senegal
| | | | - Ndongo Dia
- Département de Virologie, Institut Pasteur de Dakar, Dakar 12900, Senegal
| |
Collapse
|
8
|
Mullin S, Wyk BV, Asher JL, Compton SR, Allore HG, Zeiss CJ. Modeling pandemic to endemic patterns of SARS-CoV-2 transmission using parameters estimated from animal model data. PNAS NEXUS 2022; 1:pgac096. [PMID: 35799833 PMCID: PMC9254158 DOI: 10.1093/pnasnexus/pgac096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023]
Abstract
The contours of endemic coronaviral disease in humans and other animals are shaped by the tendency of coronaviruses to generate new variants superimposed upon nonsterilizing immunity. Consequently, patterns of coronaviral reinfection in animals can inform the emerging endemic state of the SARS-CoV-2 pandemic. We generated controlled reinfection data after high and low risk natural exposure or heterologous vaccination to sialodacryoadenitis virus (SDAV) in rats. Using deterministic compartmental models, we utilized in vivo estimates from these experiments to model the combined effects of variable transmission rates, variable duration of immunity, successive waves of variants, and vaccination on patterns of viral transmission. Using rat experiment-derived estimates, an endemic state achieved by natural infection alone occurred after a median of 724 days with approximately 41.3% of the population susceptible to reinfection. After accounting for translationally altered parameters between rat-derived data and human SARS-CoV-2 transmission, and after introducing vaccination, we arrived at a median time to endemic stability of 1437 (IQR = 749.25) days with a median 15.4% of the population remaining susceptible. We extended the models to introduce successive variants with increasing transmissibility and included the effect of varying duration of immunity. As seen with endemic coronaviral infections in other animals, transmission states are altered by introduction of new variants, even with vaccination. However, vaccination combined with natural immunity maintains a lower prevalence of infection than natural infection alone and provides greater resilience against the effects of transmissible variants.
Collapse
Affiliation(s)
- Sarah Mullin
- Yale Center for Medical Informatics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jennifer L Asher
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Susan R Compton
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Heather G Allore
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
| | - Caroline J Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
9
|
Mullin S, Wyk BV, Asher JL, Compton SR, Allore HG, Zeiss CJ. Modeling pandemic to endemic patterns of SARS-CoV-2 transmission using parameters estimated from animal model data. PNAS NEXUS 2022; 1:pgac096. [PMID: 35799833 PMCID: PMC9254158 DOI: 10.1093/pnasnexus/pgac096;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The contours of endemic coronaviral disease in humans and other animals are shaped by the tendency of coronaviruses to generate new variants superimposed upon nonsterilizing immunity. Consequently, patterns of coronaviral reinfection in animals can inform the emerging endemic state of the SARS-CoV-2 pandemic. We generated controlled reinfection data after high and low risk natural exposure or heterologous vaccination to sialodacryoadenitis virus (SDAV) in rats. Using deterministic compartmental models, we utilized in vivo estimates from these experiments to model the combined effects of variable transmission rates, variable duration of immunity, successive waves of variants, and vaccination on patterns of viral transmission. Using rat experiment-derived estimates, an endemic state achieved by natural infection alone occurred after a median of 724 days with approximately 41.3% of the population susceptible to reinfection. After accounting for translationally altered parameters between rat-derived data and human SARS-CoV-2 transmission, and after introducing vaccination, we arrived at a median time to endemic stability of 1437 (IQR = 749.25) days with a median 15.4% of the population remaining susceptible. We extended the models to introduce successive variants with increasing transmissibility and included the effect of varying duration of immunity. As seen with endemic coronaviral infections in other animals, transmission states are altered by introduction of new variants, even with vaccination. However, vaccination combined with natural immunity maintains a lower prevalence of infection than natural infection alone and provides greater resilience against the effects of transmissible variants.
Collapse
Affiliation(s)
- Sarah Mullin
- Yale Center for Medical Informatics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jennifer L Asher
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Susan R Compton
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Heather G Allore
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA,Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
| | | |
Collapse
|
10
|
Nunes DR, Braconi CT, Ludwig-Begall LF, Arns CW, Durães-Carvalho R. Deep phylogenetic-based clustering analysis uncovers new and shared mutations in SARS-CoV-2 variants as a result of directional and convergent evolution. PLoS One 2022; 17:e0268389. [PMID: 35609034 PMCID: PMC9129020 DOI: 10.1371/journal.pone.0268389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Nearly two decades after the last epidemic caused by a severe acute respiratory syndrome coronavirus (SARS-CoV), newly emerged SARS-CoV-2 quickly spread in 2020 and precipitated an ongoing global public health crisis. Both the continuous accumulation of point mutations, owed to the naturally imposed genomic plasticity of SARS-CoV-2 evolutionary processes, as well as viral spread over time, allow this RNA virus to gain new genetic identities, spawn novel variants and enhance its potential for immune evasion. Here, through an in-depth phylogenetic clustering analysis of upwards of 200,000 whole-genome sequences, we reveal the presence of previously unreported and hitherto unidentified mutations and recombination breakpoints in Variants of Concern (VOC) and Variants of Interest (VOI) from Brazil, India (Beta, Eta and Kappa) and the USA (Beta, Eta and Lambda). Additionally, we identify sites with shared mutations under directional evolution in the SARS-CoV-2 Spike-encoding protein of VOC and VOI, tracing a heretofore-undescribed correlation with viral spread in South America, India and the USA. Our evidence-based analysis provides well-supported evidence of similar pathways of evolution for such mutations in all SARS-CoV-2 variants and sub-lineages. This raises two pivotal points: (i) the co-circulation of variants and sub-lineages in close evolutionary environments, which sheds light onto their trajectories into convergent and directional evolution, and (ii) a linear perspective into the prospective vaccine efficacy against different SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Danilo Rosa Nunes
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Carla Torres Braconi
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- * E-mail: (CTB); (RDC)
| | - Louisa F. Ludwig-Begall
- Department of Infectious and Parasitic Diseases, Veterinary Virology and Animal Viral Diseases, FARAH Research Centre, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Clarice Weis Arns
- Laboratory of Virology, University of Campinas, Campinas, SP, Brazil
| | - Ricardo Durães-Carvalho
- Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo, São Paulo, SP, Brazil
- * E-mail: (CTB); (RDC)
| |
Collapse
|