1
|
Nogueira AF, Pires ES, Oliveira G, Trevelin LC, Vasconcelos S. New mitochondrial genomes of three whip spider species from the Amazon (Arachnida, Amblypygi) with phylogenetic relationships and comparative analysis. Sci Rep 2024; 14:26271. [PMID: 39487275 PMCID: PMC11530452 DOI: 10.1038/s41598-024-77525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
The complete mitochondrial genomes of the whip spiders Charinus carajas, C. ferreus, and Heterophrynus longicornis were sequenced, annotated, and compared with other mitogenomes of whip spiders and arachnids. The three new mitogenomes have the 37 genes usually observed in Metazoa: 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), and two ribosomal RNAs (rRNAs), plus a non-coding control region (CR). Most PCGs presented an ATN start codon, except cox1 in both Charinus species, initiating with TTA. Most PCGs terminated with stop codons TAA or TAG, except nad5 of C. carajas and cox3 of H. longicornis, which presented an incomplete stop codon (T). The Ka/Ks ratios were less than one for all the PCGs, indicating these genes are under purifying selection. All the tRNAs, except for serine 1 (trnS1), had the typical cloverleaf-shaped secondary structure. All the phylogenetic analyses resolved Charinus carajas and C. ferreus as monophyletic groups. Nonetheless, we did not recover the monophyly of Heterophrynus longicornis. The phylogenies under partitioned models did not recover suprageneric taxonomic groups as clades, but the Bayesian inference under the CAT infinite mixture model recovered the family Phrynidae and the superfamily Phrynoidea as monophyletic groups.
Collapse
Affiliation(s)
- Acácio Freitas Nogueira
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, Belém, Pará, CEP 66055-090, Brazil.
| | - Eder S Pires
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, Belém, Pará, CEP 66055-090, Brazil
| | - Guilherme Oliveira
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, Belém, Pará, CEP 66055-090, Brazil
| | | | - Santelmo Vasconcelos
- Instituto Tecnológico Vale, Rua Boaventura da Silva 955, Belém, Pará, CEP 66055-090, Brazil.
| |
Collapse
|
2
|
de Miranda GS, Kulkarni SS, Tagliatela J, Baker CM, Giupponi APL, Labarque FM, Gavish-Regev E, Rix MG, Carvalho LS, Fusari LM, Harvey MS, Wood HM, Sharma PP. The Rediscovery of a Relict Unlocks the First Global Phylogeny of Whip Spiders (Amblypygi). Syst Biol 2024; 73:495-505. [PMID: 38733598 DOI: 10.1093/sysbio/syae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 02/20/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024] Open
Abstract
Asymmetrical rates of cladogenesis and extinction abound in the tree of life, resulting in numerous minute clades that are dwarfed by larger sister groups. Such taxa are commonly regarded as phylogenetic relicts or "living fossils" when they exhibit an ancient first appearance in the fossil record and prolonged external morphological stasis, particularly in comparison to their more diversified sister groups. Due to their special status, various phylogenetic relicts tend to be well-studied and prioritized for conservation. A notable exception to this trend is found within Amblypygi ("whip spiders"), a visually striking order of functionally hexapodous arachnids that are notable for their antenniform first walking leg pair (the eponymous "whips"). Paleoamblypygi, the putative sister group to the remaining Amblypygi, is known from Late Carboniferous and Eocene deposits but is survived by a single living species, Paracharon caecusHansen (1921), that was last collected in 1899. Due to the absence of genomic sequence-grade tissue for this vital taxon, there is no global molecular phylogeny for Amblypygi to date, nor a fossil-calibrated estimation of divergences within the group. Here, we report a previously unknown species of Paleoamblypygi from a cave site in Colombia. Capitalizing upon this discovery, we generated the first molecular phylogeny of Amblypygi, integrating ultraconserved element sequencing with legacy Sanger datasets and including described extant genera. To quantify the impact of sampling Paleoamblypygi on divergence time estimation, we performed in silico experiments with pruning of Paracharon. We demonstrate that the omission of relicts has a significant impact on the accuracy of node dating approaches that outweighs the impact of excluding ingroup fossils, which bears upon the ancestral range reconstruction for the group. Our results underscore the imperative for biodiversity discovery efforts in elucidating the phylogenetic relationships of "dark taxa," and especially phylogenetic relicts in tropical and subtropical habitats. The lack of reciprocal monophyly for Charontidae and Charinidae leads us to subsume them into one family, Charontidae, new synonymy.
Collapse
Affiliation(s)
- Gustavo S de Miranda
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave. NW, Washington, DC 20560, USA
| | - Siddharth S Kulkarni
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Jéssica Tagliatela
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, Campus São Carlos, Rodovia Washington Luís, Km 235, 13565-905 São Paulo, Brazil
| | - Caitlin M Baker
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Alessandro P L Giupponi
- Lab. de Carrapatos e outros Vetores Ápteros LAC - CAVAISC; IOC - FIOCRUZ, Rio de Janeiro, Brazil
| | - Facundo M Labarque
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, Campus São Carlos, Rodovia Washington Luís, Km 235, 13565-905 São Paulo, Brazil
| | - Efrat Gavish-Regev
- National Natural History Collections, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Michael G Rix
- Biodiversity and Geosciences Program, Queensland Museum, South Brisbane, QLD 4101, Australia
| | - Leonardo S Carvalho
- Campus Amílcar Ferreira Sobral, Universidade Federal do Piauí, 64808-605 Floriano, PI, Brazil
| | - Lívia Maria Fusari
- Departamento de Hidrobiologia, Universidade Federal de São Carlos, campus São Carlos, Rodovia Washington Luís, Km 235, 13565-905 São Paulo, Brazil
| | - Mark S Harvey
- Collections and Research Centre, Western Australian Museum, Welshpool, WA 6106, Australia
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Hannah M Wood
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave. NW, Washington, DC 20560, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| |
Collapse
|
3
|
Souza PEDE, Reis-Venncio PC, Torres RA, Ferreira RL. A new cave-dwelling species of Charinus (Amblypygi: Charinidae) from northern Brazil. Zootaxa 2024; 5399:418-432. [PMID: 38221146 DOI: 10.11646/zootaxa.5399.4.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 01/16/2024]
Abstract
We present the description and illustration of a new species within the genus Charinus Simon, 1892, discovered in a cave located in the state of Tocantins, situated in the northern region of Brazil. Charinus tocantinensis sp. nov., can be distinguished from its congeners by the following combination of distinctive characters: pedipalp femur with four dorsal spines and four ventral spines; well-developed median eyes and median ocular tubercle; female gonopods sucker-like, slightly longer than wide, opening rounded and margins with fold with each a small posterior slit; cheliceral claw with ten denticles. In addition to the species description, we have included a key for identifying Charinus species in Brazil, along with a distribution map that highlights the known species in the country. This newly described species marks the first formal documentation of a Charinus species within the state of Tocantins. With the addition of this species, the global tally of recognized Charinus species now stands at 98, and Brazil, in particular, is home to a total of 44 formally described species within this genus.
Collapse
Affiliation(s)
- Priscila Emanuela DE Souza
- Centro de Estudos em Biologia Subterrnea; Departamento de Ecologia e Conservao; Universidade Federal de Lavras; Lavras- MG; 37200-000; Brazil.
| | - Paulo Csar Reis-Venncio
- Centro de Estudos em Biologia Subterrnea; Departamento de Ecologia e Conservao; Universidade Federal de Lavras; Lavras- MG; 37200-000; Brazil.
| | - Richard A Torres
- Ps-Graduao em Entomologia; Faculdade de Filosofia; Cincias e Letras de Ribeiro Preto; Universidade de So Paulo; SP; Brazil.
| | - Rodrigo Lopes Ferreira
- Centro de Estudos em Biologia Subterrnea; Departamento de Ecologia e Conservao; Universidade Federal de Lavras; Lavras- MG; 37200-000; Brazil.
| |
Collapse
|
4
|
Bowman CE. Looking for future biological control agents: the comparative function of the deutosternal groove in mesostigmatid mites. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:139-235. [PMID: 37676375 PMCID: PMC10562343 DOI: 10.1007/s10493-023-00832-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023]
Abstract
The physics of fluid laminar flow through an idealised deutosternum assembly is used for the first time to review predatory feeding designs over 72 different-sized example species from 16 mesostigmatid families in order to inform the finding of new biological control agents. Gnathosomal data are digitised from published sources. Relevant gnathosomal macro- and micro-features are compared and contrasted in detail which may subtly impact the control of channel- or 'pipe'-based transport of prey liquids around various gnathosomal locations. Relative deutosternal groove width on the mesostigmatid subcapitulum is important but appears unrelated to the closing velocity ratio of the moveable digit. Big mites are adapted for handling large and watery prey. The repeated regular distance between deutosternal transverse ridges ('Querleisten') supports the idea of them enabling a regular fluctuating bulging or pulsing droplet-based fluid wave 'sticking' and 'slipping' along the groove. Phytoseiids are an outlier functional group with a low deutosternal pipe flow per body size designed for slot-like microchannel transport in low volume fluid threads arising from daintily nibbling nearby prey klinorhynchidly. Deutosternal groove denticles are orientated topographically in order to synergise flow and possible mixing of coxal gland-derived droplets and circumcapitular reservoir fluids across the venter of the gnathosomal base back via the hypostome to the prey being masticated by the chelicerae. As well as working with the tritosternum to mechanically clean the deutosternum, denticles may suppress fluid drag. Shallow grooves may support edge-crawling viscous flow. Lateral features may facilitate handling unusual amounts of fluid arising from opportunistic feeding on atypical prey. Various conjectures for confirmatory follow-up are highlighted. Suggestions as to how to triage non-uropodoid species as candidate plant pest control agents are included.
Collapse
Affiliation(s)
- Clive E Bowman
- Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
| |
Collapse
|
5
|
Baker CM, Ballesteros JA, Aharon S, Gainett G, Armiach Steinpress I, Wizen G, Sharma PP, Gavish-Regev E. Recent speciation and phenotypic plasticity within a parthenogenetic lineage of Levantine whip spiders (Chelicerata: Amblypygi: Charinidae). Mol Phylogenet Evol 2022; 175:107560. [PMID: 35779767 DOI: 10.1016/j.ympev.2022.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 10/17/2022]
Abstract
Caves constitute ideal study systems for investigating adaptation and speciation, as the abiotic conditions shared by aphotic habitats exert a set of environmental filters on their communities. Arachnids constitute an important component of many cave ecosystems worldwide. We investigated the population genomics of two whip spider species: Sarax ioanniticus, a widely distributed parthenogenetic species found across the eastern Mediterranean; and S. israelensis, a recently described troglomorphic species that is endemic to caves in Israel. Here, we show that S. israelensis is completely genetically distinct from S. ioanniticus and most likely also constitutes a parthenogen. Counterintuitively, despite the lack of genetic variability within S. ioanniticus and S. israelensis, we discovered considerable variation in the degree of median eye reduction, particularly in the latter species. Natural history data from captive-bred specimens of S. israelensis validated the interpretation of parthenogenesis. Our results are most consistent with a scenario of a sexual ancestral species that underwent speciation, followed by independent transitions to apomictic parthenogenesis in each of the two daughter species. Moreover, the lack of genetic variability suggests that variation in eye morphology in S. israelensis is driven exclusively by epigenetic mechanisms.
Collapse
Affiliation(s)
- Caitlin M Baker
- Department of Integrative Biology, University of Madison-Wisconsin, Madison, WI 53706, United States
| | | | - Shlomi Aharon
- The National Natural History Collections, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel; Department of Ecology, Evolution & Behavior, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Guilherme Gainett
- Department of Integrative Biology, University of Madison-Wisconsin, Madison, WI 53706, United States
| | - Igor Armiach Steinpress
- The National Natural History Collections, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel; Department of Ecology, Evolution & Behavior, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Gil Wizen
- 602-52 Park St. E, Mississauga, Ontario, L5G 1M1, Canada
| | - Prashant P Sharma
- Department of Integrative Biology, University of Madison-Wisconsin, Madison, WI 53706, United States
| | - Efrat Gavish-Regev
- The National Natural History Collections, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel.
| |
Collapse
|
6
|
Reyes Lerma AC, Šťáhlavský F, Seiter M, Carabajal Paladino LZ, Divišová K, Forman M, Sember A, Král J. Insights into the Karyotype Evolution of Charinidae, the Early-Diverging Clade of Whip Spiders (Arachnida: Amblypygi). Animals (Basel) 2021; 11:3233. [PMID: 34827965 PMCID: PMC8614469 DOI: 10.3390/ani11113233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Whip spiders (Amblypygi) represent an ancient order of tetrapulmonate arachnids with a low diversity. Their cytogenetic data are confined to only a few reports. Here, we analyzed the family Charinidae, a lineage almost at the base of the amblypygids, providing an insight into the ancestral traits and basic trajectories of amblypygid karyotype evolution. We performed Giemsa staining, selected banding techniques, and detected 18S ribosomal DNA and telomeric repeats by fluorescence in situ hybridization in four Charinus and five Sarax species. Both genera exhibit a wide range of diploid chromosome numbers (2n = 42-76 and 22-74 for Charinus and Sarax, respectively). The 2n reduction was accompanied by an increase of proportion of biarmed elements. We further revealed a single NOR site (probably an ancestral condition for charinids), the presence of a (TTAGG)n telomeric motif localized mostly at the chromosome ends, and an absence of heteromorphic sex chromosomes. Our data collectively suggest a high pace of karyotype repatterning in amblypygids, with probably a high ancestral 2n and its subsequent gradual reduction by fusions, and the action of pericentric inversions, similarly to what has been proposed for neoamblypygids. The possible contribution of fissions to charinid karyotype repatterning, however, cannot be fully ruled out.
Collapse
Affiliation(s)
- Azucena Claudia Reyes Lerma
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (A.C.R.L.); (K.D.); (M.F.); (J.K.)
| | - František Šťáhlavský
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic;
| | - Michael Seiter
- Unit Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria;
- Natural History Museum Vienna, 3. Zoology (Invertebrates), Burgring 7, 1010 Vienna, Austria
| | - Leonela Zusel Carabajal Paladino
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic;
- Arthropod Genetics Group, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK
| | - Klára Divišová
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (A.C.R.L.); (K.D.); (M.F.); (J.K.)
| | - Martin Forman
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (A.C.R.L.); (K.D.); (M.F.); (J.K.)
| | - Alexandr Sember
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (A.C.R.L.); (K.D.); (M.F.); (J.K.)
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Jiří Král
- Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague, Czech Republic; (A.C.R.L.); (K.D.); (M.F.); (J.K.)
| |
Collapse
|