1
|
Karunaratne ND, Classen HL, Ames NP, Bedford MR, Newkirk RW. Effects of diet hulless barley and beta-glucanase levels on ileal digesta soluble beta-glucan molecular weight and carbohydrate fermentation in laying hens. Poult Sci 2022; 101:101735. [PMID: 35247816 PMCID: PMC8897709 DOI: 10.1016/j.psj.2022.101735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 11/23/2022] Open
Abstract
Exogenous β-glucanase (BGase) improves nutrient digestibility and production performance in laying hens fed barley-based diets, but the effect of enzyme and the dosage on β-glucan depolymerization and fermentation in the gastrointestinal tract is poorly understood. The objectives of the study were to determine the effects of hulless barley (HB) and BGase levels on digestive tract β-glucan depolymerization and fermentation in laying hens. A total of 108 Lohman-LSL Lite hens were housed in cages and fed 2 levels of HB (CDC Fibar; 0 and 73%) by substituting wheat in the diet and graded levels of BGase (Econase GT 200 P from ABVista; 0, 0.01 and 0.1% – 0, 20,000, and 200,000 BU/kg) in a 2 × 3 factorial arrangement. Birds were fed experimental diets for 8 weeks, starting at 35 wk of age. Digestive tract samples were collected at the end of the experiment. Statistical significance was set at P ≤ 0.05. Beta-glucan peak molecular weight was lower with the 0.1 compared to both 0 and 0.01% BGase levels, whereas weight average molecular weight was lower with the 0.1 compared to 0% BGase for 73% HB. The maximum molecular weight for the smallest 10% β-glucan molecules decreased with the increasing BGase. Overall, β-glucan molecular weight in the ileum was higher when the birds were given 73 in comparison to 0% HB diets. Total and major short chain fatty acids (SCFA) in the ileum were lower with 0.1 and 0.01 (except propionic acid) compared to 0% BGase in the birds fed 73% HB, but not 0% HB. Interactions between the main effects were found for the cecal acetic and isobutyric acids. In conclusion, exogenous BGase depolymerized high molecular weight β-glucan in HB and wheat. The effects of HB and BGase on carbohydrate fermentation were not apparent, although it appears ileal SCFA concentrations were lower with increasing levels of BGase.
Collapse
Affiliation(s)
- Namalika D Karunaratne
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Henry L Classen
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Nancy P Ames
- Agriculture and Agri-Food Canada, Winnipeg, R3T 2E1, Manitoba, Canada
| | | | - Rex W Newkirk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, S7N 5A8, Saskatchewan, Canada.
| |
Collapse
|
2
|
Karunaratne ND, Newkirk RW, Ames NP, Van Kessel AG, Bedford MR, Classen HL. Hulless barley and β-glucanase affect ileal digesta soluble beta-glucan molecular weight and digestive tract characteristics of coccidiosis-vaccinated broilers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:595-608. [PMID: 34377846 PMCID: PMC8326591 DOI: 10.1016/j.aninu.2020.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/26/2020] [Accepted: 09/27/2020] [Indexed: 12/02/2022]
Abstract
Exogenous β-glucanase (BGase) in barley-based feed has been shown to reduce digesta viscosity in chickens, and thereby improve performance. Less well studied is the potential for BGase to convert barley β-glucan into low molecular weight carbohydrates, which might influence digestive tract function and enteric disease. Coccidiosis-vaccinated broiler chickens were fed graded levels of hulless barley (HB) and BGase to determine their effects on β-glucan depolymerization and digestive tract characteristics. Broilers were fed high β-glucan HB (0%, 30% and 60% replacing wheat) and BGase (0%, 0.01% and 0.1%) in a 3 × 3 factorial arrangement. A total of 5,346 broilers were raised in litter floor pens and vaccinated for coccidiosis on d 5. Each treatment was assigned to 1 pen in each of 9 rooms. The significance level was set at P ≤ 0.05. At both 11 and 33 d of broiler ages, peak molecular weight of β-glucan in ileal digesta decreased with increasing BGase for 30% and 60% HB. The maximum molecular weight for the smallest 10% β-glucan molecules (MW-10%) decreased with BGase at both ages for 30% and 60% HB; for birds fed 0% HB, only 0.1% BGase decreased MW-10%. The 0.1% BGase increased caecal short chain fatty acids (SCFA) compared to the 0.01% BGase at d 11 only for the 60% HB. Ileal pH increased with increasing HB and BGase at d 11 and 33. Caecal pH was lower for 0.1% BGase than 0% BGase for 60% HB at d 11. Relative mRNA expression of interleukin 6 (IL-6) and IL-8 in the ileum increased with 0.1% BGase at d 11 and 33, respectively, whereas expression of ileal mucin 2 (MUC2) decreased with 0.1% BGase at d 33. In the caeca, interactions between HB and BGase were significant for monocarboxylate transporter 1 (MCT1) and mucin 5AC (MUC5 AC) on d 11, but no treatment effects were found at d 33. In conclusion, BGase depolymerized high molecular weight β-glucan in HB in a dose-dependent manner. Hulless barley and BGase did not increase SCFA concentrations (except for 60% HB with 0.1% BGase at d 11) and caused minor effects on digestive tract histomorphological measurements and relative mRNA gene expression.
Collapse
Affiliation(s)
- Namalika D. Karunaratne
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Rex W. Newkirk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | - Nancy P. Ames
- Agriculture and Agri-food Canada, Winnipeg, R3T 2E1, Manitoba, Canada
| | - Andrew G. Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, S7N 5A8, Saskatchewan, Canada
| | | | - Henry L. Classen
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, S7N 5A8, Saskatchewan, Canada
| |
Collapse
|
3
|
Karunaratne ND, Newkirk RW, Ames NP, Van Kessel AG, Bedford MR, Classen HL. Effects of exogenous β-glucanase on ileal digesta soluble β-glucan molecular weight, digestive tract characteristics, and performance of coccidiosis vaccinated broiler chickens fed hulless barley-based diets with and without medication. PLoS One 2021; 16:e0236231. [PMID: 33939708 PMCID: PMC8092798 DOI: 10.1371/journal.pone.0236231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/20/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction Limited use of medication in poultry feed led to the investigation of exogenous enzymes as antibiotic alternatives for controlling enteric disease. The objective of this study was to evaluate the effects of diet β-glucanase (BGase) and medication on β-glucan depolymerization, digestive tract characteristics, and growth performance of broilers. Materials and methods Broilers were fed hulless barley (HB) based diets with BGase (Econase GT 200P from AB Vista; 0 and 0.1%) and medication (Bacitracin and Salinomycin Na; with and without) arranged as a 2 × 2 factorial. In Experiment 1, 160 broilers were housed in cages from d 0 to 28. Each treatment was assigned to 10 cages. In Experiment 2, broilers (2376) were housed in floor pens and vaccinated for coccidiosis on d 5. Each treatment was assigned to one floor pen in each of nine rooms. Results In Experiment 1, the soluble β-glucan weighted average molecular weight (Mw) in the ileal digesta was lower with medication in the 0% BGase treatments. Peak molecular weight (Mp) and Mw were lower with BGase regardless of medication. The maximum molecular weight for the smallest 10% β-glucan (MW-10%) was lower with BGase addition. In Experiment 2, Mp was lower with medication in 0% BGase treatments. Beta-glucanase resulted in lower Mp regardless of medication, and the degree of response was lower with medication. The MW-10% was lower with BGase despite antibiotic addition. Body weight gain and feed efficiency were higher with medication regardless of BGase use through-out the trial (except d 11–22 feed efficiency). Beta-glucanase resulted in higher body weight gain after d 11 and worsened and improved feed efficiency before and after d 11, respectively, in unmedicated treatments. Conclusion BGase and medication caused the depolymerization of soluble ileal β-glucan. Beta-glucanase acted as a partial replacement for diet medication by increasing growth performance in coccidiosis vaccinated broilers.
Collapse
Affiliation(s)
- Namalika D. Karunaratne
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rex W. Newkirk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail:
| | - Nancy P. Ames
- Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada
| | - Andrew G. Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Henry L. Classen
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Karunaratne ND, Classen HL, Ames NP, Bedford MR, Newkirk RW. Effects of hulless barley and exogenous beta-glucanase levels on ileal digesta soluble beta-glucan molecular weight, digestive tract characteristics, and performance of broiler chickens. Poult Sci 2021; 100:100967. [PMID: 33652524 PMCID: PMC7936222 DOI: 10.1016/j.psj.2020.12.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/16/2020] [Accepted: 12/20/2020] [Indexed: 01/07/2023] Open
Abstract
The reduced use of antibiotics in poultry feed has led to the investigation of alternatives to antibiotics, and one such substitution is fermentable carbohydrates. Exogenous β-glucanase (BGase) is commonly used in poultry fed barley-based diets to reduce digesta viscosity. The effects of hulless barley (HB) and BGase levels on ileal digesta soluble β-glucan molecular weight, digestive tract characteristics, and performance of broiler chickens were determined. A total of 360 day-old broilers were housed in battery cages (4 birds per cage) and fed graded levels of high β-glucan HB (CDC Fibar; 0, 30, and 60% replacing wheat) and BGase (Econase GT 200 P; 0, 0.01, and 0.1%) in a 3 × 3 factorial arrangement. Beta-glucan peak molecular weight in the ileal digesta was lower with 30 and 60 than 0% HB, whereas the peak decreased with increasing BGase. The weight average molecular weight was lower at 0.1 than 0% BGase in wheat diets, whereas in HB diets, it was lower at 0.01 and 0.1 than 0% BGase. The maximum molecular weight was lower with 0.01 and 0.1 than 0% BGase regardless of the HB level. The maximum molecular weight was lower with HB than wheat at 0 or 0.01% BGase. Overall, empty weights and lengths of digestive tract sections increased with increasing HB, but there was no BGase effect. Hulless barley decreased the duodenum and jejunum contents, whereas increasing the gizzard (diets with BGase), ileum, and colon contents. The jejunum and small intestine contents decreased with increasing BGase. Ileal and colon pH increased with increasing HB, but there was no BGase effect. Treatment effects were minor on short-chain fatty acids levels and performance. In conclusion, exogenous BGase depolymerized the ileal digesta soluble β-glucan in broiler chickens in a dose-dependent manner. Overall, feed efficiency was impaired by increasing HB levels. However, HB and BGase did not affect carbohydrate fermentation in the ileum and ceca, although BGase decreased ileal viscosity and improved feed efficiency at the 0.1% dietary level.
Collapse
Affiliation(s)
- Namalika D Karunaratne
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon SK S7N 5A8, Canada
| | - Henry L Classen
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon SK S7N 5A8, Canada
| | - Nancy P Ames
- Agriculture and Agri-Food Canada, Winnipeg, R3T 2E1 Manitoba, Canada
| | | | - Rex W Newkirk
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon SK S7N 5A8, Canada.
| |
Collapse
|
5
|
Northrop G, Tosh SM, Bordenave N. Quantitative characterization of the digestive viscosity profile of cereal soluble dietary fibers using in vitro digestion in Rapid ViscoAnalyzer. Carbohydr Polym 2020; 248:116807. [PMID: 32919540 DOI: 10.1016/j.carbpol.2020.116807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 11/29/2022]
Abstract
A standard method measuring viscosity (η) of cereal products through in vitro digestion in a Rapid ViscoAnalyzer has been developed previously and is predictive of some physiological effects of cereal foods. This paper proposes a simple mathematical model to analyze quantitatively the digestograms obtained by that method. Digestograms of twelve uncooked and cooked cereal products were generated and data quality was assessed. Experimental data were fitted with a viscosity model ηmodel=η1+η2, where [Formula: see text] and [Formula: see text] were respectively viscosity decrease and viscosity increase components. The model showed very good agreement with experimental data and enabled interpretation of the digestograms in relation to the composition of the products: η1 was interpreted as the decreasing viscosity of digestible polymeric nutrients whereas η2 was interpreted as the viscosity development of viscous dietary fibers. This model may be useful to investigate quantitatively the biological effects of soluble dietary fibers in cereal products and similar products.
Collapse
Affiliation(s)
- Grace Northrop
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Canada
| | - Susan M Tosh
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Canada
| | - Nicolas Bordenave
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Canada; School of Chemistry and Biomolecular Sciences, Faculty of Sciences, University of Ottawa, Canada.
| |
Collapse
|
6
|
Farag MA, Xiao J, Abdallah HM. Nutritional value of barley cereal and better opportunities for its processing as a value-added food: a comprehensive review. Crit Rev Food Sci Nutr 2020; 62:1092-1104. [PMID: 33092405 DOI: 10.1080/10408398.2020.1835817] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Barley is one of the most important cereal crops and arranged globally as fourth after wheat, rice, and corn. It is known for its beneficial effects against degenerative diseases including diabetes, obesity, hypertension, and colon inflammation which are associated with eating habits and improper lifestyles. These effects are mainly attributed to its rich dietary fibers, i.e., β-glucan composition. Moreover, barley considered as a good source of starch, minerals, vitamins, and protein pose it as an ideal food supplement. Nevertheless, about 2% of the barley global production is utilized due to unacceptable organoleptic characters. Therefore, continuous modifications are ongoing either to develop new cultivars for different purposes, or novel processing methods to improve its organoleptic characters. In this review, we provide a comprehensive overview of the macroconstituents and microconstituents of barley, its nutritional value and prebiotic effects. Further, different processing procedures performed to improve its organoleptic characters or to decrease its antinutrient levels are outlined with suggestions for further needed cultivars that could preserve the different benefits of barley and maximize its value as a major cereal crop.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.,Chemistry Department, School of Sciences & Engineering, The American University in Cairo, Cairo, Egypt
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Hosssam M Abdallah
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.,Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
7
|
Schlörmann W, Zetzmann S, Wiege B, Haase NU, Greiling A, Lorkowski S, Dawczynski C, Glei M. Impact of different roasting conditions on chemical composition, sensory quality and physicochemical properties of waxy-barley products. Food Funct 2019; 10:5436-5445. [DOI: 10.1039/c9fo01429b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Roasting improves sensory properties and differentially modulates health-related compounds of barley products.
Collapse
Affiliation(s)
- W. Schlörmann
- Friedrich Schiller University Jena
- Institute of Nutritional Sciences
- Department of Nutritional Toxicology
- 07743 Jena
- Germany
| | - S. Zetzmann
- Friedrich Schiller University Jena
- Institute of Nutritional Sciences
- Department of Nutritional Toxicology
- 07743 Jena
- Germany
| | - B. Wiege
- Department of Safety and Quality of Cereals
- Max Rubner-Institut
- 32756 Detmold
- Germany
| | - N. U. Haase
- Department of Safety and Quality of Cereals
- Max Rubner-Institut
- 32756 Detmold
- Germany
| | - A. Greiling
- Thüringer Landesanstalt für Landwirtschaft und Ländlichen Raum
- 07743 Jena
- Germany
| | - S. Lorkowski
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD)
- Halle-Jena-Leipzig
- Germany
- Friedrich Schiller University Jena
- Institute of Nutritional Sciences
| | - C. Dawczynski
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD)
- Halle-Jena-Leipzig
- Germany
- Friedrich Schiller University Jena
- Institute of Nutritional Sciences
| | - M. Glei
- Friedrich Schiller University Jena
- Institute of Nutritional Sciences
- Department of Nutritional Toxicology
- 07743 Jena
- Germany
| |
Collapse
|
8
|
Kock LB, Brummer Y, Exley T, Rhymer C, Storsley J, Xie K, Chu Y, Ou B, Ames NP, Tosh SM, Bordenave N. In vitro assessment of oat β-glucans nutritional properties: An inter-laboratory methodology evaluation. Carbohydr Polym 2018; 200:271-277. [PMID: 30177167 DOI: 10.1016/j.carbpol.2018.07.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/17/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
The purpose of this inter-laboratory study was to test the repeatability and reproducibility of an in vitro method aimed at analyzing the physicochemical properties under physiological conditions of β-glucans from foods. After evaluating β-glucans molar mass and quantification methods using five β-glucan controls, four laboratories ran six oat-based products through in vitro digestion, measured β-glucans solubility and viscosity and molar mass of solubilized β-glucans. The determination of the molar mass of β-glucan controls, their viscosity in solution and β-glucans content in food samples exhibited relative standard reproducibility of 20.9-40.9%, 10.2-40.9% and 2.3-14.8%, respectively. After in vitro digestion, relative standard reproducibility ranged 12.1-60.0%, 12.2-64.3% and 9.7-36.3% for molar mass of extracted β-glucans, their viscosity and their solubility, respectively. Although the characterization methods were satisfactory within the limits of current technology, the in vitro extraction contributed significantly to the uncertainty of final characterization.
Collapse
Affiliation(s)
- Lindsay B Kock
- PepsiCo, Inc. Global R&D, 617 W Main Street, Barrington, IL 60010, United States
| | - Yolanda Brummer
- Agriculture and Agri-Food Canada Guelph Food Research Center, 93 Stone Road West, Guelph, ON, N1G 5C9, Canada
| | - Tracy Exley
- Agriculture and Agri-Food Canada Cereal Research Center, 196 Innovation Drive, Winnipeg, MB, R3T 2N2, Canada
| | - Camille Rhymer
- Agriculture and Agri-Food Canada Cereal Research Center, 196 Innovation Drive, Winnipeg, MB, R3T 2N2, Canada
| | - Joanne Storsley
- Agriculture and Agri-Food Canada Cereal Research Center, 196 Innovation Drive, Winnipeg, MB, R3T 2N2, Canada
| | - Kenny Xie
- International Chemistry Testing 258 Main Street, Suite 311, Milford, MA, 01757, United States
| | - YiFang Chu
- PepsiCo, Inc. Global R&D, 617 W Main Street, Barrington, IL 60010, United States
| | - Boxin Ou
- International Chemistry Testing 258 Main Street, Suite 311, Milford, MA, 01757, United States
| | - Nancy P Ames
- Agriculture and Agri-Food Canada Cereal Research Center, 196 Innovation Drive, Winnipeg, MB, R3T 2N2, Canada
| | - Susan M Tosh
- Agriculture and Agri-Food Canada Guelph Food Research Center, 93 Stone Road West, Guelph, ON, N1G 5C9, Canada; School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa 25, University Private, Ottawa, ON K1N 6N5, Canada
| | - Nicolas Bordenave
- PepsiCo, Inc. Global R&D, 617 W Main Street, Barrington, IL 60010, United States; School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa 25, University Private, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|