1
|
Chavan SN, Degroote E, De Kock K, Demeestere K, Kyndt T. ARGONAUTE4 and the DNA demethylase REPRESSOR OF SILENCING 1C mediate dehydroascorbate-induced intergenerational nematode resistance in rice. PLANT PHYSIOLOGY 2024; 197:kiae598. [PMID: 39509606 DOI: 10.1093/plphys/kiae598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024]
Abstract
Plants can transmit information to the next generation and modulate the phenotype of their offspring through epigenetic mechanisms. In this study, we demonstrate the activation of "intergenerational acquired resistance" (IAR) in the progeny of rice (Oryza sativa) plants exogenously treated with dehydroascorbate (DHA). The offspring of lifelong DHA-treated plants (DHA-IAR) were significantly less susceptible to the root-knot nematode Meloidogyne graminicola and partially inherited the DHA-induced transcriptional response found in the parental plants. Phytohormone analyses on the DHA-IAR plants unveiled higher basal abscisic acid levels and a primed induction of the jasmonic acid pathway. RNA-seq analysis on the embryonic tissues of immature seeds of DHA-treated plants revealed major shifts in the expression of genes associated with epigenetic pathways. We confirmed that DHA treatment leads to a significant but transient pattern of global DNA hypomethylation in the parental plants 12 to 24 h after treatment. The induction of resistance in the parental plants requires the DNA demethylase REPRESSOR OF SILENCING 1C (ROS1c) and ARGONAUTE 4, suggesting a role for DNA demethylation and subsequent remethylation in establishment of this phenotype. Confirming the transience of global hypomethylation upon DHA treatment, no significant change in global DNA methylation levels was observed in DHA-IAR versus naïve plants. Finally, DHA could not induce IAR in the ros1c mutant line and the ARGONAUTE 4 (ago4ab)-RNAi line. These data indicate that a controlled collaboration between transient DNA demethylation and remethylation underlies the induced resistance and IAR phenotypes upon DHA treatment.
Collapse
Affiliation(s)
- Satish Namdeo Chavan
- Faculty of Bioscience Engineering, Department of Biotechnology, Ghent University, Proeftuinstraat 86 N1, Ghent 9000, Belgium
- ICAR-Indian Institute of Rice Research, Department of Nematology, Rajendranagar, Hyderabad 500030, India
| | - Eva Degroote
- Faculty of Bioscience Engineering, Department of Biotechnology, Ghent University, Proeftuinstraat 86 N1, Ghent 9000, Belgium
- Lima Europe, Rumst 2840, Belgium
- Faculty of Bioscience Engineering, Department of Green Chemistry and Technology, Ghent University, Ghent 9000, Belgium
| | - Karen De Kock
- Faculty of Bioscience Engineering, Department of Biotechnology, Ghent University, Proeftuinstraat 86 N1, Ghent 9000, Belgium
| | - Kristof Demeestere
- Faculty of Bioscience Engineering, Department of Green Chemistry and Technology, Ghent University, Ghent 9000, Belgium
| | - Tina Kyndt
- Faculty of Bioscience Engineering, Department of Biotechnology, Ghent University, Proeftuinstraat 86 N1, Ghent 9000, Belgium
| |
Collapse
|
2
|
Kabała K, Janicka M. Relationship between the GABA Pathway and Signaling of Other Regulatory Molecules. Int J Mol Sci 2024; 25:10749. [PMID: 39409078 PMCID: PMC11476557 DOI: 10.3390/ijms251910749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
GABA (gamma-aminobutyric acid) is an amino acid whose numerous regulatory functions have been identified in animal organisms. More and more research indicate that in plants, this molecule is also involved in controlling basic growth and development processes. As recent studies have shown, GABA plays an essential role in triggering plant resistance to unfavorable environmental factors, which is particularly important in the era of changing climate. The main sources of GABA in plant cells are glutamic acid, converted in the GABA shunt pathway, and polyamines subjected to oxidative degradation. The action of GABA is often related to the activity of other messengers, including phytohormones, polyamines, NO, H2O2, or melatonin. GABA can function as an upstream or downstream element in the signaling pathways of other regulators, acting synergistically or antagonistically with them to control cellular processes. Understanding the role of GABA and its interactions with other signaling molecules may be important for developing crop varieties with characteristics that enable adaptation to a changing environment.
Collapse
Affiliation(s)
| | - Małgorzata Janicka
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
| |
Collapse
|
3
|
Li J, Cai B, Chang S, Yang Y, Zi S, Liu T. Mechanisms associated with the synergistic induction of resistance to tobacco black shank in tobacco by arbuscular mycorrhizal fungi and β-aminobutyric acid. FRONTIERS IN PLANT SCIENCE 2023; 14:1195932. [PMID: 37434599 PMCID: PMC10330952 DOI: 10.3389/fpls.2023.1195932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023]
Abstract
Tobacco black shank (TBS), caused by Phytophthora nicotianae, is one of the most harmful diseases of tobacco. There are many studies have examined the mechanism underlying the induction of disease resistance by arbuscular mycorrhizal fungi (AMF) and β-aminobutyric acid (BABA) alone, but the synergistic effects of AMF and BABA on disease resistance have not yet been studied. This study examined the synergistic effects of BABA application and AMF inoculation on the immune response to TBS in tobacco. The results showed that spraying BABA on leaves could increase the colonization rate of AMF, the disease index of tobacco infected by P.nicotianae treated with AMF and BABA was lower than that of P.nicotianae alone. The control effect of AMF and BABA on tobacco infected by P.nicotianae was higher than that of AMF or BABA and P.nicotianae alone. Joint application of AMF and BABA significantly increased the content of N, P, and K in the leaves and roots, in the joint AMF and BABA treatment than in the sole P. nicotianae treatment. The dry weight of plants treated with AMF and BABA was 22.3% higher than that treated with P.nicotianae alone. In comparison to P. nicotianae alone, the combination treatment with AMF and BABA had increased Pn, Gs, Tr, and root activity, while P. nicotianae alone had reduced Ci, H2O2 content, and MDA levels. SOD, POD, CAT, APX, and Ph activity and expression levels were increased under the combined treatment of AMF and BABA than in P.nicotianae alone. In comparison to the treatment of P.nicotianae alone, the combined use of AMF and BABA increased the accumulation of GSH, proline, total phenols, and flavonoids. Therefore, the joint application of AMF and BABA can enhance the TBS resistance of tobacco plants to a greater degree than the application of either AMF or BABA alone. In summary, the application of defense-related amino acids, combined with inoculation with AMF, significantly promoted immune responses in tobacco. Our findings provide new insights that will aid the development and use of green disease control agents.
Collapse
Affiliation(s)
- Jia Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Kunming, China
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming, China
| | - Bo Cai
- Technical Center of Yunnan Zhongyan Industry Co., Ltd, Kunming, China
| | - Sheng Chang
- Technical Center of Yunnan Zhongyan Industry Co., Ltd, Kunming, China
| | - Ying Yang
- Technical Center of Yunnan Zhongyan Industry Co., Ltd, Kunming, China
| | - Shuhui Zi
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Kunming, China
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming, China
| | - Tao Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Kunming, China
- Key Laboratory of Medicinal Plant Biology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Calabrese EJ, Agathokleous E. Nitric oxide, hormesis and plant biology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161299. [PMID: 36596420 DOI: 10.1016/j.scitotenv.2022.161299] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The present paper provides the first integrative assessment of the occurrence of nitric oxide (NO) induced hormetic effects in plant biology. Hormetic dose responses were commonly reported for NO donors on numerous plant species of agricultural and other commercial value. The NO donors were also shown to protect plants from a wide range of chemical (i.e., multiple toxic metals) and physical stressors (i.e., heat, drought) in preconditioning (aka priming) experimental protocols showing hormetic dose responses. Practical approaches for the use of NO donors to enhance plant growth using optimized dose response frameworks were also assessed. Considerable mechanistic findings indicate that NO donors have the capacity to enhance a broad range of adaptive responses, including highly integrated antioxidant activities. The integration of the hormesis concept with NO donors is likely to become a valuable practical general strategy to enhance plant productivity across a wide range of valuable plant species facing environmental pollution and climate changes.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, United States of America.
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
5
|
Borrowman S, Kapuganti JG, Loake GJ. Expanding roles for S-nitrosylation in the regulation of plant immunity. Free Radic Biol Med 2023; 194:357-368. [PMID: 36513331 DOI: 10.1016/j.freeradbiomed.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Following pathogen recognition, plant cells produce a nitrosative burst resulting in a striking increase in nitric oxide (NO), altering the redox state of the cell, which subsequently helps orchestrate a plethora of immune responses. NO is a potent redox cue, efficiently relayed between proteins through its co-valent attachment to highly specific, powerfully reactive protein cysteine (Cys) thiols, resulting in formation of protein S-nitrosothiols (SNOs). This process, known as S-nitrosylation, can modulate the function of target proteins, enabling responsiveness to cellular redox changes. Key targets of S-nitrosylation control the production of reactive oxygen species (ROS), the transcription of immune-response genes, the triggering of the hypersensitive response (HR) and the establishment of systemic acquired resistance (SAR). Here, we bring together recent advances in the control of plant immunity by S-nitrosylation, furthering our appreciation of how changes in cellular redox status reprogramme plant immune function.
Collapse
Affiliation(s)
- Sam Borrowman
- Institute of Molecular Plant Sciences, School of Biological Sciences, Edinburgh University, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | | | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, Edinburgh University, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK; Centre for Engineering Biology, Max Born Crescent, King's Buildings, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
6
|
Sobieszczuk-Nowicka E, Arasimowicz-Jelonek M, Tanwar UK, Floryszak-Wieczorek J. Plant homocysteine, a methionine precursor and plant's hallmark of metabolic disorders. FRONTIERS IN PLANT SCIENCE 2022; 13:1044944. [PMID: 36570932 PMCID: PMC9773845 DOI: 10.3389/fpls.2022.1044944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Homocysteine (Hcy) is a sulfur-containing non-proteinogenic amino acid, which arises from redox-sensitive methionine metabolism. In plants, Hcy synthesis involves both cystathionine β-lyase and S-adenosylhomocysteine hydrolase activities. Thus, Hcy itself is crucial for de novo methionine synthesis and S-adenosylmethionine recycling, influencing the formation of ethylene, polyamines, and nicotianamine. Research on mammalian cells has shown biotoxicity of this amino acid, as Hcy accumulation triggers oxidative stress and the associated lipid peroxidation process. In addition, the presence of highly reactive groups induces Hcy and Hcy derivatives to modify proteins by changing their structure and function. Currently, Hcy is recognized as a critical, independent hallmark of many degenerative metabolic diseases. Research results indicate that an enhanced Hcy level is also toxic to yeast and bacteria cells. In contrast, in the case of plants the metabolic status of Hcy remains poorly examined and understood. However, the presence of the toxic Hcy metabolites and Hcy over-accumulation during the development of an infectious disease seem to suggest harmful effects of this amino acid also in plant cells. The review highlights potential implications of Hcy metabolism in plant physiological disorders caused by environmental stresses. Moreover, recent research advances emphasize that recognizing the Hcy mode of action in various plant systems facilitates verification of the potential status of Hcy metabolites as bioindicators of metabolism disorders and thus may constitute an element of broadly understood biomonitoring.
Collapse
Affiliation(s)
- Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | | - Umesh Kumar Tanwar
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | | |
Collapse
|
7
|
Gajewska J, Floryszak-Wieczorek J, Sobieszczuk-Nowicka E, Mattoo A, Arasimowicz-Jelonek M. Fungal and oomycete pathogens and heavy metals: an inglorious couple in the environment. IMA Fungus 2022; 13:6. [PMID: 35468869 PMCID: PMC9036806 DOI: 10.1186/s43008-022-00092-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/07/2022] [Indexed: 01/30/2023] Open
Abstract
Heavy metal (HM) contamination of the environment is a major problem worldwide. The rate of global deposition of HMs in soil has dramatically increased over the past two centuries and there of facilitated their rapid accumulation also in living systems. Although the effects of HMs on plants, animals and humans have been extensively studied, yet little is known about their effects on the (patho)biology of the microorganisms belonging to a unique group of filamentous eukaryotic pathogens, i.e., fungi and oomycetes. Much of the literature concerning mainly model species has revealed that HM stress affects their hyphal growth, morphology, and sporulation. Toxicity at cellular level leads to disturbance of redox homeostasis manifested by the formation of nitro-oxidative intermediates and to the induction of antioxidant machinery. Despite such adverse effects, published data is indicative of the fact that fungal and oomycete pathogens have a relatively high tolerance to HMs in comparison to other groups of microbes such as bacteria. Likely, these pathogens may harbor a network of detoxification mechanisms that ensure their survival in a highly HM-polluted (micro)habitat. Such a network may include extracellular HMs immobilization, biosorption to cell wall, and/or their intracellular sequestration to proteins or other ligands. HMs may also induce a hormesis-like phenomenon allowing the pathogens to maintain or even increase fitness against chemical challenges. Different scenarios linking HMs stress and modification of the microorganisms pathogenicity are disscused in this review.
Collapse
|
8
|
Li R, Sheng J, Shen L. Nitric Oxide Plays an Important Role in β-Aminobutyric Acid-Induced Resistance to Botrytis cinerea in Tomato Plants. THE PLANT PATHOLOGY JOURNAL 2020; 36:121-132. [PMID: 32296292 PMCID: PMC7143515 DOI: 10.5423/ppj.oa.11.2019.0274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/16/2020] [Accepted: 03/03/2020] [Indexed: 05/25/2023]
Abstract
β-Aminobutyric acid (BABA) has consistently been reported to enhance plant immunity. However, the specific mechanisms and downstream components that mediate this resistance are not yet agreed upon. Nitric oxide (NO) is an important signal molecule involved in a diverse range of physiological processes, and whether NO is involved in BABA-induced resistance is interesting. In this study, treatment with BABA significantly increased NO accumulation and reduced the sensitivity to Botrytis cinerea in tomato plants. BABA treatment reduced physical signs of infection and increased both the transcription of key defense marker genes and the activity of defensive enzymes. Interestingly, compared to treatment with BABA alone, treatment with BABA plus cPTIO (NO specific scavenger) not only significantly reduced NO accumulation, but also increased disease incidence and lesion area. These results suggest that NO accumulation plays an important role in BABA-induced resistance against B. cinerea in tomato plants.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, China
| | - Lin Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
9
|
Groß F, Rudolf EE, Thiele B, Durner J, Astier J. Copper amine oxidase 8 regulates arginine-dependent nitric oxide production in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2149-2162. [PMID: 28383668 PMCID: PMC5447880 DOI: 10.1093/jxb/erx105] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) is a key signaling molecule in plants, regulating a wide range of physiological processes. However, its origin in plants remains unclear. It can be generated from nitrite through a reductive pathway, notably via the action of the nitrate reductase (NR), and evidence suggests an additional oxidative pathway, involving arginine. From an initial screen of potential Arabidopsis thaliana mutants impaired in NO production, we identified copper amine oxidase 8 (CuAO8). Two cuao8 mutant lines displayed a decreased NO production in seedlings after elicitor treatment and salt stress. The NR-dependent pathway was not responsible for the impaired NO production as no change in NR activity was found in the mutants. However, total arginase activity was strongly increased in cuao8 knockout mutants after salt stress. Moreover, NO production could be restored in the mutants by arginase inhibition or arginine addition. Furthermore, arginine supplementation reversed the root growth phenotype observed in the mutants. These results demonstrate that CuAO8 participates in NO production by influencing arginine availability through the modulation of arginase activity. The influence of CuAO8 on arginine-dependent NO synthesis suggests a new regulatory pathway for NO production in plants.
Collapse
Affiliation(s)
- Felicitas Groß
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology,D-85764 Neuherberg, Germany
| | - Eva-Esther Rudolf
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology,D-85764 Neuherberg, Germany
| | - Björn Thiele
- Forschungszentrum Jülich, Institute for Bio-and Geoscience, IBG-2, D-52428 Jülich, Germany
| | - Jörg Durner
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
- Technical University Munich, Wissenschaftszentrum Weihenstephan, D-80333 München, Germany
| | - Jeremy Astier
- Helmholtz Zentrum München, Department of Environmental Science, Institute of Biochemical Plant Pathology,D-85764 Neuherberg, Germany
| |
Collapse
|
10
|
Alexandersson E, Mulugeta T, Lankinen Å, Liljeroth E, Andreasson E. Plant Resistance Inducers against Pathogens in Solanaceae Species-From Molecular Mechanisms to Field Application. Int J Mol Sci 2016; 17:E1673. [PMID: 27706100 PMCID: PMC5085706 DOI: 10.3390/ijms17101673] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 12/17/2022] Open
Abstract
This review provides a current summary of plant resistance inducers (PRIs) that have been successfully used in the Solanaceae plant family to protect against pathogens by activating the plant's own defence. Solanaceous species include many important crops such as potato and tomato. We also present findings regarding the molecular processes after application of PRIs, even if the number of such studies still remains limited in this plant family. In general, there is a lack of patterns regarding the efficiency of induced resistance (IR) both between and within solanaceous species. In many cases, a hypersensitivity-like reaction needs to form in order for the PRI to be efficient. "-Omics" studies have already given insight in the complexity of responses, and can explain some of the differences seen in efficacy of PRIs between and within species as well as towards different pathogens. Finally, examples of field applications of PRIs for solanaceous crops are presented and discussed. We predict that PRIs will play a role in future plant protection strategies in Solanaceae crops if they are combined with other means of disease control in different spatial and temporal combinations.
Collapse
Affiliation(s)
- Erik Alexandersson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 23053 Alnarp, Sweden.
| | - Tewodros Mulugeta
- Department of Zoological Science, Addis Ababa University, 1176 Addis Ababa, Ethiopia.
| | - Åsa Lankinen
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 23053 Alnarp, Sweden.
| | - Erland Liljeroth
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 23053 Alnarp, Sweden.
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, P.O. Box 102, 23053 Alnarp, Sweden.
| |
Collapse
|
11
|
Baccelli I, Mauch-Mani B. Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones. PLANT MOLECULAR BIOLOGY 2016; 91:703-11. [PMID: 26584561 DOI: 10.1007/s11103-015-0406-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/08/2015] [Indexed: 05/26/2023]
Abstract
Plants are exposed to recurring biotic and abiotic stresses that can, in extreme situations, lead to substantial yield losses. With the changing environment, the stress pressure is likely to increase and sustainable measures to alleviate the effect on our crops are sought. Priming plants for better stress resistance is one of the sustainable possibilities to reach this goal. Here, we report on the effects of beta-aminobutyric acid, a priming agent with an exceptionally wide range of action and describe its way of preparing plants to defend themselves against various attacks, among others through the modulation of their hormonal defense signaling, and highlight the special role of abscisic acid in this process.
Collapse
Affiliation(s)
- Ivan Baccelli
- Faculty of Sciences, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2000, Neuchâtel, Switzerland
| | - Brigitte Mauch-Mani
- Faculty of Sciences, Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
12
|
Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA. When Bad Guys Become Good Ones: The Key Role of Reactive Oxygen Species and Nitric Oxide in the Plant Responses to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:471. [PMID: 27148300 PMCID: PMC4828662 DOI: 10.3389/fpls.2016.00471] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/24/2016] [Indexed: 05/18/2023]
Abstract
The natural environment of plants is composed of a complex set of abiotic stresses and their ability to respond to these stresses is highly flexible and finely balanced through the interaction between signaling molecules. In this review, we highlight the integrated action between reactive oxygen species (ROS) and reactive nitrogen species (RNS), particularly nitric oxide (NO), involved in the acclimation to different abiotic stresses. Under stressful conditions, the biosynthesis transport and the metabolism of ROS and NO influence plant response mechanisms. The enzymes involved in ROS and NO synthesis and scavenging can be found in different cells compartments and their temporal and spatial locations are determinant for signaling mechanisms. Both ROS and NO are involved in long distances signaling (ROS wave and GSNO transport), promoting an acquired systemic acclimation to abiotic stresses. The mechanisms of abiotic stresses response triggered by ROS and NO involve some general steps, as the enhancement of antioxidant systems, but also stress-specific mechanisms, according to the stress type (drought, hypoxia, heavy metals, etc.), and demand the interaction with other signaling molecules, such as MAPK, plant hormones, and calcium. The transduction of ROS and NO bioactivity involves post-translational modifications of proteins, particularly S-glutathionylation for ROS, and S-nitrosylation for NO. These changes may alter the activity, stability, and interaction with other molecules or subcellular location of proteins, changing the entire cell dynamics and contributing to the maintenance of homeostasis. However, despite the recent advances about the roles of ROS and NO in signaling cascades, many challenges remain, and future studies focusing on the signaling of these molecules in planta are still necessary.
Collapse
Affiliation(s)
- Fernanda S. Farnese
- Laboratory of Plant Ecophysiology, Instituto Federal Goiano – Campus Rio VerdeGoiás, Brazil
| | - Paulo E. Menezes-Silva
- Laboratory of Plant Ecophysiology, Instituto Federal Goiano – Campus Rio VerdeGoiás, Brazil
| | - Grasielle S. Gusman
- Laboratory of Plant Chemistry, Univiçosa – Faculdade de Ciências Biológicas e da SaúdeViçosa, Brazil
| | - Juraci A. Oliveira
- Department of General Biology, Universidade Federal de ViçosaViçosa, Brazil
| |
Collapse
|
13
|
Floryszak-Wieczorek J, Arasimowicz-Jelonek M, Abramowski D. BABA-primed defense responses to Phytophthora infestans in the next vegetative progeny of potato. FRONTIERS IN PLANT SCIENCE 2015; 6:844. [PMID: 26528308 PMCID: PMC4606069 DOI: 10.3389/fpls.2015.00844] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 09/25/2015] [Indexed: 05/27/2023]
Abstract
The transcript of the PR1 gene accumulation as an informative marker of systemic acquired resistance (SAR) was analyzed in β-aminobutyric acid (BABA) primed potato in the short-lasting (3 days) and long-lasting (28 days) time periods after induction and in the vegetative descendants of primed plants derived from tubers and from in vitro seedlings. BABA pretreatment resulted either in minimal or no PR1 gene expression, but sequential treatment with BABA followed by virulent Phytophthora infestans provided data on the imprint of post-stress information and its duration until fertilization, in the form of an enhanced PR1 transcript accumulation and a transient increase of basal resistance to the late blight disease. The primed state for defense of the susceptible potato cultivar was transmitted to its vegetative progeny as a potentiated PR1 mRNA accumulation following challenge inoculation. However, variation was observed between vegetative accessions of the BABA-primed potato genotype in responsiveness to disease. In contrast to plants derived from tubers, potato propagated through in vitro seedlings largely lost inducible resistance traits, although itretained primed PR1 gene expression.
Collapse
Affiliation(s)
| | | | - Dariusz Abramowski
- Department of Plant Physiology, Poznan University of Life SciencesPoznan, Poland
| |
Collapse
|
14
|
Soil drench treatment with ß-aminobutyric acid increases drought tolerance of potato. PLoS One 2014; 9:e114297. [PMID: 25489951 PMCID: PMC4260862 DOI: 10.1371/journal.pone.0114297] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/07/2014] [Indexed: 01/01/2023] Open
Abstract
The non-protein amino acid β-aminobutyric acid (BABA) is known to be a priming agent for a more efficient activation of cellular defence responses and a potent inducer of resistance against biotic and abiotic stresses in plants. Nevertheless, most of the studies on priming have been carried out in Arabidopsis. In potato, the effect of BABA was demonstrated only on biotic stress tolerance. We investigated the effect of BABA on the drought tolerance of potato and found that soil drenched with BABA at a final concentration of 0.3 mM improves the drought tolerance of potato. Water loss from the leaves of the primed plants is attenuated and the yield is increased compared to the unprimed drought-stressed plants. The metabolite composition of the tubers of the BABA-treated plants is less affected by drought than the tuber composition of the non-treated plants. Nitric oxide and ROS (reactive oxygen species) production is increased in the BABA-treated roots but not in the leaves. In the leaves of the BABA-treated plants, the expression of the drought-inducible gene StDS2 is delayed, but the expression of ETR1, encoding an ethylene receptor, is maintained for a longer period under the drought conditions than in the leaves of the non-treated, drought-stressed control plants. This result suggests that the ethylene-inducible gene expression remains suppressed in primed plants leading to a longer leaf life and increased tuber yield compared to the non-treated, drought-stressed plants. The priming effect of BABA in potato, however, is transient and reverts to an unprimed state within a few weeks.
Collapse
|
15
|
Ripoll J, Urban L, Staudt M, Lopez-Lauri F, Bidel LPR, Bertin N. Water shortage and quality of fleshy fruits--making the most of the unavoidable. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4097-117. [PMID: 24821951 DOI: 10.1093/jxb/eru197] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Extreme climatic events, including drought, are predicted to increase in intensity, frequency, and geographic extent as a consequence of global climate change. In general, to grow crops successfully in the future, growers will need to adapt to less available water and to take better advantage of the positive effects of drought. Fortunately, there are positive effects associated with drought. Drought stimulates the secondary metabolism, thereby potentially increasing plant defences and the concentrations of compounds involved in plant quality, particularly taste and health benefits. The role of drought on the production of secondary metabolites is of paramount importance for fruit crops. However, to manage crops effectively under conditions of limited water supply, for example by applying deficit irrigation, growers must consider not only the impact of drought on productivity but also on how plants manage the primary and secondary metabolisms. This question is obviously complex because during water deficit, trade-offs among productivity, defence, and quality depend upon the intensity, duration, and repetition of events of water deficit. The stage of plant development during the period of water deficit is also crucial, as are the effects of other stressors. In addition, growers must rely on relevant indicators of water status, i.e. parameters involved in the relevant metabolic processes, including those affecting quality. Although many reports on the effects of drought on plant function and crop productivity have been published, these issues have not been reviewed thus far. Here, we provide an up-to-date review of current knowledge of the effects of different forms of drought on fruit quality relative to the primary and secondary metabolisms and their interactions. We also review conventional and less conventional indicators of water status that could be used for monitoring purposes, such as volatile compounds. We focus on fruit crops owing to the importance of secondary metabolism in fruit quality and the importance of fruits in the human diet. The issue of defence is also briefly discussed.
Collapse
Affiliation(s)
- Julie Ripoll
- INRA - Centre d'Avignon, UR 1115 Plantes et Systèmes de culture Horticoles, Domaine Saint Paul - Site Agroparc, 228 route de l'Aérodrome, CS 40509, 84914 Avignon Cedex 9, France Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des Pays du Vaucluse, Bât. Agrosciences, 301 rue Baruch de Spinoza, B.p. 21239, F-84916 Avignon Cedex 9, France
| | - Laurent Urban
- Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des Pays du Vaucluse, Bât. Agrosciences, 301 rue Baruch de Spinoza, B.p. 21239, F-84916 Avignon Cedex 9, France
| | - Michael Staudt
- Centre d'Ecologie Fonctionnelle et Evolutive Montpellier, CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Félicie Lopez-Lauri
- Laboratoire de Physiologie des Fruits et Légumes, Université d'Avignon et des Pays du Vaucluse, Bât. Agrosciences, 301 rue Baruch de Spinoza, B.p. 21239, F-84916 Avignon Cedex 9, France
| | - Luc P R Bidel
- INRA, UMR AGAP, Place P. Viala, F-34060 Montpellier, France
| | - Nadia Bertin
- INRA - Centre d'Avignon, UR 1115 Plantes et Systèmes de culture Horticoles, Domaine Saint Paul - Site Agroparc, 228 route de l'Aérodrome, CS 40509, 84914 Avignon Cedex 9, France
| |
Collapse
|
16
|
Roles, and establishment, maintenance and erasing of the epigenetic cytosine methylation marks in plants. J Genet 2014; 92:629-66. [PMID: 24371187 DOI: 10.1007/s12041-013-0273-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heritable information in plants consists of genomic information in DNA sequence and epigenetic information superimposed on DNA sequence. The latter is in the form of cytosine methylation at CG, CHG and CHH elements (where H = A, T orC) and a variety of histone modifications in nucleosomes. The epialleles arising from cytosine methylation marks on the nuclear genomic loci have better heritability than the epiallelic variation due to chromatin marks. Phenotypic variation is increased manifold by epiallele comprised methylomes. Plants (angiosperms) have highly conserved genetic mechanisms to establish, maintain or erase cytosine methylation from epialleles. The methylation marks in plants fluctuate according to the cell/tissue/organ in the vegetative and reproductive phases of plant life cycle. They also change according to environment. Epialleles arise by gain or loss of cytosine methylation marks on genes. The changes occur due to the imperfection of the processes that establish and maintain the marks and on account of spontaneous and stress imposed removal of marks. Cytosine methylation pattern acquired in response to abiotic or biotic stress is often inherited over one to several subsequent generations.Cytosine methylation marks affect physiological functions of plants via their effect(s) on gene expression levels. They also repress transposable elements that are abundantly present in plant genomes. The density of their distribution along chromosome lengths affects meiotic recombination rate, while their removal increases mutation rate. Transposon activation due to loss of methylation causes rearrangements such that new gene regulatory networks arise and genes for microRNAs may originate. Cytosine methylation dynamics contribute to evolutionary changes. This review presents and discusses the available evidence on origin, removal and roles of cytosine methylation and on related processes, such as RNA directed DNA methylation, imprinting, paramutation and transgenerational memory in plants.
Collapse
|
17
|
Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Drzewiecka K, Chmielowska-Bąk J, Abramowski D, Izbiańska K. Aluminum induces cross-resistance of potato to Phytophthora infestans. PLANTA 2014; 239:679-94. [PMID: 24346311 PMCID: PMC3928512 DOI: 10.1007/s00425-013-2008-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 12/05/2013] [Indexed: 05/06/2023]
Abstract
The phenomenon of cross-resistance allows plants to acquire resistance to a broad range of stresses after previous exposure to one specific factor. Although this stress-response relationship has been known for decades, the sequence of events that underpin cross-resistance remains unknown. Our experiments revealed that susceptible potato (Solanum tuberosum L. cv. Bintje) undergoing aluminum (Al) stress at the root level showed enhanced defense responses correlated with reduced disease symptoms after leaf inoculation with Phytophthora infestans. The protection capacity of Al to subsequent stress was associated with the local accumulation of H2O2 in roots and systemic activation of salicylic acid (SA) and nitric oxide (NO) dependent pathways. The most crucial Al-mediated changes involved coding of NO message in an enhanced S-nitrosothiol formation in leaves tuned with an abundant SNOs accumulation in the main vein of leaves. Al-induced distal NO generation was correlated with the overexpression of PR-2 and PR-3 at both mRNA and protein activity levels. In turn, after contact with a pathogen we observed early up-regulation of SA-mediated defense genes, e.g. PR1, PR-2, PR-3 and PAL, and subsequent disease limitation. Taken together Al exposure induced distal changes in the biochemical stress imprint, facilitating more effective responses to a subsequent pathogen attack.
Collapse
Affiliation(s)
- Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznan, Poland,
| | | | | | | | | | | |
Collapse
|
18
|
Janus Ł, Milczarek G, Arasimowicz-Jelonek M, Abramowski D, Billert H, Floryszak-Wieczorek J. Normoergic NO-dependent changes, triggered by a SAR inducer in potato, create more potent defense responses to Phytophthora infestans. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 211:23-34. [PMID: 23987808 DOI: 10.1016/j.plantsci.2013.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 05/03/2023]
Abstract
In our experimental approach we examined how potato leaves exposed to a chemical agent might induce nitric oxide (NO) dependent biochemical modifications for future mobilization of an effective resistance to Phytophthora infestans. After potato leaf treatment with one of the following SAR inducers, i.e. β-aminobutyric acid (BABA), 2,6-dichloroisonicotinic acid (INA) or Laminarin, we observed enhanced NO generation concomitant with biochemical changes related to a slight superoxide anion (O2(-)) and hydrogen peroxide (H2O2) accumulation dependent on minimal NADPH oxidase and peroxidase activities, respectively. These rather normoergic changes, linked to the NO message, were mediated by the temporary down-regulation of S-nitrosoglutathione reductase (GSNOR). In turn, after challenge inoculation signal amplification promoted potato resistance manifested in the up-regulation of GSNOR activity tuned with the depletion of the SNO pool, which was observed by our team earlier (Floryszak-Wieczorek et al., 2012). Moreover, hyperergic defense responses related to an early and rapid O2(-)and H2O2 overproduction together with a temporary increase in NADPH oxidase and peroxidase activities were noted. BABA treatment was the most effective against P. infestans resulting in the enhanced activity of β-1,3-glucanase and callose deposition. Our results indicate that NO-mediated biochemical modifications might play an important role in creating more potent defense responses of potato to a subsequent P. infestans attack.
Collapse
Affiliation(s)
- Łukasz Janus
- Department of Plant Physiology, Poznan University of Life Sciences, Wolynska 35, Poznan, Poland
| | | | | | | | | | | |
Collapse
|
19
|
Boldizsár A, Simon-Sarkadi L, Szirtes K, Soltész A, Szalai G, Keyster M, Ludidi N, Galiba G, Kocsy G. Nitric oxide affects salt-induced changes in free amino acid levels in maize. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1020-7. [PMID: 23548311 DOI: 10.1016/j.jplph.2013.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 01/28/2013] [Accepted: 02/27/2013] [Indexed: 05/25/2023]
Abstract
It was assumed that salt-induced redox changes affect amino acid metabolism in maize (Zea mays L.), and this influence may be modified by NO. The applied NaCl treatment reduced the fresh weight of shoots and roots. This decrease was smaller after the combined application of NaCl and an NO-donor ((Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate, DETA/NO) in the shoots, while it was greater after simultaneous treatment with NaCl and nitro-L-arginine (L-NNA, inhibitor of NO synthesis) in the roots. The quantum yield efficiency of photosystem II was not influenced by the treatments. NaCl had a significant effect on the redox environment in the leaves as it was shown by the increase in the amount of glutathione disulphide and in the redox potential of the glutathione/glutathione disulphide redox pair. This influence of NaCl was modified by DETA/NO and L-NNA. Pharmacological modification of NO levels affected salt-induced changes in both the total free amino acid content and in the free amino acid composition. NaCl alone increased the concentration of almost all amino acids which effect was strengthened by DETA/NO in the case of Pro. L-NNA treatment resulted in a significant increase in the Ala, Val, Gly and Tyr contents. The Ile, Lys and Val concentrations rose considerably after the combined application of NaCl and DETA/NO compared to NaCl treatment alone in the recovery phase. NaCl also increased the expression of several genes related to the amino acid and antioxidant metabolism, and this effect was modified by DETA/NO. In conclusion, modification of NO levels affected salt-induced, glutathione-dependent redox changes and simultaneously the free amino acid composition and the level of several free amino acids. The observed much higher Pro content in plants treated with both NaCl and DETA/NO during recovery may contribute to the protective effect of NO against salt stress.
Collapse
Affiliation(s)
- Akos Boldizsár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik U. 2, H-2462 Martonvásár, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Gzyl J, Chmielowska-Bąk J. Homocysteine over-accumulation as the effect of potato leaves exposure to biotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:177-84. [PMID: 23266362 DOI: 10.1016/j.plaphy.2012.11.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 11/28/2012] [Indexed: 05/03/2023]
Abstract
Homocysteine (Hcy) is a naturally occurring intermediate metabolite formed during methionine metabolism. It has been well documented that its excess can be extremely toxic to mammalian, yeast and bacterial cells. In spite of the metabolic value of Hcy known for decades, the role of this amino acid in the plant response to stress has not been recognized yet. In the presented study, using potato plant (Solanum tuberosum L.) and Phytophthora infestans as a model system, the presence and tissue localization of Hcy in leaves was examined by an immunohistochemical method. The over-production of Hcy was more evidenced in the susceptible than in the resistant genotype of potato starting from 48 hpi. Furthermore, the elevated level of Hcy was correlated in time with the up-regulation of genes engaged in its biosynthesis, e.g. cystathionine β-lyase and S-adenosyl-l-homocysteine hydrolase. The pharmacological approach with exogenous Hcy resulted in significant rise in lipid peroxidation and more potent late blight disease development in leaves of susceptible potato as well. Finally, it has been found that key defense enzymes, i.e. phenylalanine ammonia lyase and β-1,3-glucanase were up-regulated early in the resistant potato genotype, starting from 1st hpi. In turn, in the susceptible potato the time-lag in expression of these enzymes tuned with excess production of Hcy might facilitate leaf tissue colonization by pathogen. Based on obtained results it should be stated that Hcy over-accumulation is engaged in pathophysiological mechanism leading to the abolishment of the resistance and might be an informative disease hallmark both in plant and in animal system.
Collapse
Affiliation(s)
- Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland.
| | | | | | | |
Collapse
|
21
|
Mengel A, Chaki M, Shekariesfahlan A, Lindermayr C. Effect of nitric oxide on gene transcription - S-nitrosylation of nuclear proteins. FRONTIERS IN PLANT SCIENCE 2013; 4:293. [PMID: 23914201 PMCID: PMC3729996 DOI: 10.3389/fpls.2013.00293] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 07/15/2013] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) plays an important role in many different physiological processes in plants. It mainly acts by post-translationally modifying proteins. Modification of cysteine residues termed as S-nitrosylation is believed to be the most important mechanism for transduction of bioactivity of NO. The first proteins found to be nitrosylated were mainly of cytoplasmic origin or isolated from mitochondria and peroxisomes. Interestingly, it was shown that redox-sensitive transcription factors are also nitrosylated and that NO influences the redox-dependent nuclear transport of some proteins. This implies that NO plays a role in regulating transcription and/or general nuclear metabolism which is a fascinating new aspect of NO signaling in plants. In this review, we will discuss the impact of S-nitrosylation on nuclear plant proteins with a focus on transcriptional regulation, describe the function of this modification and draw also comparisons to the animal system in which S-nitrosylation of nuclear proteins is a well characterized concept.
Collapse
Affiliation(s)
| | | | | | - Christian Lindermayr
- *Correspondence: Christian Lindermayr, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany e-mail:
| |
Collapse
|
22
|
Arasimowicz-Jelonek M, Kosmala A, Janus Ł, Abramowski D, Floryszak-Wieczorek J. The proteome response of potato leaves to priming agents and S-nitrosoglutathione. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013. [PMID: 23199689 DOI: 10.1016/j.plantsci.2012.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The primed mobilization for more potent defense responses to subsequent stress has been shown for many plant species, but there is a growing need to identify reliable molecular markers for this unique phenomenon. In the present study a proteomic approach was used to screen similarities in protein abundance in leaves of primed potato (Solanum tuberosum L.) treated with four well-known inducers of plant resistance, i.e. β-aminobutyric acid (BABA), γ-aminobutyric acid (GABA), Laminarin and 2,6-dichloroisonicotinic acid (INA), respectively. Moreover, to gain insight into the importance of nitric oxide (NO) in primed protein accumulation the potato leaves were supplied by S-nitrosoglutathione (GSNO), as an NO donor. The comparative analysis, using two-dimensional electrophoresis and mass spectrometry, revealed that among 25 proteins accumulated specifically after BABA, GABA, INA and Laminarin treatments, 13 proteins were accumulated also in response to GSNO. Additionally, overlapping proteomic changes between BABA-primed and GSNO-treated leaves showed 5 protein spots absent in the proteome maps obtained in response to the other priming agents. The identified 18 proteins belonged, in most cases, to functional categories of primary metabolism. The selected proteins including three redox-regulated enzymes, i.e. glyceraldehyde 3-phosphate dehydrogenase, carbonic anhydrase, and fructose-bisphosphate aldolase, were discussed in relation to the plant defence responses. Taken together, the overlapping effects in the protein profiles obtained between priming agents, GSNO and cPTIO treatments provide insight indicating that the primed potato exhibits unique changes in the primary metabolism, associated with selective protein modification via NO.
Collapse
Affiliation(s)
- Magdalena Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | | | | | | | | |
Collapse
|