1
|
Han K, Jia Z, Zhang Y, Zhou H, Bu S, Chen J, Yan D, Qi R, Yan F, Wu J. Chloroplast clustering around the nucleus induced by OMP24 overexpression unexpectedly promoted PSTVd infection in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2023; 24:1552-1559. [PMID: 37695572 PMCID: PMC10632781 DOI: 10.1111/mpp.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Chloroplast clustering around the nucleus is a well-known mechanism that occurs in response to various biotic and abiotic stresses and is believed to be a mechanism of defence against pathogens in plants. This phenomenon is accompanied by increased production of reactive oxygen species (ROS), which can help to destroy invading pathogens. However, the function of chloroplast clustering during viroid infection is unclear. Here, we report that, although the infection by potato spindle tuber viroid (PSTVd) failed to induce chloroplast clustering, chloroplast clustering caused by the overexpression of the Nicotiana benthamiana chloroplast outer membrane protein 24 (NbOMP24) promoted the infection by PSTVd, a viroid pathogen, in N. benthamiana. Interestingly, H2 O2 treatment, which caused increased ROS accumulation, showed no significant effects on PSTVd infection. Moreover, NbOMP24 protein showed no direct interaction with PSTVd. We propose that perinuclear chloroplast clustering induced by NbOMP24 provides a favourable environment for PSTVd infection. These findings highlight the complexity of chloroplast clustering-mediated plant-pathogen interactions and the need for further research to fully understand these mechanisms.
Collapse
Affiliation(s)
- Kelei Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsInstitute of Plant Virology, Ningbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang ProvinceInstitute of Plant Virology, Ningbo UniversityNingboChina
- Institute of Plant Protection and Agro‐Products Safety, Anhui Academy of Agricultural SciencesHefeiChina
| | - Zhaoxing Jia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsInstitute of Plant Virology, Ningbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang ProvinceInstitute of Plant Virology, Ningbo UniversityNingboChina
| | - Yuhong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsInstitute of Plant Virology, Ningbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang ProvinceInstitute of Plant Virology, Ningbo UniversityNingboChina
| | - Huijie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsInstitute of Plant Virology, Ningbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang ProvinceInstitute of Plant Virology, Ningbo UniversityNingboChina
| | - Shan Bu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsInstitute of Plant Virology, Ningbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang ProvinceInstitute of Plant Virology, Ningbo UniversityNingboChina
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsInstitute of Plant Virology, Ningbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang ProvinceInstitute of Plant Virology, Ningbo UniversityNingboChina
| | - Dankan Yan
- Institute of Plant Protection and Agro‐Products Safety, Anhui Academy of Agricultural SciencesHefeiChina
| | - Rende Qi
- Institute of Plant Protection and Agro‐Products Safety, Anhui Academy of Agricultural SciencesHefeiChina
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsInstitute of Plant Virology, Ningbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang ProvinceInstitute of Plant Virology, Ningbo UniversityNingboChina
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of AgroproductsInstitute of Plant Virology, Ningbo UniversityNingboChina
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang ProvinceInstitute of Plant Virology, Ningbo UniversityNingboChina
| |
Collapse
|
2
|
Lukan T, Županič A, Mahkovec Povalej T, Brunkard JO, Kmetič M, Juteršek M, Baebler Š, Gruden K. Chloroplast redox state changes mark cell-to-cell signaling in the hypersensitive response. THE NEW PHYTOLOGIST 2023; 237:548-562. [PMID: 35946378 PMCID: PMC9875368 DOI: 10.1111/nph.18425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/26/2022] [Indexed: 05/27/2023]
Abstract
Hypersensitive response (HR)-conferred resistance is associated with induction of programmed cell death and pathogen spread restriction in its proximity. The exact role of chloroplastic reactive oxygen species and its link with salicylic acid (SA) signaling in HR remain unexplained. To unravel this, we performed a detailed spatiotemporal analysis of chloroplast redox response in palisade mesophyll and upper epidermis to potato virus Y (PVY) infection in a resistant potato genotype and its transgenic counterpart with impaired SA accumulation and compromised resistance. Besides the cells close to the cell death zone, we detected individual cells with oxidized chloroplasts further from the cell death zone. These are rare in SA-deficient plants, suggesting their role in signaling for resistance. We confirmed that chloroplast redox changes play important roles in signaling for resistance, as blocking chloroplast redox changes affected spatial responses at the transcriptional level. Through spatiotemporal study of stromule induction after PVY infection, we show that stromules are induced by cell death and also as a response to PVY multiplication at the front of infection. Overall induction of stromules is attenuated in SA-deficient plants.
Collapse
Affiliation(s)
- Tjaša Lukan
- National Institute of BiologyVečna pot 1111000LjubljanaSlovenia
| | - Anže Županič
- National Institute of BiologyVečna pot 1111000LjubljanaSlovenia
| | | | - Jacob O. Brunkard
- Laboratory of GeneticsUniversity of Wisconsin – MadisonMadisonWI53706USA
| | - Mirjam Kmetič
- National Institute of BiologyVečna pot 1111000LjubljanaSlovenia
| | - Mojca Juteršek
- National Institute of BiologyVečna pot 1111000LjubljanaSlovenia
- Jožef Stefan International Postgraduate SchoolJamova 391000LjubljanaSlovenia
| | - Špela Baebler
- National Institute of BiologyVečna pot 1111000LjubljanaSlovenia
| | - Kristina Gruden
- National Institute of BiologyVečna pot 1111000LjubljanaSlovenia
| |
Collapse
|
3
|
Lukan T, Coll A. Intertwined Roles of Reactive Oxygen Species and Salicylic Acid Signaling Are Crucial for the Plant Response to Biotic Stress. Int J Mol Sci 2022; 23:5568. [PMID: 35628379 PMCID: PMC9147500 DOI: 10.3390/ijms23105568] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
One of the earliest hallmarks of plant immune response is production of reactive oxygen species (ROS) in different subcellular compartments, which regulate plant immunity. A suitable equilibrium, which is crucial to prevent ROS overaccumulation leading to oxidative stress, is maintained by salicylic acid (SA), a chief regulator of ROS. However, ROS not only act downstream of SA signaling, but are also proposed to be a central component of a self-amplifying loop that regulates SA signaling as well as the interaction balance between different phytohormones. The exact role of this crosstalk, the position where SA interferes with ROS signaling and ROS interferes with SA signaling and the outcome of this regulation, depend on the origin of ROS but also on the pathosystem. The precise spatiotemporal regulation of organelle-specific ROS and SA levels determine the effectiveness of pathogen arrest and is therefore crucial for a successful immune response. However, the regulatory interplay behind still remains poorly understood, as up until now, the role of organelle-specific ROS and SA in hypersensitive response (HR)-conferred resistance has mostly been studied by altering the level of a single component. In order to address these aspects, a sophisticated combination of research methods for monitoring the spatiotemporal dynamics of key players and transcriptional activity in plants is needed and will most probably consist of biosensors and precision transcriptomics.
Collapse
Affiliation(s)
- Tjaša Lukan
- National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia;
| | | |
Collapse
|
4
|
Ojeda V, Jiménez-López J, Romero-Campero FJ, Cejudo FJ, Pérez-Ruiz JM. A chloroplast redox relay adapts plastid metabolism to light and affects cytosolic protein quality control. PLANT PHYSIOLOGY 2021; 187:88-102. [PMID: 34618130 PMCID: PMC8418392 DOI: 10.1093/plphys/kiab246] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/04/2021] [Indexed: 06/01/2023]
Abstract
In chloroplasts, thiol-dependent redox regulation is linked to light since the disulfide reductase activity of thioredoxins (Trxs) relies on photo-reduced ferredoxin (Fdx). Furthermore, chloroplasts harbor an NADPH-dependent Trx reductase (NTR) with a joint Trx domain, termed NTRC. The activity of these two redox systems is integrated by the redox balance of 2-Cys peroxiredoxin (Prx), which is controlled by NTRC. However, NTRC was proposed to participate in redox regulation of additional targets, prompting inquiry into whether the function of NTRC depends on its capacity to maintain the redox balance of 2-Cys Prxs or by direct redox interaction with chloroplast enzymes. To answer this, we studied the functional relationship of NTRC and 2-Cys Prxs by a comparative analysis of the triple Arabidopsis (Arabidopsis thaliana) mutant, ntrc-2cpab, which lacks NTRC and 2-Cys Prxs, and the double mutant 2cpab, which lacks 2-Cys Prxs. These mutants exhibit almost indistinguishable phenotypes: in growth rate, photosynthesis performance, and redox regulation of chloroplast enzymes in response to light and darkness. These results suggest that the most relevant function of NTRC is in controlling the redox balance of 2-Cys Prxs. A comparative transcriptomics analysis confirmed the phenotypic similarity of the two mutants and suggested that the NTRC-2-Cys Prxs system participates in cytosolic protein quality control. We propose that NTRC and 2-Cys Prxs constitute a redox relay, exclusive to photosynthetic organisms that fine-tunes the redox state of chloroplast enzymes in response to light and affects transduction pathways towards the cytosol.
Collapse
Affiliation(s)
- Valle Ojeda
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Julia Jiménez-López
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Francisco José Romero-Campero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092-Sevilla, Spain
| |
Collapse
|
5
|
Sakata N, Ishiga T, Masuo S, Hashimoto Y, Ishiga Y. Coronatine Contributes to Pseudomonas cannabina pv. alisalensis Virulence by Overcoming Both Stomatal and Apoplastic Defenses in Dicot and Monocot Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:746-757. [PMID: 33587000 DOI: 10.1094/mpmi-09-20-0261-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pseudomonas cannabina pv. alisalensis is a causative agent of bacterial blight of crucifers including cabbage, radish, and broccoli. Importantly, P. cannabina pv. alisalensis can infect not only a wide range of Brassicaceae spp. but, also, green manure crops such as oat. However, P. cannabina pv. alisalensis virulence mechanisms have not been investigated and are not fully understood. We focused on coronatine (COR) function, which is one of the well-known P. syringae pv. tomato DC3000 virulence factors, in P. cannabina pv. alisalensis infection processes on both dicot and monocot plants. Cabbage and oat plants dip-inoculated with a P. cannabina pv. alisalensis KB211 COR mutant (ΔcmaA) exhibited reduced virulence compared with P. cannabina pv. alisalensis wild type (WT). Moreover, ΔcmaA failed to reopen stomata on both cabbage and oat, suggesting that COR facilitates P. cannabina pv. alisalensis entry through stomata into both plants. Furthermore, cabbage and oat plants syringe-infiltrated with ΔcmaA also showed reduced virulence, suggesting that COR is involved in overcoming not only stomatal-based defense but also apoplastic defense. Indeed, defense-related genes, including PR1 and PR2, were highly expressed in plants inoculated with ΔcmaA compared with WT, indicating that COR suppresses defense-related genes of both cabbage and oat. Additionally, salicylic acid accumulation increases after ΔcmaA inoculation compared with WT. Taken together, COR contributes to causing disease by suppressing stomatal-based defense and apoplastic defense in both dicot and monocot plants. Here, we investigated COR functions in the interaction of P. cannabina pv. alisalensis and different host plants (dicot and monocot plants), using genetically and biochemically defined COR deletion mutants.[Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2021.
Collapse
Affiliation(s)
- Nanami Sakata
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takako Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Shunsuke Masuo
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yoshiteru Hashimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
6
|
Cejudo FJ, González MC, Pérez-Ruiz JM. Redox regulation of chloroplast metabolism. PLANT PHYSIOLOGY 2021; 186:9-21. [PMID: 33793865 PMCID: PMC8154093 DOI: 10.1093/plphys/kiaa062] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/16/2020] [Indexed: 05/08/2023]
Abstract
Regulation of enzyme activity based on thiol-disulfide exchange is a regulatory mechanism in which the protein disulfide reductase activity of thioredoxins (TRXs) plays a central role. Plant chloroplasts are equipped with a complex set of up to 20 TRXs and TRX-like proteins, the activity of which is supported by reducing power provided by photosynthetically reduced ferredoxin (FDX) with the participation of a FDX-dependent TRX reductase (FTR). Therefore, the FDX-FTR-TRXs pathway allows the regulation of redox-sensitive chloroplast enzymes in response to light. In addition, chloroplasts contain an NADPH-dependent redox system, termed NTRC, which allows the use of NADPH in the redox network of these organelles. Genetic approaches using mutants of Arabidopsis (Arabidopsis thaliana) in combination with biochemical and physiological studies have shown that both redox systems, NTRC and FDX-FTR-TRXs, participate in fine-tuning chloroplast performance in response to changes in light intensity. Moreover, these studies revealed the participation of 2-Cys peroxiredoxin (2-Cys PRX), a thiol-dependent peroxidase, in the control of the reducing activity of chloroplast TRXs as well as in the rapid oxidation of stromal enzymes upon darkness. In this review, we provide an update on recent findings regarding the redox regulatory network of plant chloroplasts, focusing on the functional relationship of 2-Cys PRXs with NTRC and the FDX-FTR-TRXs redox systems for fine-tuning chloroplast performance in response to changes in light intensity and darkness. Finally, we consider redox regulation as an additional layer of control of the signaling function of the chloroplast.
Collapse
Affiliation(s)
- Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
- Author for communication:
| | - María-Cruz González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla—Consejo Superior de Investigaciones Científicas, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| |
Collapse
|
7
|
Littlejohn GR, Breen S, Smirnoff N, Grant M. Chloroplast immunity illuminated. THE NEW PHYTOLOGIST 2021; 229:3088-3107. [PMID: 33206379 DOI: 10.1111/nph.17076] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/12/2020] [Indexed: 05/04/2023]
Abstract
The chloroplast has recently emerged as pivotal to co-ordinating plant defence responses and as a target of plant pathogens. Beyond its central position in oxygenic photosynthesis and primary metabolism - key targets in the complex virulence strategies of diverse pathogens - the chloroplast integrates, decodes and responds to environmental signals. The capacity of chloroplasts to synthesize phytohormones and a diverse range of secondary metabolites, combined with retrograde and reactive oxygen signalling, provides exquisite flexibility to both perceive and respond to biotic stresses. These processes also represent a plethora of opportunities for pathogens to evolve strategies to directly or indirectly target 'chloroplast immunity'. This review covers the contribution of the chloroplast to pathogen associated molecular pattern and effector triggered immunity as well as systemic acquired immunity. We address phytohormone modulation of immunity and surmise how chloroplast-derived reactive oxygen species underpin chloroplast immunity through indirect evidence inferred from genetic modification of core chloroplast components and direct pathogen targeting of the chloroplast. We assess the impact of transcriptional reprogramming of nuclear-encoded chloroplast genes during disease and defence and look at future research challenges.
Collapse
Affiliation(s)
- George R Littlejohn
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Susan Breen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Murray Grant
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
8
|
Zhang H, Yin L, Song F, Jiang M. SKIP Silencing Decreased Disease Resistance Against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in Tomato. FRONTIERS IN PLANT SCIENCE 2020; 11:593267. [PMID: 33381133 PMCID: PMC7767821 DOI: 10.3389/fpls.2020.593267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/19/2020] [Indexed: 05/29/2023]
Abstract
SKIP, a component of the spliceosome, is involved in numerous signaling pathways. However, there is no direct genetic evidence supporting the function of SKIP in defense responses. In this paper, two SKIPs, namely, SlSKIP1a and SlSKIP1b, were analyzed in tomato. qRT-PCR analysis showed that the SlSKIP1b expression was triggered via Pseudomonas syringae pv. tomato (Pst) DC3000 and Botrytis cinerea (B. cinerea), together with the defense-associated signals. In addition, the functions of SlSKIP1a and SlSKIP1b in disease resistance were analyzed in tomato through the virus-induced gene silencing (VIGS) technique. VIGS-mediated SlSKIP1b silencing led to increased accumulation of reactive oxygen species (ROS), along with the decreased expression of defense-related genes (DRGs) after pathogen infection, suggesting that it reduced B. cinerea and Pst DC3000 resistance. There was no significant difference in B. cinerea and Pst DC3000 resistance in TRV-SlSKIP1a-infiltrated plants compared with the TRV-GUS-silencing counterparts. As suggested by the above findings, SlSKIP1b plays a vital role in disease resistance against pathogens possibly by regulating the accumulation of ROS as well as the expression of DRGs.
Collapse
Affiliation(s)
- Huijuan Zhang
- Life Science Collegue, Taizhou University, Taizhou, China
| | - Longfei Yin
- Life Science Collegue, Taizhou University, Taizhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ming Jiang
- Life Science Collegue, Taizhou University, Taizhou, China
| |
Collapse
|
9
|
Pant BD, Oh S, Lee HK, Nandety RS, Mysore KS. Antagonistic Regulation by CPN60A and CLPC1 of TRXL1 that Regulates MDH Activity Leading to Plant Disease Resistance and Thermotolerance. Cell Rep 2020; 33:108512. [DOI: 10.1016/j.celrep.2020.108512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 01/06/2023] Open
|
10
|
Liu W, Barbosa Dos Santos I, Moye A, Park SW. CYP20-3 deglutathionylates 2-CysPRX A and suppresses peroxide detoxification during heat stress. Life Sci Alliance 2020; 3:e202000775. [PMID: 32732254 PMCID: PMC7409537 DOI: 10.26508/lsa.202000775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 11/24/2022] Open
Abstract
In plants, growth-defense trade-offs occur because of limited resources, which demand prioritization towards either of them depending on various external and internal factors. However, very little is known about molecular mechanisms underlying their occurrence. Here, we describe that cyclophilin 20-3 (CYP20-3), a 12-oxo-phytodienoic acid (OPDA)-binding protein, crisscrosses stress responses with light-dependent electron reactions, which fine-tunes activities of key enzymes in plastid sulfur assimilations and photosynthesis. Under stressed states, OPDA, accumulates in the chloroplasts, binds and stimulates CYP20-3 to convey electrons towards serine acetyltransferase 1 (SAT1) and 2-Cys peroxiredoxin A (2CPA). The latter is a thiol-based peroxidase, protecting and optimizing photosynthesis by reducing its toxic byproducts (e.g., H2O2). Reduction of 2CPA then inactivates its peroxidase activity, suppressing the peroxide detoxification machinery, whereas the activation of SAT1 promotes thiol synthesis and builds up reduction capacity, which in turn triggers the retrograde regulation of defense gene expressions against abiotic stress. Thus, we conclude that CYP20-3 is a unique metabolic hub conveying resource allocations between plant growth and defense responses (trade-offs), ultimately balancing optimal growth phonotype.
Collapse
Affiliation(s)
- Wenshan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | | | - Anna Moye
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Sang-Wook Park
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| |
Collapse
|
11
|
Horn PJ, Smith MD, Clark TR, Froehlich JE, Benning C. PEROXIREDOXIN Q stimulates the activity of the chloroplast 16:1 Δ3trans FATTY ACID DESATURASE4. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:718-729. [PMID: 31856363 DOI: 10.1111/tpj.14657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 05/03/2023]
Abstract
Thylakoid membrane lipids, comprised of glycolipids and the phospholipid phosphatidylglycerol (PG), are essential for normal plant growth and development. Unlike other lipid classes, chloroplast PG in nearly all plants contains a substantial fraction of the unusual trans fatty acid 16:1Δ3trans or 16:1t. We determined that, in Arabidopsis thaliana, 16:1t biosynthesis requires both FATTY ACID DESATURASE4 (FAD4) and a thylakoid-associated redox protein, PEROXIREDOXIN Q (PRXQ), to produce wild-type levels of 16:1t. The FAD4-PRXQ biochemical relationship appears to be very specific in planta, as other fatty acids (FA) desaturases do not require peroxiredoxins for their activity, nor does FAD4 require other chloroplast peroxiredoxins under standard growth conditions. Although most of chloroplast PG assembly occurs at the inner envelope membrane, FAD4 was primarily associated with the thylakoid membranes facing the stroma. Furthermore, co-production of PRXQ with FAD4 was required to produce Δ3-desaturated FAs in yeast. Alteration of the redox state of FAD4 or PRXQ through site-directed mutagenesis of conserved cysteine residues impaired Δ3 FA production. However, these mutations did not appear to directly alter disulfide status of FAD4. These results collectively demonstrate that the production of 16:1t is linked to the redox status of the chloroplast through PRXQ associated with the thylakoids.
Collapse
Affiliation(s)
- Patrick J Horn
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Montgomery D Smith
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Tessa R Clark
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - John E Froehlich
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Benning
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
12
|
Liu Y, Lu S, Liu K, Wang S, Huang L, Guo L. Proteomics: a powerful tool to study plant responses to biotic stress. PLANT METHODS 2019; 15:135. [PMID: 31832077 PMCID: PMC6859632 DOI: 10.1186/s13007-019-0515-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/29/2019] [Indexed: 05/08/2023]
Abstract
In recent years, mass spectrometry-based proteomics has provided scientists with the tremendous capability to study plants more precisely than previously possible. Currently, proteomics has been transformed from an isolated field into a comprehensive tool for biological research that can be used to explain biological functions. Several studies have successfully used the power of proteomics as a discovery tool to uncover plant resistance mechanisms. There is growing evidence that indicates that the spatial proteome and post-translational modifications (PTMs) of proteins directly participate in the plant immune response. Therefore, understanding the subcellular localization and PTMs of proteins is crucial for a comprehensive understanding of plant responses to biotic stress. In this review, we discuss current approaches to plant proteomics that use mass spectrometry, with particular emphasis on the application of spatial proteomics and PTMs. The purpose of this paper is to investigate the current status of the field, discuss recent research challenges, and encourage the application of proteomics techniques to further research.
Collapse
Affiliation(s)
- Yahui Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- National Institute of Metrology, Beijing, China
| | - Song Lu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kefu Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Sheng Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
González M, Delgado-Requerey V, Ferrández J, Serna A, Cejudo FJ. Insights into the function of NADPH thioredoxin reductase C (NTRC) based on identification of NTRC-interacting proteins in vivo. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5787-5798. [PMID: 31294455 PMCID: PMC6812714 DOI: 10.1093/jxb/erz326] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/04/2019] [Indexed: 05/18/2023]
Abstract
Redox regulation in heterotrophic organisms relies on NADPH, thioredoxins (TRXs), and an NADPH-dependent TRX reductase (NTR). In contrast, chloroplasts harbor two redox systems, one that uses photoreduced ferredoxin (Fd), an Fd-dependent TRX reductase (FTR), and TRXs, which links redox regulation to light, and NTRC, which allows the use of NADPH for redox regulation. It has been shown that NTRC-dependent regulation of 2-Cys peroxiredoxin (PRX) is critical for optimal function of the photosynthetic apparatus. Thus, the objective of the present study was the analysis of the interaction of NTRC and 2-Cys PRX in vivo and the identification of proteins interacting with them with the aim of identifying chloroplast processes regulated by this redox system. To assess this objective, we generated Arabidopsis thaliana plants expressing either an NTRC-tandem affinity purification (TAP)-Tag or a green fluorescent protein (GFP)-TAP-Tag, which served as a negative control. The presence of 2-Cys PRX and NTRC in complexes isolated from NTRC-TAP-Tag-expressing plants confirmed the interaction of these proteins in vivo. The identification of proteins co-purified in these complexes by MS revealed the relevance of the NTRC-2-Cys PRX system in the redox regulation of multiple chloroplast processes. The interaction of NTRC with selected targets was confirmed in vivo by bimolecular fluorescence complementation (BiFC) assays.
Collapse
Affiliation(s)
- Maricruz González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Víctor Delgado-Requerey
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | - Julia Ferrández
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
| | | | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and Consejo Superior de Investigaciones Científicas, Sevilla, Spain
- Correspondence:
| |
Collapse
|
14
|
Zaffagnini M, Fermani S, Marchand CH, Costa A, Sparla F, Rouhier N, Geigenberger P, Lemaire SD, Trost P. Redox Homeostasis in Photosynthetic Organisms: Novel and Established Thiol-Based Molecular Mechanisms. Antioxid Redox Signal 2019; 31:155-210. [PMID: 30499304 DOI: 10.1089/ars.2018.7617] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significance: Redox homeostasis consists of an intricate network of reactions in which reactive molecular species, redox modifications, and redox proteins act in concert to allow both physiological responses and adaptation to stress conditions. Recent Advances: This review highlights established and novel thiol-based regulatory pathways underlying the functional facets and significance of redox biology in photosynthetic organisms. In the last decades, the field of redox regulation has largely expanded and this work is aimed at giving the right credit to the importance of thiol-based regulatory and signaling mechanisms in plants. Critical Issues: This cannot be all-encompassing, but is intended to provide a comprehensive overview on the structural/molecular mechanisms governing the most relevant thiol switching modifications with emphasis on the large genetic and functional diversity of redox controllers (i.e., redoxins). We also summarize the different proteomic-based approaches aimed at investigating the dynamics of redox modifications and the recent evidence that extends the possibility to monitor the cellular redox state in vivo. The physiological relevance of redox transitions is discussed based on reverse genetic studies confirming the importance of redox homeostasis in plant growth, development, and stress responses. Future Directions: In conclusion, we can firmly assume that redox biology has acquired an established significance that virtually infiltrates all aspects of plant physiology.
Collapse
Affiliation(s)
- Mirko Zaffagnini
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | - Simona Fermani
- 2 Department of Chemistry Giacomo Ciamician, University of Bologna, Bologna, Italy
| | - Christophe H Marchand
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Alex Costa
- 4 Department of Biosciences, University of Milan, Milan, Italy
| | - Francesca Sparla
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| | | | - Peter Geigenberger
- 6 Department Biologie I, Ludwig-Maximilians-Universität München, LMU Biozentrum, Martinsried, Germany
| | - Stéphane D Lemaire
- 3 Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, UMR8226, Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Sorbonne Université, Paris, France
| | - Paolo Trost
- 1 Department of Pharmacy and Biotechnology and University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Kang Z, Qin T, Zhao Z. Thioredoxins and thioredoxin reductase in chloroplasts: A review. Gene 2019; 706:32-42. [DOI: 10.1016/j.gene.2019.04.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/13/2019] [Accepted: 04/15/2019] [Indexed: 10/27/2022]
|
16
|
Cejudo FJ, Ojeda V, Delgado-Requerey V, González M, Pérez-Ruiz JM. Chloroplast Redox Regulatory Mechanisms in Plant Adaptation to Light and Darkness. FRONTIERS IN PLANT SCIENCE 2019; 10:380. [PMID: 31019520 PMCID: PMC6458286 DOI: 10.3389/fpls.2019.00380] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/12/2019] [Indexed: 05/18/2023]
Abstract
Light is probably the most important environmental stimulus for plant development. As sessile organisms, plants have developed regulatory mechanisms that allow the rapid adaptation of their metabolism to changes in light availability. Redox regulation based on disulfide-dithiol exchange constitutes a rapid and reversible post-translational modification, which affects protein conformation and activity. This regulatory mechanism was initially discovered in chloroplasts when it was identified that enzymes of the Calvin-Benson cycle (CBC) are reduced and active during the day and become rapidly inactivated by oxidation in the dark. At present, the large number of redox-sensitive proteins identified in chloroplasts extend redox regulation far beyond the CBC. The classic pathway of redox regulation in chloroplasts establishes that ferredoxin (Fdx) reduced by the photosynthetic electron transport chain fuels reducing equivalents to the large set of thioredoxins (Trxs) of this organelle via the activity of a Fdx-dependent Trx reductase (FTR), hence linking redox regulation to light. In addition, chloroplasts harbor an NADPH-dependent Trx reductase with a joint Trx domain, termed NTRC. The presence in chloroplasts of this NADPH-dependent redox system raises the question of the functional relationship between NTRC and the Fdx-FTR-Trx pathways. Here, we update the current knowledge of these two redox systems focusing on recent evidence showing their functional interrelationship through the action of the thiol-dependent peroxidase, 2-Cys peroxiredoxin (2-Cys Prx). The relevant role of 2-Cys Prxs in chloroplast redox homeostasis suggests that hydrogen peroxide may exert a key function to control the redox state of stromal enzymes. Indeed, recent reports have shown the participation of 2-Cys Prxs in enzyme oxidation in the dark, thus providing an explanation for the long-lasting question of photosynthesis deactivation during the light-dark transition.
Collapse
|
17
|
Lu Y, Yao J. Chloroplasts at the Crossroad of Photosynthesis, Pathogen Infection and Plant Defense. Int J Mol Sci 2018; 19:E3900. [PMID: 30563149 PMCID: PMC6321325 DOI: 10.3390/ijms19123900] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/31/2022] Open
Abstract
Photosynthesis, pathogen infection, and plant defense are three important biological processes that have been investigated separately for decades. Photosynthesis generates ATP, NADPH, and carbohydrates. These resources are utilized for the synthesis of many important compounds, such as primary metabolites, defense-related hormones abscisic acid, ethylene, jasmonic acid, and salicylic acid, and antimicrobial compounds. In plants and algae, photosynthesis and key steps in the synthesis of defense-related hormones occur in chloroplasts. In addition, chloroplasts are major generators of reactive oxygen species and nitric oxide, and a site for calcium signaling. These signaling molecules are essential to plant defense as well. All plants grown naturally are attacked by pathogens. Bacterial pathogens enter host tissues through natural openings or wounds. Upon invasion, bacterial pathogens utilize a combination of different virulence factors to suppress host defense and promote pathogenicity. On the other hand, plants have developed elaborate defense mechanisms to protect themselves from pathogen infections. This review summarizes recent discoveries on defensive roles of signaling molecules made by plants (primarily in their chloroplasts), counteracting roles of chloroplast-targeted effectors and phytotoxins elicited by bacterial pathogens, and how all these molecules crosstalk and regulate photosynthesis, pathogen infection, and plant defense, using chloroplasts as a major battlefield.
Collapse
Affiliation(s)
- Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| | - Jian Yao
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| |
Collapse
|
18
|
Abstract
As fixed organisms, plants are especially affected by changes in their environment and have consequently evolved extensive mechanisms for acclimation and adaptation. Initially considered by-products from aerobic metabolism, reactive oxygen species (ROS) have emerged as major regulatory molecules in plants and their roles in early signaling events initiated by cellular metabolic perturbation and environmental stimuli are now established. Here, we review recent advances in ROS signaling. Compartment-specific and cross-compartmental signaling pathways initiated by the presence of ROS are discussed. Special attention is dedicated to established and hypothetical ROS-sensing events. The roles of ROS in long-distance signaling, immune responses, and plant development are evaluated. Finally, we outline the most challenging contemporary questions in the field of plant ROS biology and the need to further elucidate mechanisms allowing sensing, signaling specificity, and coordination of multiple signals.
Collapse
Affiliation(s)
- Cezary Waszczak
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland;
| | | | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
19
|
Ishiga Y, Watanabe M, Ishiga T, Tohge T, Matsuura T, Ikeda Y, Hoefgen R, Fernie AR, Mysore KS. The SAL-PAP Chloroplast Retrograde Pathway Contributes to Plant Immunity by Regulating Glucosinolate Pathway and Phytohormone Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:829-841. [PMID: 28703028 DOI: 10.1094/mpmi-03-17-0055-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chloroplasts have a crucial role in plant immunity against pathogens. Increasing evidence suggests that phytopathogens target chloroplast homeostasis as a pathogenicity mechanism. In order to regulate the performance of chloroplasts under stress conditions, chloroplasts produce retrograde signals to alter nuclear gene expression. Many signals for the chloroplast retrograde pathway have been identified, including chlorophyll intermediates, reactive oxygen species, and metabolic retrograde signals. Although there is a reasonably good understanding of chloroplast retrograde signaling in plant immunity, some signals are not well-understood. In order to understand the role of chloroplast retrograde signaling in plant immunity, we investigated Arabidopsis chloroplast retrograde signaling mutants in response to pathogen inoculation. sal1 mutants (fry1-2 and alx8) responsible for the SAL1-PAP retrograde signaling pathway showed enhanced disease symptoms not only to the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000 but, also, to the necrotrophic pathogen Pectobacterium carotovorum subsp. carotovorum EC1. Glucosinolate profiles demonstrated the reduced accumulation of aliphatic glucosinolates in the fry1-2 and alx8 mutants compared with the wild-type Col-0 in response to DC3000 infection. In addition, quantification of multiple phytohormones and analyses of their gene expression profiles revealed that both the salicylic acid (SA)- and jasmonic acid (JA)-mediated signaling pathways were down-regulated in the fry1-2 and alx8 mutants. These results suggest that the SAL1-PAP chloroplast retrograde pathway is involved in plant immunity by regulating the SA- and JA-mediated signaling pathways.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- 1 Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Mutsumi Watanabe
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | - Takako Ishiga
- 1 Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- 2 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takayuki Tohge
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | - Takakazu Matsuura
- 4 Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Yoko Ikeda
- 4 Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Rainer Hoefgen
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | - Alisdair R Fernie
- 3 Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany; and
| | | |
Collapse
|
20
|
Nájera VA, González MC, Pérez-Ruiz JM, Cejudo FJ. An event of alternative splicing affects the expression of the NTRC gene, encoding NADPH-thioredoxin reductase C, in seed plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:21-28. [PMID: 28330560 DOI: 10.1016/j.plantsci.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
The NTRC gene encodes a NADPH-dependent thioredoxin reductase with a joint thioredoxin domain, exclusive of photosynthetic organisms. An updated search shows that although most species harbor a single copy of the NTRC gene, two copies were identified in different species of the genus Solanum, Glycine max and the moss Physcomitrella patens. The phylogenetic analysis of NTRCs from different sources produced a tree with the major groups of photosynthetic organisms: cyanobacteria, algae and land plants, indicating the evolutionary success of the NTRC gene among photosynthetic eukaryotes. An event of alternative splicing affecting the expression of the NTRC gene was identified, which is conserved in seed plants but not in algae, bryophytes and lycophytes. The alternative splicing event results in a transcript with premature stop codon, which would produce a truncated form of the enzyme. The standard splicing/alternative splicing (SS/AS) transcripts ratio was higher in photosynthetic tissues from Arabidopsis, Brachypodium and tomato, in line with the higher content of the NTRC polypeptide in these tissues. Moreover, environmental stresses such as cold or high salt affected the SS/AS ratio of the NTRC gene transcripts in Brachypodium seedlings. These results suggest that the alternative splicing of the NTRC gene might be an additional mechanism for modulating the content of NTRC in photosynthetic and non-photosynthetic tissues of seed plants.
Collapse
Affiliation(s)
- Victoria A Nájera
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio 49, 41092, Sevilla, Spain.
| | - María Cruz González
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio 49, 41092, Sevilla, Spain.
| | - Juan Manuel Pérez-Ruiz
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio 49, 41092, Sevilla, Spain.
| | - Francisco Javier Cejudo
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and CSIC, Avda Américo Vespucio 49, 41092, Sevilla, Spain.
| |
Collapse
|
21
|
Ishiga Y, Ishiga T, Ichinose Y, Mysore KS. Pseudomonas syringae Flood-inoculation Method in Arabidopsis. Bio Protoc 2017; 7:e2106. [PMID: 34458435 DOI: 10.21769/bioprotoc.2106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/22/2016] [Accepted: 12/21/2016] [Indexed: 11/02/2022] Open
Abstract
Pseudomonas syringae pv. tomato strain DC3000 (Pto DC3000), which causes bacterial speck disease of tomato, has been used as a model pathogen because of its pathogenicity on Arabidopsis thaliana. Here, we demonstrate a rapid and reliable flood-inoculation method based on young Arabidopsis seedlings grown on one-half strength MS medium. We also describe a method to evaluate the bacterial growth in Arabidopsis.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takako Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuki Ichinose
- Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | | |
Collapse
|
22
|
Hedtmann C, Guo W, Reifschneider E, Heiber I, Hiltscher H, van Buer J, Barsch A, Niehaus K, Rowan B, Lortzing T, Steppuhn A, Baier M. The Plant Immunity Regulating F-Box Protein CPR1 Supports Plastid Function in Absence of Pathogens. FRONTIERS IN PLANT SCIENCE 2017; 8:1650. [PMID: 29018463 PMCID: PMC5615928 DOI: 10.3389/fpls.2017.01650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/08/2017] [Indexed: 05/04/2023]
Abstract
The redox imbalanced 6 mutant (rimb6) of Arabidopsis thaliana was isolated in a genetic screening approach for mutants with defects in chloroplast-to-nucleus redox signaling. It has an atypically low activation status of the 2-Cys peroxiredoxin-A promoter in the seedling stage. rimb6 shows wildtype-like germination, seedling development and greening, but slower growth and reduced biomass in the rosette stage. Mapping of the casual mutation revealed that rimb6 carries a single nucleotide polymorphism in the gene encoding CONSTITUTIVE EXPRESSER OF PATHOGENESIS RELATED (PR) GENES 1, CPR1 (At4g12560), leading to a premature stop codon. CPR1 is known as a repressor of pathogen signaling and regulator of microtubule organization. Allelism of rimb6 and cpr1 revealed a function of CPR1 in chloroplast stress protection. Expression studies in pathogen signaling mutants demonstrated that CPR1-mediated activation of genes for photosynthesis and chloroplast antioxidant protection is, in contrast to activation of pathogen responses, regulated independently from PAD4-controlled salicylic acid (SA) accumulation. We conclude that the support of plastid function is a basic, SA-independent function of CPR1.
Collapse
Affiliation(s)
- Christiane Hedtmann
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
| | - Wei Guo
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
| | - Elena Reifschneider
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
| | - Isabelle Heiber
- Plant Physiology and Biochemistry, Bielefeld UniversityBielefeld, Germany
| | - Heiko Hiltscher
- Plant Sciences, Heinrich Heine University of DüsseldorfDüsseldorf, Germany
| | - Jörn van Buer
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
| | - Aiko Barsch
- Proteom- und Metabolomforschung, Bielefeld UniversityBielefeld, Germany
| | - Karsten Niehaus
- Proteom- und Metabolomforschung, Bielefeld UniversityBielefeld, Germany
| | - Beth Rowan
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingen, Germany
| | - Tobias Lortzing
- Department of Molecular Ecology, Free University of BerlinBerlin, Germany
| | - Anke Steppuhn
- Department of Molecular Ecology, Free University of BerlinBerlin, Germany
| | - Margarete Baier
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
- *Correspondence: Margarete Baier
| |
Collapse
|
23
|
Zhang H, Hong Y, Huang L, Liu S, Tian L, Dai Y, Cao Z, Huang L, Li D, Song F. Virus-Induced Gene Silencing-Based Functional Analyses Revealed the Involvement of Several Putative Trehalose-6-Phosphate Synthase/Phosphatase Genes in Disease Resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 in Tomato. FRONTIERS IN PLANT SCIENCE 2016; 7:1176. [PMID: 27540389 PMCID: PMC4972837 DOI: 10.3389/fpls.2016.01176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/21/2016] [Indexed: 05/24/2023]
Abstract
Trehalose and its metabolism have been demonstrated to play important roles in control of plant growth, development, and stress responses. However, direct genetic evidence supporting the functions of trehalose and its metabolism in defense response against pathogens is lacking. In the present study, genome-wide characterization of putative trehalose-related genes identified 11 SlTPSs for trehalose-6-phosphate synthase, 8 SlTPPs for trehalose-6-phosphate phosphatase and one SlTRE1 for trehalase in tomato genome. Nine SlTPSs, 4 SlTPPs, and SlTRE1 were selected for functional analyses to explore their involvement in tomato disease resistance. Some selected SlTPSs, SlTPPs, and SlTRE1 responded with distinct expression induction patterns to Botrytis cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000 as well as to defense signaling hormones (e.g., salicylic acid, jasmonic acid, and a precursor of ethylene). Virus-induced gene silencing-mediated silencing of SlTPS3, SlTPS4, or SlTPS7 led to deregulation of ROS accumulation and attenuated the expression of defense-related genes upon pathogen infection and thus deteriorated the resistance against B. cinerea or Pst DC3000. By contrast, silencing of SlTPS5 or SlTPP2 led to an increased expression of the defense-related genes upon pathogen infection and conferred an increased resistance against Pst DC3000. Silencing of SlTPS3, SlTPS4, SlTPS5, SlTPS7, or SlTPP2 affected trehalose level in tomato plants with or without infection of B. cinerea or Pst DC3000. These results demonstrate that SlTPS3, SlTPS4, SlTPS5, SlTPS7, and SlTPP2 play roles in resistance against B. cinerea and Pst DC3000, implying the importance of trehalose and tis metabolism in regulation of defense response against pathogens in tomato.
Collapse
Affiliation(s)
- Huijuan Zhang
- College of Life Science, Taizhou UniversityTaizhou, China
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Yongbo Hong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Shixia Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Limei Tian
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Yi Dai
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Zhongye Cao
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Lihong Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang UniversityHangzhou, China
| |
Collapse
|
24
|
Ishiga Y, Ishiga T, Ikeda Y, Matsuura T, Mysore KS. NADPH-dependent thioredoxin reductase C plays a role in nonhost disease resistance against Pseudomonas syringae pathogens by regulating chloroplast-generated reactive oxygen species. PeerJ 2016; 4:e1938. [PMID: 27168965 PMCID: PMC4860297 DOI: 10.7717/peerj.1938] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/24/2016] [Indexed: 12/21/2022] Open
Abstract
Chloroplasts are cytoplasmic organelles for photosynthesis in eukaryotic cells. In addition, recent studies have shown that chloroplasts have a critical role in plant innate immunity against invading pathogens. Hydrogen peroxide is a toxic by-product from photosynthesis, which also functions as a signaling compound in plant innate immunity. Therefore, it is important to regulate the level of hydrogen peroxide in response to pathogens. Chloroplasts maintain components of the redox detoxification system including enzymes such as 2-Cys peroxiredoxins (2-Cys Prxs), and NADPH-dependent thioredoxin reductase C (NTRC). However, the significance of 2-Cys Prxs and NTRC in the molecular basis of nonhost disease resistance is largely unknown. We evaluated the roles of Prxs and NTRC using knock-out mutants of Arabidopsis in response to nonhost Pseudomonas syringae pathogens. Plants lacking functional NTRC showed localized cell death (LCD) accompanied by the elevated accumulation of hydrogen peroxide in response to nonhost pathogens. Interestingly, the Arabidopsis ntrc mutant showed enhanced bacterial growth and disease susceptibility of nonhost pathogens. Furthermore, the expression profiles of the salicylic acid (SA) and jasmonic acid (JA)-mediated signaling pathways and phytohormone analyses including SA and JA revealed that the Arabidopsis ntrc mutant shows elevated JA-mediated signaling pathways in response to nonhost pathogen. These results suggest the critical role of NTRC in plant innate immunity against nonhost P. syringae pathogens.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan; Plant Biology, The Samuel Roberts Noble Foundation, Ardmore, OK, USA
| | - Takako Ishiga
- Plant Biology, The Samuel Roberts Noble Foundation , Ardmore, OK , USA
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University , Kurashiki , Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University , Kurashiki , Japan
| | | |
Collapse
|
25
|
Ishiga Y, Ichinose Y. Pseudomonas syringae pv. tomato OxyR Is Required for Virulence in Tomato and Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:119-31. [PMID: 26554736 DOI: 10.1094/mpmi-09-15-0204-r] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Reactive oxygen species (ROS) have been shown to have a crucial role in plant defense responses and signaling pathways. In addition, ROS also have direct toxicity against pathogens. However, the molecular mechanisms of plant ROS in the direct effects against pathogens is still unclear. To investigate the function of plant ROS in the interactions of plant and bacterial pathogens, we focused on oxyR, encoding an oxidative stress-regulated transcription factor in Pseudomonas syringae pv. tomato DC3000 (DC3000), and generated an ΔoxyR mutant. The DC3000 ΔoxyR mutant showed high sensitivity to oxidative stress in comparison with wild type and the complemented line. The host plants of DC3000, including tomato and Arabidopsis inoculated with the ΔoxyR mutant, clearly showed reduced disease symptoms as well as reduced bacterial populations. Expression profiles of DC3000 genes revealed that OxyR could regulate the expression of genes encoding ROS-detoxifying enzymes, including catalases (KatB and KatG), in response to ROS. We also demonstrated that the expression of katB could be regulated by OxyR during the infection of DC3000 in Arabidopsis. These results suggest that OxyR has an important role in the virulence of DC3000 by regulating the expression of genes related to oxidative stress.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- 1 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yuki Ichinose
- 2 Laboratory of Plant Pathology and Genetic Engineering, Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| |
Collapse
|
26
|
de Torres Zabala M, Zhai B, Jayaraman S, Eleftheriadou G, Winsbury R, Yang R, Truman W, Tang S, Smirnoff N, Grant M. Novel JAZ co-operativity and unexpected JA dynamics underpin Arabidopsis defence responses to Pseudomonas syringae infection. THE NEW PHYTOLOGIST 2016; 209:1120-34. [PMID: 26428397 PMCID: PMC4791170 DOI: 10.1111/nph.13683] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/19/2015] [Indexed: 05/21/2023]
Abstract
Pathogens target phytohormone signalling pathways to promote disease. Plants deploy salicylic acid (SA)-mediated defences against biotrophs. Pathogens antagonize SA immunity by activating jasmonate signalling, for example Pseudomonas syringae pv. tomato DC3000 produces coronatine (COR), a jasmonic acid (JA) mimic. This study found unexpected dynamics between SA, JA and COR and co-operation between JAZ jasmonate repressor proteins during DC3000 infection. We used a systems-based approach involving targeted hormone profiling, high-temporal-resolution micro-array analysis, reverse genetics and mRNA-seq. Unexpectedly, foliar JA did not accumulate until late in the infection process and was higher in leaves challenged with COR-deficient P. syringae or in the more resistant JA receptor mutant coi1. JAZ regulation was complex and COR alone was insufficient to sustainably induce JAZs. JAZs contribute to early basal and subsequent secondary plant defence responses. We showed that JAZ5 and JAZ10 specifically co-operate to restrict COR cytotoxicity and pathogen growth through a complex transcriptional reprogramming that does not involve the basic helix-loop-helix transcription factors MYC2 and related MYC3 and MYC4 previously shown to restrict pathogen growth. mRNA-seq predicts compromised SA signalling in a jaz5/10 mutant and rapid suppression of JA-related components on bacterial infection.
Collapse
Affiliation(s)
- Marta de Torres Zabala
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Bing Zhai
- College of Biological SciencesChina Agricultural UniversityBeijing100093China
| | - Siddharth Jayaraman
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Garoufalia Eleftheriadou
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Rebecca Winsbury
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Ron Yang
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - William Truman
- Department of Plant BiologyUniversity of MinnesotaSaint PaulMN55108USA
| | - Saijung Tang
- College of Biological SciencesChina Agricultural UniversityBeijing100093China
| | - Nicholas Smirnoff
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Murray Grant
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| |
Collapse
|
27
|
Ishiga Y, Rao Uppalapati S, Gill US, Huhman D, Tang Y, Mysore KS. Transcriptomic and metabolomic analyses identify a role for chlorophyll catabolism and phytoalexin during Medicago nonhost resistance against Asian soybean rust. Sci Rep 2015; 5:13061. [PMID: 26267598 PMCID: PMC4533520 DOI: 10.1038/srep13061] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/13/2015] [Indexed: 01/05/2023] Open
Abstract
Asian soybean rust (ASR) caused by Phakopsora pachyrhizi is a devastating foliar disease affecting soybean production worldwide. Understanding nonhost resistance against ASR may provide an avenue to engineer soybean to confer durable resistance against ASR. We characterized a Medicago truncatula-ASR pathosystem to study molecular mechanisms of nonhost resistance. Although urediniospores formed appressoria and penetrated into epidermal cells of M. truncatula, P. pachyrhizi failed to sporulate. Transcriptomic analysis revealed the induction of phenylpropanoid, flavonoid and isoflavonoid metabolic pathway genes involved in the production of phytoalexin medicarpin in M. truncatula upon infection with P. pachyrhizi. Furthermore, genes involved in chlorophyll catabolism were induced during nonhost resistance. We further characterized one of the chlorophyll catabolism genes, Stay-green (SGR), and demonstrated that the M. truncatula sgr mutant and alfalfa SGR-RNAi lines showed hypersensitive-response-like enhanced cell death upon inoculation with P. pachyrhizi. Consistent with transcriptomic analysis, metabolomic analysis also revealed the accumulation of medicarpin and its intermediate metabolites. In vitro assay showed that medicarpin inhibited urediniospore germination and differentiation. In addition, several triterpenoid saponin glycosides accumulated in M. truncatula upon inoculation with P. pachyrhizi. In summary, using multi-omic approaches, we identified a correlation between phytoalexin production and M. truncatula defense responses against ASR.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | | | - Upinder S. Gill
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - David Huhman
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Yuhong Tang
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Kirankumar S. Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| |
Collapse
|
28
|
Delprato ML, Krapp AR, Carrillo N. Green Light to Plant Responses to Pathogens: The Role of Chloroplast Light-Dependent Signaling in Biotic Stress. Photochem Photobiol 2015; 91:1004-11. [DOI: 10.1111/php.12466] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/09/2015] [Indexed: 01/13/2023]
Affiliation(s)
- María Laura Delprato
- División Biología Molecular; Facultad de Ciencias Bioquímicas y Farmacéuticas; Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET); Universidad Nacional de Rosario; Rosario Argentina
| | - Adriana R. Krapp
- División Biología Molecular; Facultad de Ciencias Bioquímicas y Farmacéuticas; Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET); Universidad Nacional de Rosario; Rosario Argentina
| | - Néstor Carrillo
- División Biología Molecular; Facultad de Ciencias Bioquímicas y Farmacéuticas; Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET); Universidad Nacional de Rosario; Rosario Argentina
| |
Collapse
|
29
|
Ishiga Y, Ishiga T, Uppalapati SR, Mysore KS. Jasmonate ZIM-domain (JAZ) protein regulates host and nonhost pathogen-induced cell death in tomato and Nicotiana benthamiana. PLoS One 2013; 8:e75728. [PMID: 24086622 PMCID: PMC3785428 DOI: 10.1371/journal.pone.0075728] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/16/2013] [Indexed: 01/13/2023] Open
Abstract
The nonhost-specific phytotoxin coronatine (COR) produced by several pathovars of Pseudomonas syringae functions as a jasmonic acid-isoleucine (JA-Ile) mimic and contributes to disease development by suppressing plant defense responses and inducing reactive oxygen species in chloroplast. It has been shown that the F-box protein CORONATINE INSENSITIVE 1 (COI1) is the receptor for COR and JA-Ile. JASMONATE ZIM DOMAIN (JAZ) proteins act as negative regulators for JA signaling in Arabidopsis. However, the physiological significance of JAZ proteins in P. syringae disease development and nonhost pathogen-induced hypersensitive response (HR) cell death is not completely understood. In this study, we identified JAZ genes from tomato, a host plant for P. syringae pv. tomato DC3000 (Pst DC3000), and examined their expression profiles in response to COR and pathogens. Most JAZ genes were induced by COR treatment or inoculation with COR-producing Pst DC3000, but not by the COR-defective mutant DB29. Tomato SlJAZ2, SlJAZ6 and SlJAZ7 interacted with SlCOI1 in a COR-dependent manner. Using virus-induced gene silencing (VIGS), we demonstrated that SlJAZ2, SlJAZ6 and SlJAZ7 have no effect on COR-induced chlorosis in tomato and Nicotiana benthamiana. However, SlJAZ2-, SlJAZ6- and SlJAZ7-silenced tomato plants showed enhanced disease-associated cell death to Pst DC3000. Furthermore, we found delayed HR cell death in response to the nonhost pathogen Pst T1 or a pathogen-associated molecular pattern (PAMP), INF1, in SlJAZ2- and SlJAZ6-silenced N. benthamiana. These results suggest that tomato JAZ proteins regulate the progression of cell death during host and nonhost interactions.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
| | - Takako Ishiga
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
| | - Srinivasa Rao Uppalapati
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
| | - Kirankumar S. Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
| |
Collapse
|
30
|
Xin XF, He SY. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:473-98. [PMID: 23725467 DOI: 10.1146/annurev-phyto-082712-102321] [Citation(s) in RCA: 383] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Since the early 1980s, various strains of the gram-negative bacterial pathogen Pseudomonas syringae have been used as models for understanding plant-bacterial interactions. In 1991, a P. syringae pathovar tomato (Pst) strain, DC3000, was reported to infect not only its natural host tomato but also Arabidopsis in the laboratory, a finding that spurred intensive efforts in the subsequent two decades to characterize the molecular mechanisms by which this strain causes disease in plants. Genomic analysis shows that Pst DC3000 carries a large repertoire of potential virulence factors, including proteinaceous effectors that are secreted through the type III secretion system and a polyketide phytotoxin called coronatine, which structurally mimics the plant hormone jasmonate (JA). Study of Pst DC3000 pathogenesis has not only provided several conceptual advances in understanding how a bacterial pathogen employs type III effectors to suppress plant immune responses and promote disease susceptibility but has also facilitated the discovery of the immune function of stomata and key components of JA signaling in plants. The concepts derived from the study of Pst DC3000 pathogenesis may prove useful in understanding pathogenesis mechanisms of other plant pathogens.
Collapse
Affiliation(s)
- Xiu-Fang Xin
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
31
|
Sahu PP, Puranik S, Khan M, Prasad M. Recent advances in tomato functional genomics: utilization of VIGS. PROTOPLASMA 2012; 249:1017-27. [PMID: 22669349 DOI: 10.1007/s00709-012-0421-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/17/2012] [Indexed: 05/07/2023]
Abstract
Tomato unquestionably occupies a significant position in world vegetable production owing to its world-wide consumption. The tomato genome sequencing efforts being recently concluded, it becomes more imperative to recognize important functional genes from this treasure of generated information for improving tomato yield. While much progress has been made in conventional tomato breeding, post-transcriptional gene silencing (PTGS) offers an alternative approach for advancement of tomato functional genomics. In particular, virus-induced gene silencing (VIGS) is increasingly being used as rapid, reliable, and lucrative screening strategy to elucidate gene function. In this review, we focus on the recent advancement made through exploiting the potential of this technique for manipulating different agronomically important traits in tomato by discussing several case studies.
Collapse
Affiliation(s)
- Pranav Pankaj Sahu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110067, India
| | | | | | | |
Collapse
|
32
|
Rodríguez-Herva JJ, González-Melendi P, Cuartas-Lanza R, Antúnez-Lamas M, Río-Alvarez I, Li Z, López-Torrejón G, Díaz I, Del Pozo JC, Chakravarthy S, Collmer A, Rodríguez-Palenzuela P, López-Solanilla E. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses. Cell Microbiol 2012; 14:669-81. [PMID: 22233353 DOI: 10.1111/j.1462-5822.2012.01749.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His(6) -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1(D299A) non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death by DC3000. Our data reveal PsbQ as a contributor to plant immunity responses and a target for pathogen suppression.
Collapse
Affiliation(s)
- José J Rodríguez-Herva
- Centro de Biotecnología y Genómica de Plantas (CBGP). Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria., Parque Científico y Tecnológico de la UPM. Campus de Montegancedo. 28223 Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|