1
|
Long Q, Zhang L, Zhu T, Zhao S, Zou C, Xu L, He Y, Chen S, Zou X. Competitive control of CsNCED1-1 by CsLOB1 and CsbZIP40 triggers susceptibility to citrus canker. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1625-1642. [PMID: 39427329 DOI: 10.1111/tpj.17075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Pustule formation is pivotal for the development of the Xanthomonas citri subsp. citri (Xcc)-induced citrus canker disease (CCD). Although our previous study demonstrated that the exogenous application of abscisic acid (ABA) facilitated pustule formation induced by Xcc, the precise mechanism remains elusive. The 9-cis-epoxycarotenoid dioxygenase (NCED) is a crucial enzyme in ABA biosynthesis. This study explored the role of citrus CsNCED1-1 in CCD resistance through overexpression and RNA interference of CsNCED1-1 in Wanjincheng orange (Citrus sinensis). Our findings indicated that CsNCED1-1 negatively modulated CCD resistance by fostering ABA accumulation, concomitant with an increase in jasmonic acid (JA) and a decrease in salicylic acid (SA). Plants overexpressing CsNCED1-1 displayed shortened leaves with smaller and denser stomata along with irregular and increased palisade cells. CsLOB1 is a known susceptibility gene for CCD, and CsbZIP40 positively influences resistance to this disease. We further confirmed that CsLOB1 promoted and CsbZIP40 suppressed the transcription of CsNCED1-1 by directly binding to the CsNCED1-1 promoter. Notably, CsbZIP40 and CsLOB1 showed a competitive relationship in the regulation of CsNCED1-1 expression, with CsbZIP40 exhibiting greater competitiveness. Overall, our findings highlight that CsNCED1-1 promotes susceptibility to citrus canker by disrupting JA- and SA-mediated defense mechanisms and triggering the proliferation and remodeling of palisade cells, thereby facilitating pathogen colonization and pustule formation. This study offers novel insights into the regulatory mechanisms underlying citrus canker resistance and the role of CsNCED1-1 in citrus.
Collapse
Affiliation(s)
- Qin Long
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Lehuan Zhang
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Tianxiang Zhu
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Shuyang Zhao
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Changyu Zou
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Lanzhen Xu
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Yongrui He
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Shanchun Chen
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| | - Xiuping Zou
- Citrus Research Institute, Southwest University, Chongqing, 400712, People's Republic of China
| |
Collapse
|
2
|
Choudhary A, Senthil-Kumar M. Drought: A context-dependent damper and aggravator of plant diseases. PLANT, CELL & ENVIRONMENT 2024; 47:2109-2126. [PMID: 38409868 DOI: 10.1111/pce.14863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Drought dynamically influences the interactions between plants and pathogens, thereby affecting disease outbreaks. Understanding the intricate mechanistic aspects of the multiscale interactions among plants, pathogens, and the environment-known as the disease triangle-is paramount for enhancing the climate resilience of crop plants. In this review, we systematically compile and comprehensively analyse current knowledge on the influence of drought on the severity of plant diseases. We emphasise that studying these stresses in isolation is not sufficient to predict how plants respond to combined stress from both drought and pathogens. The impact of drought and pathogens on plants is complex and multifaceted, encompassing the activation of antagonistic signalling cascades in response to stress factors. The nature, intensity, and temporality of drought and pathogen stress occurrence significantly influence the outcome of diseases. We delineate the drought-sensitive nodes of plant immunity and highlight the emerging points of crosstalk between drought and defence signalling under combined stress. The limited mechanistic understanding of these interactions is acknowledged as a key research gap in this area. The information synthesised herein will be crucial for crafting strategies for the accurate prediction and mitigation of future crop disease risks, particularly in the context of a changing climate.
Collapse
|
3
|
Jan R, Asaf S, Lubna, Asif S, Kim EG, Jang YH, Kim N, Al-Harrasi A, Lee GS, Kim KM. Enhancing the Expression of the OsF3H Gene in Oryza sativa Leads to the Regulation of Multiple Biosynthetic Pathways and Transcriptomic Changes That Influence Insect Resistance. Int J Mol Sci 2022; 23:15308. [PMID: 36499636 PMCID: PMC9737463 DOI: 10.3390/ijms232315308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The white-backed planthopper (WBPH) is a major pest of rice crops and causes severe loss of yield. We previously developed the WBPH-resistant rice cultivar "OxF3H" by overexpressing the OsF3H gene. Although there was a higher accumulation of the flavonoids kaempferol (Kr) and quercetin (Qu) as well as salicylic acid (SA) in OxF3H transgenic (OsF3H or Trans) plants compared to the wild type (WT), it is still unclear how OsF3H overexpression affects these WBPH resistant-related changes in gene expression in OxF3H plants. In this study, we analyze RNA-seq data from OxF3H and WT at several points (0 h, 3 h, 12 h, and 24 h) after WBPH infection to explain how overall changes in gene expression happen in these two cultivars. RT-qPCR further validated a number of the genes. Results revealed that the highest number of DEGs (4735) between the two genotypes was detected after 24 h of infection. Interestingly, it was found that several of the DEGs between the WT and OsF3H under control conditions were also differentially expressed in OsF3H in response to WBPH infestation. These results indicate that significant differences in gene expression between the "OxF3H" and "WT" exist as the infection time increases. Many of these DEGs were related to oxidoreductase activity, response to stress, salicylic acid biosynthesis, metabolic process, defense response to pathogen, cellular response to toxic substance, and regulation of hormone levels. Moreover, genes involved in salicylic acid (SA) and ethylene (Et) biosynthesis were upregulated in OxF3H plants, while jasmonic acid (JA), brassinosteroid (Br), and abscisic acid (ABA) signaling pathways were found downregulated in OxF3H plants during WBPH infestation. Interestingly, many DEGs related to pathogenesis, such as OsPR1, OsPR1b, OsNPR1, OsNPR3, and OsNPR5, were found to be significantly upregulated in OxF3H plants. Additionally, genes related to the MAPKs pathway and about 30 WRKY genes involved in different pathways were upregulated in OxF3H plants after WBPH infestation. This suggests that overexpression of the OxF3H gene leads to multiple transcriptomic changes and impacts plant hormones and pathogenic-related and secondary-metabolites-related genes, enhancing the plant's resistance to WBPH infestation.
Collapse
Affiliation(s)
- Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 611, Oman
| | - Lubna
- Department of Botany, Garden Campus, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun-Gyeong Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoon-Hee Jang
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nari Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 611, Oman
| | - Gang-Seob Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
4
|
Sun Q, Xu Z, Huang W, Li D, Zeng Q, Chen L, Li B, Zhang E. Integrated metabolome and transcriptome analysis reveals salicylic acid and flavonoid pathways' key roles in cabbage's defense responses to Xanthomonas campestris pv. campestris. FRONTIERS IN PLANT SCIENCE 2022; 13:1005764. [PMID: 36388482 PMCID: PMC9659849 DOI: 10.3389/fpls.2022.1005764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc) is a vascular bacteria pathogen causing black rot in cabbage. Here, the resistance mechanisms of cabbage against Xcc infection were explored by integrated metabolome and transcriptome analysis. Pathogen perception, hormone metabolisms, sugar metabolisms, and phenylpropanoid metabolisms in cabbage were systemically re-programmed at both transcriptional and metabolic levels after Xcc infection. Notably, the salicylic acid (SA) metabolism pathway was highly enriched in resistant lines following Xcc infection, indicating that the SA metabolism pathway may positively regulate the resistance of Xcc. Moreover, we also validated our hypothesis by showing that the flavonoid pathway metabolites chlorogenic acid and caffeic acid could effectively inhibit the growth of Xcc. These findings provide valuable insights and resource datasets for further exploring Xcc-cabbage interactions and help uncover molecular breeding targets for black rot-resistant varieties in cabbage.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baohua Li
- *Correspondence: Baohua Li, ; Enhui Zhang,
| | | |
Collapse
|
5
|
Shaw RK, Shen Y, Wang J, Sheng X, Zhao Z, Yu H, Gu H. Advances in Multi-Omics Approaches for Molecular Breeding of Black Rot Resistance in Brassica oleracea L. FRONTIERS IN PLANT SCIENCE 2021; 12:742553. [PMID: 34938304 PMCID: PMC8687090 DOI: 10.3389/fpls.2021.742553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/20/2021] [Indexed: 06/14/2023]
Abstract
Brassica oleracea is one of the most important species of the Brassicaceae family encompassing several economically important vegetables produced and consumed worldwide. But its sustainability is challenged by a range of pathogens, among which black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is the most serious and destructive seed borne bacterial disease, causing huge yield losses. Host-plant resistance could act as the most effective and efficient solution to curb black rot disease for sustainable production of B. oleracea. Recently, 'omics' technologies have emerged as promising tools to understand the host-pathogen interactions, thereby gaining a deeper insight into the resistance mechanisms. In this review, we have summarized the recent achievements made in the emerging omics technologies to tackle the black rot challenge in B. oleracea. With an integrated approach of the omics technologies such as genomics, proteomics, transcriptomics, and metabolomics, it would allow better understanding of the complex molecular mechanisms underlying black rot resistance. Due to the availability of sequencing data, genomics and transcriptomics have progressed as expected for black rot resistance, however, other omics approaches like proteomics and metabolomics are lagging behind, necessitating a holistic and targeted approach to address the complex questions of Xcc-Brassica interactions. Genomic studies revealed that the black rot resistance is a complex trait and is mostly controlled by quantitative trait locus (QTL) with minor effects. Transcriptomic analysis divulged the genes related to photosynthesis, glucosinolate biosynthesis and catabolism, phenylpropanoid biosynthesis pathway, ROS scavenging, calcium signalling, hormonal synthesis and signalling pathway are being differentially expressed upon Xcc infection. Comparative proteomic analysis in relation to susceptible and/or resistance interactions with Xcc identified the involvement of proteins related to photosynthesis, protein biosynthesis, processing and degradation, energy metabolism, innate immunity, redox homeostasis, and defence response and signalling pathways in Xcc-Brassica interaction. Specifically, most of the studies focused on the regulation of the photosynthesis-related proteins as a resistance response in both early and later stages of infection. Metabolomic studies suggested that glucosinolates (GSLs), especially aliphatic and indolic GSLs, its subsequent hydrolysis products, and defensive metabolites synthesized by jasmonic acid (JA)-mediated phenylpropanoid biosynthesis pathway are involved in disease resistance mechanisms against Xcc in Brassica species. Multi-omics analysis showed that JA signalling pathway is regulating resistance against hemibiotrophic pathogen like Xcc. So, the bonhomie between omics technologies and plant breeding is going to trigger major breakthroughs in the field of crop improvement by developing superior cultivars with broad-spectrum resistance. If multi-omics tools are implemented at the right scale, we may be able to achieve the maximum benefits from the minimum. In this review, we have also discussed the challenges, future prospects, and the way forward in the application of omics technologies to accelerate the breeding of B. oleracea for disease resistance. A deeper insight about the current knowledge on omics can offer promising results in the breeding of high-quality disease-resistant crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
6
|
Bauters L, Stojilković B, Gheysen G. Pathogens pulling the strings: Effectors manipulating salicylic acid and phenylpropanoid biosynthesis in plants. MOLECULAR PLANT PATHOLOGY 2021; 22:1436-1448. [PMID: 34414650 PMCID: PMC8518561 DOI: 10.1111/mpp.13123] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 06/01/2023]
Abstract
During evolution, plants have developed sophisticated ways to cope with different biotic and abiotic stresses. Phytohormones and secondary metabolites are known to play pivotal roles in defence responses against invading pathogens. One of the key hormones involved in plant immunity is salicylic acid (SA), of which the role in plant defence is well established and documented. Plants produce an array of secondary metabolites categorized in different classes, with the phenylpropanoids as major players in plant immunity. Both SA and phenylpropanoids are needed for an effective immune response by the plant. To successfully infect the host, pathogens secrete proteins, called effectors, into the plant tissue to lower defence. Secreted effectors can interfere with several metabolic or signalling pathways in the host to facilitate infection. In this review, we will focus on the different strategies pathogens have developed to affect the levels of SA and phenylpropanoids to increase plant susceptibility.
Collapse
Affiliation(s)
- Lander Bauters
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Boris Stojilković
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Godelieve Gheysen
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
7
|
Nakamura M, Kondo M, Suzuki A, Hirai H, Che FS. Novel Effector RHIFs Identified From Acidovorax avenae Strains N1141 and K1 Play Different Roles in Host and Non-host Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:716738. [PMID: 34421970 PMCID: PMC8377416 DOI: 10.3389/fpls.2021.716738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
Plant pathogenic bacteria inject effectors into plant cells using type III secretion systems (T3SS) to evade plant immune systems and facilitate infection. In contrast, plants have evolved defense systems called effector-triggered immunity (ETI) that can detect such effectors during co-evolution with pathogens. The rice-avirulent strain N1141 of the bacterial pathogen Acidovorax avenae causes rice ETI, including hypersensitive response (HR) cell death in a T3SS-dependent manner, suggesting that strain N1141 expresses an ETI-inducing effector. By screening 6,200 transposon-tagged N1141 mutants based on their ability to induce HR cell death, we identified 17 mutants lacking this ability. Sequence analysis and T3SS-mediated intracellular transport showed that a protein called rice HR cell death inducing factor (RHIF) is a candidate effector protein that causes HR cell death in rice. RHIF-disrupted N1141 lacks the ability to induce HR cell death, whereas RHIF expression in this mutant complemented this ability. In contrast, RHIF from rice-virulent strain K1 functions as an ETI inducer in the non-host plant finger millet. Furthermore, inoculation of rice and finger millet with either RHIF-deficient N1141 or K1 strains showed that a deficiency of RHIF genes in both strains results in decreased infectivity toward each the host plants. Collectively, novel effector RHIFs identified from A. avenae strains N1141 and K1 function in establishing infection in host plants and in ETI induction in non-host plants.
Collapse
Affiliation(s)
- Minami Nakamura
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Machiko Kondo
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Aika Suzuki
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Hiroyuki Hirai
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Fang-Sik Che
- Graduate School of Biosciences, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
- Genome Editing Research Institute, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| |
Collapse
|
8
|
Cao FY, Khan M, Taniguchi M, Mirmiran A, Moeder W, Lumba S, Yoshioka K, Desveaux D. A host-pathogen interactome uncovers phytopathogenic strategies to manipulate plant ABA responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:187-198. [PMID: 31148337 DOI: 10.1111/tpj.14425] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/05/2018] [Accepted: 05/22/2019] [Indexed: 05/21/2023]
Abstract
The phytopathogen Pseudomonas syringae delivers into host cells type III secreted effectors (T3SEs) that promote virulence. One virulence mechanism employed by T3SEs is to target hormone signaling pathways to perturb hormone homeostasis. The phytohormone abscisic acid (ABA) influences interactions between various phytopathogens and their plant hosts, and has been shown to be a target of P. syringae T3SEs. In order to provide insight into how T3SEs manipulate ABA responses, we generated an ABA-T3SE interactome network (ATIN) between P. syringae T3SEs and Arabidopsis proteins encoded by ABA-regulated genes. ATIN consists of 476 yeast-two-hybrid interactions between 97 Arabidopsis ABA-regulated proteins and 56 T3SEs from four pathovars of P. syringae. We demonstrate that T3SE interacting proteins are significantly enriched for proteins associated with transcription. In particular, the ETHYLENE RESPONSIVE FACTOR (ERF) family of transcription factors is highly represented. We show that ERF105 and ERF8 displayed a role in defense against P. syringae, supporting our overall observation that T3SEs of ATIN converge on proteins that influence plant immunity. In addition, we demonstrate that T3SEs that interact with a large number of ABA-regulated proteins can influence ABA responses. One of these T3SEs, HopF3Pph6 , inhibits the function of ERF8, which influences both ABA-responses and plant immunity. These results provide a potential mechanism for how HopF3Pph6 manipulates ABA-responses to promote P. syringae virulence, and also demonstrate the utility of ATIN as a resource to study the ABA-T3SE interface.
Collapse
Affiliation(s)
- Feng Y Cao
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Madiha Khan
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Masatoshi Taniguchi
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Armand Mirmiran
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Wolfgang Moeder
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
| | - Shelley Lumba
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Keiko Yoshioka
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| | - Darrell Desveaux
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks St, Toronto, Ontario, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Xanthomonas translucens commandeers the host rate-limiting step in ABA biosynthesis for disease susceptibility. Proc Natl Acad Sci U S A 2019; 116:20938-20946. [PMID: 31575748 PMCID: PMC6800315 DOI: 10.1073/pnas.1911660116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pathogenic bacteria acquire new virulence strategies for exploiting their hosts. This work reveals that the bacterial wheat pathogen Xanthomonas translucens uses a transcription activation-like (TAL) effector to promote virulence by directly activating the host gene 9-cis-epoxycarotenoid dioxygenase, the rate-limiting enzyme in biosynthesis of abscisic acid that is normally involved in water management within the host plant. Evolutionarily, TAL effectors are a relatively new class of virulence factors limited to a few species of pathogenic bacteria, and this work adds to the diversity of host susceptibility genes that can be exploited by pathogens through TAL effector gene function. Plants are vulnerable to disease through pathogen manipulation of phytohormone levels, which otherwise regulate development, abiotic, and biotic responses. Here, we show that the wheat pathogen Xanthomonas translucens pv. undulosa elevates expression of the host gene encoding 9-cis-epoxycarotenoid dioxygenase (TaNCED-5BS), which catalyzes the rate-limiting step in the biosynthesis of the phytohormone abscisic acid and a component of a major abiotic stress-response pathway, to promote disease susceptibility. Gene induction is mediated by a type III transcription activator-like effector. The induction of TaNCED-5BS results in elevated abscisic acid levels, reduced host transpiration and water loss, enhanced spread of bacteria in infected leaves, and decreased expression of the central defense gene TaNPR1. The results represent an appropriation of host physiology by a bacterial virulence effector.
Collapse
|
10
|
Jones P, Garcia BJ, Furches A, Tuskan GA, Jacobson D. Plant Host-Associated Mechanisms for Microbial Selection. FRONTIERS IN PLANT SCIENCE 2019; 10:862. [PMID: 31333701 PMCID: PMC6618679 DOI: 10.3389/fpls.2019.00862] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/14/2019] [Indexed: 05/18/2023]
Abstract
Plants serve as host to numerous microorganisms. The members of these microbial communities interact among each other and with the plant, and there is increasing evidence to suggest that the microbial community may promote plant growth, improve drought tolerance, facilitate pathogen defense and even assist in environmental remediation. Therefore, it is important to better understand the mechanisms that influence the composition and structure of microbial communities, and what role the host may play in the recruitment and control of its microbiome. In particular, there is a growing body of research to suggest that plant defense systems not only provide a layer of protection against pathogens but may also actively manage the composition of the overall microbiome. In this review, we provide an overview of the current research into mechanisms employed by the plant host to select for and control its microbiome. We specifically review recent research that expands upon the role of keystone microbial species, phytohormones, and abiotic stress, and in how they relate to plant driven dynamic microbial structuring.
Collapse
Affiliation(s)
- Piet Jones
- Oak Ridge National Laboratory, Biosciences Division, The Center for Bioenergy Innovation, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Benjamin J. Garcia
- Oak Ridge National Laboratory, Biosciences Division, The Center for Bioenergy Innovation, Oak Ridge, TN, United States
| | - Anna Furches
- Oak Ridge National Laboratory, Biosciences Division, The Center for Bioenergy Innovation, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Gerald A. Tuskan
- Oak Ridge National Laboratory, Biosciences Division, The Center for Bioenergy Innovation, Oak Ridge, TN, United States
| | - Daniel Jacobson
- Oak Ridge National Laboratory, Biosciences Division, The Center for Bioenergy Innovation, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Knoxville, TN, United States
- *Correspondence: Daniel Jacobson
| |
Collapse
|
11
|
Islam MT, Lee BR, Park SH, La VH, Bae DW, Kim TH. Cultivar Variation in Hormonal Balance Is a Significant Determinant of Disease Susceptibility to Xanthomonas campestris pv. campestris in Brassica napus. FRONTIERS IN PLANT SCIENCE 2017; 8:2121. [PMID: 29312385 PMCID: PMC5732936 DOI: 10.3389/fpls.2017.02121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/29/2017] [Indexed: 05/09/2023]
Abstract
This study aimed to directly elucidate cultivar variation in disease susceptibility and disease responses in relation to hormonal status in the interaction of Brassica napus cultivars and Xanthomonas campestris pv. campestris (Xcc), the causal agent of black rot disease. Fully expanded leaves of six B. napus cultivars (cvs. Capitol, Youngsan, Saturnin, Colosse, Tamra, and Mosa) were inoculated with Xcc. At 14 days post-inoculation with Xcc, cultivar variation in susceptibility or resistance was interpreted with defense responses as estimated by redox status, defensive metabolites, and expression of phenylpropanoid synthesis-related genes in relation to endogenous hormonal status. Disease susceptibility of six cultivars was distinguished by necrotic lesions in the Xcc-inoculated leaves and characterized concurrently based on the higher increase in reactive oxygen species and lipid peroxidation. Among these cultivars, as the susceptibility was higher, the ratios of abscisic acid (ABA)/jasmonic acid (JA) and salicylic acid (SA)/JA tended to increase with enhanced expression of SA signaling regulatory gene NPR1 and transcriptional factor TGA1 and antagonistic suppression of JA-regulated gene PDF 1.2. In the resistant cultivar (cv. Capitol), accumulation of defensive metabolites with enhanced expression of genes involved in flavonoids (chalcone synthase), proanthocyanidins (anthocyanidin reductase), and hydroxycinnamic acids (ferulate-5-hydroxylase) biosynthesis and higher redox status were observed, whereas the opposite results were obtained for susceptible cultivars (cvs. Mosa and Tamra). These results clearly indicate that cultivar variation in susceptibility to infection by Xcc was determined by enhanced alteration of the SA/JA ratio, as a negative regulator of redox status and phenylpropanoid synthesis in the Brasica napus-Xcc pathosystem.
Collapse
Affiliation(s)
- Md. Tabibul Islam
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Bok-Rye Lee
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
- Biotechnology Research Institute, Chonnam National University, Gwangju, South Korea
| | - Sang-Hyun Park
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Van Hien La
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Dong-Won Bae
- Central Instrument Facility, Gyeongsang National University, Jinju, South Korea
| | - Tae-Hwan Kim
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
12
|
Maximiano MR, Oliveira-Neto OB, Franco OL, Mehta A. Validation of an in vitro system for studies of pathogenicity mechanisms in Xanthomonas campestris. FEMS Microbiol Lett 2017; 364:4494362. [PMID: 29040467 DOI: 10.1093/femsle/fnx217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/11/2017] [Indexed: 01/16/2023] Open
Abstract
Several minimal media capable of inducing pathogenicity genes have been used to study plant-pathogen interactions. An in planta assay to study a closer interaction between the bacteria and the host was also developed and has been employed by our group. In order to determine whether growth medium could be improved to better approximate in planta conditions beyond that offered by the defined minimal medium XVM1, we compared the expression of 20 Xanthomonas campestris pv. campestris (Xcc) genes by quantitative reverse transcription - polymerase chain reaction (qRT-PCR) under in vivo (bacteria recovered from the plant) and in vitro (rich medium NYG, minimal medium XVM1 and XVM1 + leaf extract) growth systems. The results showed a higher expression level of the genes in the in planta system when compared to growth in culture media. In planta growth is closest to a real interaction condition and captures the complexity of the plant cell environment; however, this system has some limitations. The main finding of our work is that the addition of plant extract to XVM1 medium results in a gene expression profile that better matches the in planta profile, when compared with the XVM1 medium alone, giving support to the use of plant extract to study pathogenicity mechanisms in Xanthomonas.
Collapse
Affiliation(s)
- Mariana Rocha Maximiano
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, Distrito Federal 70770-917, Brazil.,Programa de Pós-Graduação em Ciências Biológicas (Imunologia e DIP/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, Minas Gerais, 36036-330, Brazil
| | - Osmundo B Oliveira-Neto
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, Distrito Federal 70770-917, Brazil
| | - Octávio L Franco
- Programa de Pós-Graduação em Ciências Biológicas (Imunologia e DIP/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, Minas Gerais, 36036-330, Brazil.,S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Av. Tamandaré, 6000, Campo Grande, Mato Grosso do Sul, 79117-900, Brazil.,Centro de Analises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916N, Modulo C, Sala 219, Brasília, Distrito Federal 70790-100, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, Distrito Federal 70770-917, Brazil
| |
Collapse
|
13
|
Gupta A, Hisano H, Hojo Y, Matsuura T, Ikeda Y, Mori IC, Senthil-Kumar M. Global profiling of phytohormone dynamics during combined drought and pathogen stress in Arabidopsis thaliana reveals ABA and JA as major regulators. Sci Rep 2017; 7:4017. [PMID: 28638069 PMCID: PMC5479852 DOI: 10.1038/s41598-017-03907-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Global transcriptome studies demonstrated the existence of unique plant responses under combined stress which are otherwise not seen during individual stresses. In order to combat combined stress plants use signaling pathways and 'cross talk' mediated by hormones involved in stress and growth related processes. However, interactions among hormones' pathways in combined stressed plants are not yet known. Here we studied dynamics of different hormones under individual and combined drought and pathogen infection in Arabidopsis thaliana by liquid chromatography-mass spectrometry (LC-MS) based profiling. Our results revealed abscisic acid (ABA) and salicylic acid (SA) as key regulators under individual drought and pathogen stress respectively. Under combined drought and host pathogen stress (DH) we observed non-induced levels of ABA with an upsurge in SA and jasmonic acid (JA) concentrations, underscoring their role in basal tolerance against host pathogen. Under a non-host pathogen interaction with drought (DNH) stressed plants, ABA, SA and JA profiles were similar to those under DH or non-host pathogen alone. We propose that plants use SA/JA dependent signaling during DH stress which antagonize ABA biosynthesis and signaling pathways during early stage of stress. The study provides insights into hormone modulation at different time points during combined stress.
Collapse
Affiliation(s)
- Aarti Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, JNU campus, New Delhi, 110067, India
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, JNU campus, New Delhi, 110067, India.
| |
Collapse
|
14
|
Van Gijsegem F, Pédron J, Patrit O, Simond-Côte E, Maia-Grondard A, Pétriacq P, Gonzalez R, Blottière L, Kraepiel Y. Manipulation of ABA Content in Arabidopsis thaliana Modifies Sensitivity and Oxidative Stress Response to Dickeya dadantii and Influences Peroxidase Activity. FRONTIERS IN PLANT SCIENCE 2017; 8:456. [PMID: 28421092 PMCID: PMC5376553 DOI: 10.3389/fpls.2017.00456] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/15/2017] [Indexed: 05/06/2023]
Abstract
The production of reactive oxygen species (ROS) is one of the first defense reactions induced in Arabidopsis in response to infection by the pectinolytic enterobacterium Dickeya dadantii. Previous results also suggest that abscisic acid (ABA) favors D. dadantii multiplication and spread into its hosts. Here, we confirm this hypothesis using ABA-deficient and ABA-overproducer Arabidopsis plants. We investigated the relationships between ABA status and ROS production in Arabidopsis after D. dadantii infection and showed that ABA status modulates the capacity of the plant to produce ROS in response to infection by decreasing the production of class III peroxidases. This mechanism takes place independently of the well-described oxidative stress related to the RBOHD NADPH oxidase. In addition to this weakening of plant defense, ABA content in the plant correlates positively with the production of some bacterial virulence factors during the first stages of infection. Both processes should enhance disease progression in presence of high ABA content. Given that infection increases transcript abundance for the ABA biosynthesis genes AAO3 and ABA3 and triggers ABA accumulation in leaves, we propose that D. dadantii manipulates ABA homeostasis as part of its virulence strategy.
Collapse
Affiliation(s)
- Frédérique Van Gijsegem
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
- Institut d’Ecologie et des Sciences de l’Environnement de Paris, Sorbonne Universités, Université Pierre et Marie Curie – Université Paris 06, Diderot Université Paris 07, Université Paris-Est Créteil – Université Paris 12, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut de Recherche pour le DéveloppementParis, France
| | - Jacques Pédron
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
- Institut d’Ecologie et des Sciences de l’Environnement de Paris, Sorbonne Universités, Université Pierre et Marie Curie – Université Paris 06, Diderot Université Paris 07, Université Paris-Est Créteil – Université Paris 12, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut de Recherche pour le DéveloppementParis, France
| | - Oriane Patrit
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
| | - Elizabeth Simond-Côte
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
| | - Alessandra Maia-Grondard
- Institut Jean-Pierre Bourgin, AgroParisTech, Institut National de la Recherche AgronomiqueVersailles, France
| | - Pierre Pétriacq
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
| | - Raphaël Gonzalez
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
| | - Lydie Blottière
- Institut d’Ecologie et des Sciences de l’Environnement de Paris, Sorbonne Universités, Université Pierre et Marie Curie – Université Paris 06, Diderot Université Paris 07, Université Paris-Est Créteil – Université Paris 12, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut de Recherche pour le DéveloppementParis, France
| | - Yvan Kraepiel
- Interactions Plantes-Pathogènes, AgroParisTech, Institut National de la Recherche Agronomique, Université Pierre et Marie Curie – Université Paris 06Paris, France
- Institut d’Ecologie et des Sciences de l’Environnement de Paris, Sorbonne Universités, Université Pierre et Marie Curie – Université Paris 06, Diderot Université Paris 07, Université Paris-Est Créteil – Université Paris 12, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut de Recherche pour le DéveloppementParis, France
- *Correspondence: Yvan Kraepiel,
| |
Collapse
|
15
|
Serrano I, Audran C, Rivas S. Chloroplasts at work during plant innate immunity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3845-54. [PMID: 26994477 DOI: 10.1093/jxb/erw088] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The major role played by chloroplasts during light harvesting, energy production, redox homeostasis, and retrograde signalling processes has been extensively characterized. Beyond the obvious link between chloroplast functions in primary metabolism and as providers of photosynthesis-derived carbon sources and energy, a growing body of evidence supports a central role for chloroplasts as integrators of environmental signals and, more particularly, as key defence organelles. Here, we review the importance of these organelles as primary sites for the biosynthesis and transmission of pro-defence signals during plant immune responses. In addition, we highlight interorganellar communication as a crucial process for amplification of the immune response. Finally, molecular strategies used by microbes to manipulate, directly or indirectly, the production/function of defence-related signalling molecules and subvert chloroplast-based defences are also discussed.
Collapse
Affiliation(s)
- Irene Serrano
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Corinne Audran
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Susana Rivas
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
16
|
Sivakumaran A, Akinyemi A, Mandon J, Cristescu SM, Hall MA, Harren FJM, Mur LAJ. ABA Suppresses Botrytis cinerea Elicited NO Production in Tomato to Influence H2O2 Generation and Increase Host Susceptibility. FRONTIERS IN PLANT SCIENCE 2016; 7:709. [PMID: 27252724 PMCID: PMC4879331 DOI: 10.3389/fpls.2016.00709] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/09/2016] [Indexed: 05/05/2023]
Abstract
Abscisic acid (ABA) production has emerged a susceptibility factor in plant-pathogen interactions. This work examined the interaction of ABA with nitric oxide (NO) in tomato following challenge with the ABA-synthesizing pathogen, Botrytis cinerea. Trace gas detection using a quantum cascade laser detected NO production within minutes of challenge with B. cinerea whilst photoacoustic laser detection detected ethylene production - an established mediator of defense against this pathogen - occurring after 6 h. Application of the NO generation inhibitor N-Nitro-L-arginine methyl ester (L-NAME) suppressed both NO and ethylene production and resistance against B. cinerea. The tomato mutant sitiens fails to accumulate ABA, shows increased resistance to B. cinerea and we noted exhibited elevated NO and ethylene production. Exogenous application of L-NAME or ABA reduced NO production in sitiens and reduced resistance to B. cinerea. Increased resistance to B. cinerea in sitiens have previously been linked to increased reactive oxygen species (ROS) generation but this was reduced in both L-NAME and ABA-treated sitiens. Taken together, our data suggests that ABA can decreases resistance to B. cinerea via reduction of NO production which also suppresses both ROS and ethylene production.
Collapse
Affiliation(s)
- Anushen Sivakumaran
- Molecular Plant Pathology Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Aderemi Akinyemi
- Molecular Plant Pathology Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Julian Mandon
- Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, Radboud UniversityNijmegen, Netherlands
| | - Simona M. Cristescu
- Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, Radboud UniversityNijmegen, Netherlands
| | - Michael A. Hall
- Molecular Plant Pathology Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Frans J. M. Harren
- Life Science Trace Gas Facility, Molecular and Laser Physics, Institute for Molecules and Materials, Radboud UniversityNijmegen, Netherlands
| | - Luis A. J. Mur
- Molecular Plant Pathology Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| |
Collapse
|
17
|
Macho AP. Subversion of plant cellular functions by bacterial type-III effectors: beyond suppression of immunity. THE NEW PHYTOLOGIST 2016; 210:51-7. [PMID: 26306858 DOI: 10.1111/nph.13605] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/10/2015] [Indexed: 05/20/2023]
Abstract
Most bacterial plant pathogens employ a type-III secretion system to inject type-III effector (T3E) proteins directly inside plant cells. These T3Es manipulate host cellular processes in order to create a permissive niche for bacterial proliferation, allowing development of the disease. An important role of T3Es in plant pathogenic bacteria is the suppression of plant immune responses. However, in recent years, research has uncovered T3E functions different from direct immune suppression, including the modulation of plant hormone signaling, metabolism or organelle function. This insight article discusses T3E functions other than suppression of immunity, which may contribute to the modulation of plant cells in order to promote bacterial survival, nutrient release, and bacterial replication and dissemination.
Collapse
Affiliation(s)
- Alberto P Macho
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
18
|
Tan CM, Li MY, Yang PY, Chang SH, Ho YP, Lin H, Deng WL, Yang JY. Arabidopsis HFR1 is a potential nuclear substrate regulated by the Xanthomonas type III effector XopD(Xcc8004). PLoS One 2015; 10:e0117067. [PMID: 25647296 PMCID: PMC4315394 DOI: 10.1371/journal.pone.0117067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/18/2014] [Indexed: 11/18/2022] Open
Abstract
XopDXcc8004, a type III effector of Xanthomonas campestris pv. campestris (Xcc) 8004, is considered a shorter version of the XopD, which lacks the N-terminal domain. To understand the functions of XopDXcc8004, in planta, a transgenic approach combined with inducible promoter to analyze the effects of XopDXcc8004 in Arabidopsis was done. Here, the expression of XopDXcc8004, in Arabidopsis elicited the accumulation of host defense-response genes. These molecular changes were dependent on salicylic acid and correlated with lesion-mimic phenotypes observed in XVE::XopDXcc8004 transgenic plants. Moreover, XopDXcc8004 was able to desumoylate HFR1, a basic helix-loop-helix transcription factor involved in photomorphogenesis, through SUMO protease activity. Interestingly, the hfr1-201 mutant increased the expression of host defense-response genes and displayed a resistance phenotype to Xcc8004. These data suggest that HFR1 is involved in plant innate immunity and is potentially regulated by XopDXcc8004.
Collapse
Affiliation(s)
- Choon Meng Tan
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National ChungHsing University and Academia Sinica, Taipei, Taiwan
| | - Meng-Ying Li
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Pei-Yun Yang
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Shu Heng Chang
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Yi-Ping Ho
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Hong Lin
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Wen-Ling Deng
- Department of Plant Pathology, National ChungHsing University, Taichung, Taiwan
| | - Jun-Yi Yang
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National ChungHsing University and Academia Sinica, Taipei, Taiwan
- Institute of Biotechnology, National ChungHsing University, Taichung, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, National ChungHsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National ChungHsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
19
|
Kung YJ, Lin PC, Yeh SD, Hong SF, Chua NH, Liu LY, Lin CP, Huang YH, Wu HW, Chen CC, Lin SS. Genetic analyses of the FRNK motif function of Turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:944-55. [PMID: 24804808 DOI: 10.1094/mpmi-04-14-0116-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cross-protection triggered by a mild strain of virus acts as a prophylaxis to prevent subsequent infections by related viruses in plants; however, the underling mechanisms are not fully understood. Through mutagenesis, we isolated a mutant strain of Turnip mosaic virus (TuMV), named Tu-GK, that contains an Arg182Lys substitution in helper component-proteinase (HC-Pro(K)) that confers complete cross-protection against infection by a severe strain of TuMV in Nicotiana benthamiana, Arabidopsis thaliana Col-0, and the Arabidopsis dcl2-4/dcl4-1 double mutant defective in DICER-like ribonuclease (DCL)2/DCL4-mediated silencing. Our analyses showed that HC-Pro(K) loses the ability to interfere with microRNA pathways, although it retains a partial capability for RNA silencing suppression triggered by DCL. We further showed that Tu-GK infection triggers strong salicylic acid (SA)-dependent and SA-independent innate immunity responses. Our data suggest that DCL2/4-dependent and -independent RNA silencing pathways are involved, and may crosstalk with basal innate immunity pathways, in host defense and in cross-protection.
Collapse
|
20
|
De Vleesschauwer D, Xu J, Höfte M. Making sense of hormone-mediated defense networking: from rice to Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:611. [PMID: 25426127 PMCID: PMC4227482 DOI: 10.3389/fpls.2014.00611] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/20/2014] [Indexed: 05/19/2023]
Abstract
Phytohormones are not only essential for plant growth and development but also play central roles in triggering the plant immune signaling network. Historically, research aimed at elucidating the defense-associated role of hormones has tended to focus on the use of experimentally tractable dicot plants such as Arabidopsis thaliana. Emerging from these studies is a picture whereby complex crosstalk and induced hormonal changes mold plant health and disease, with outcomes largely dependent on the lifestyle and infection strategy of invading pathogens. However, recent studies in monocot plants are starting to provide additional important insights into the immune-regulatory roles of hormones, often revealing unique complexities. In this review, we address the latest discoveries dealing with hormone-mediated immunity in rice, one of the most important food crops and an excellent model for molecular genetic studies in monocots. Moreover, we highlight interactions between hormone signaling, rice defense and pathogen virulence, and discuss the differences and similarities with findings in Arabidopsis. Finally, we present a model for hormone defense networking in rice and describe how detailed knowledge of hormone crosstalk mechanisms can be used for engineering durable rice disease resistance.
Collapse
Affiliation(s)
- David De Vleesschauwer
- *Correspondence: David De Vleesschauwer, Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium e-mail:
| | | | | |
Collapse
|
21
|
Xu J, Audenaert K, Hofte M, De Vleesschauwer D. Abscisic Acid Promotes Susceptibility to the Rice Leaf Blight Pathogen Xanthomonas oryzae pv oryzae by Suppressing Salicylic Acid-Mediated Defenses. PLoS One 2013; 8:e67413. [PMID: 23826294 PMCID: PMC3694875 DOI: 10.1371/journal.pone.0067413] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/17/2013] [Indexed: 11/26/2022] Open
Abstract
The plant hormone abscisic acid (ABA) is involved in a wide variety of plant processes, including the initiation of stress-adaptive responses to various environmental cues. Recently, ABA also emerged as a central factor in the regulation and integration of plant immune responses, although little is known about the underlying mechanisms. Aiming to advance our understanding of ABA-modulated disease resistance, we have analyzed the impact, dynamics and interrelationship of ABA and the classic defense hormone salicylic acid (SA) during progression of rice infection by the leaf blight pathogen Xanthomonas oryzae pv. oryzae (Xoo). Consistent with ABA negatively regulating resistance to Xoo, we found that exogenously administered ABA renders rice hypersusceptible to infection, whereas chemical and genetic disruption of ABA biosynthesis and signaling, respectively, led to enhanced Xoo resistance. In addition, we found successful Xoo infection to be associated with extensive reprogramming of ABA biosynthesis and response genes, suggesting that ABA functions as a virulence factor for Xoo. Interestingly, several lines of evidence indicate that this immune-suppressive effect of ABA is due at least in part to suppression of SA-mediated defenses that normally serve to limit pathogen growth. Resistance induced by the ABA biosynthesis inhibitor fluridone, however, appears to operate in a SA-independent manner and is likely due to induction of non-specific physiological stress. Collectively, our findings favor a scenario whereby virulent Xoo hijacks the rice ABA machinery to cause disease and highlight the importance of ABA and its crosstalk with SA in shaping the outcome of rice-Xoo interactions.
Collapse
Affiliation(s)
- Jing Xu
- Laboratory of Phytopathology, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Phytopathology, Ghent University, Ghent, Belgium
- Faculty of Applied Bioscience Engineering, Ghent University College, Ghent, Belgium
| | - Monica Hofte
- Laboratory of Phytopathology, Ghent University, Ghent, Belgium
| | | |
Collapse
|