1
|
Li R, Ma XY, Zhang YJ, Zhang YJ, Zhu H, Shao SN, Zhang DD, Klosterman SJ, Dai XF, Subbarao KV, Chen JY. Genome-wide identification and analysis of a cotton secretome reveals its role in resistance against Verticillium dahliae. BMC Biol 2023; 21:166. [PMID: 37542270 PMCID: PMC10403859 DOI: 10.1186/s12915-023-01650-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND The extracellular space between the cell wall and plasma membrane is a battlefield in plant-pathogen interactions. Within this space, the pathogen employs its secretome to attack the host in a variety of ways, including immunity manipulation. However, the role of the plant secretome is rarely studied for its role in disease resistance. RESULTS Here, we examined the secretome of Verticillium wilt-resistant Gossypium hirsutum cultivar Zhongzhimian No.2 (ZZM2, encoding 95,327 predicted coding sequences) to determine its role in disease resistance against the wilt causal agent, Verticillium dahliae. Bioinformatics-driven analyses showed that the ZZM2 genome encodes 2085 secreted proteins and that these display disequilibrium in their distribution among the chromosomes. The cotton secretome displayed differences in the abundance of certain amino acid residues as compared to the remaining encoded proteins due to the localization of these putative proteins in the extracellular space. The secretome analysis revealed conservation for an allotetraploid genome, which nevertheless exhibited variation among orthologs and comparable unique genes between the two sub-genomes. Secretome annotation strongly suggested its involvement in extracellular stress responses (hydrolase activity, oxidoreductase activity, and extracellular region, etc.), thus contributing to resistance against the V. dahliae infection. Furthermore, the defense response genes (immunity marker NbHIN1, salicylic acid marker NbPR1, and jasmonic acid marker NbLOX4) were activated to varying degrees when Nicotina benthamiana leaves were agro-infiltrated with 28 randomly selected members, suggesting that the secretome plays an important role in the immunity response. Finally, gene silencing assays of 11 members from 13 selected candidates in ZZM2 displayed higher susceptibility to V. dahliae, suggesting that the secretome members confer the Verticillium wilt resistance in cotton. CONCLUSIONS Our data demonstrate that the cotton secretome plays an important role in Verticillium wilt resistance, facilitating the development of the resistance gene markers and increasing the understanding of the mechanisms regulating disease resistance.
Collapse
Affiliation(s)
- Ran Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xi-Yue Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ye-Jing Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - He Zhu
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
- The Cotton Research Center of Liaoning Academy of Agricultural Sciences, National Cotton Industry Technology System Liaohe Comprehensive Experimental Station, Liaoning Provincial Institute of Economic Crops, Liaoyang, 111000, China
| | - Sheng-Nan Shao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, USA
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis c/o United States Agricultural Research Station, Salinas, CA, USA.
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
2
|
Bongiorno G, Di Noia A, Ciancaleoni S, Marconi G, Cassibba V, Albertini E. Development and Application of a Cleaved Amplified Polymorphic Sequence Marker ( Phyto) Linked to the Pc5.1 Locus Conferring Resistance to Phytophthora capsici in Pepper ( Capsicum annuum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2757. [PMID: 37570909 PMCID: PMC10421461 DOI: 10.3390/plants12152757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023]
Abstract
Phytophthora capsici causes destructive disease in several crop species, including pepper (Capsicum annuum L.). Resistance in this species is physiologically and genetically complex due to many P. capsici virulence phenotypes and different QTLs and R genes among the identified resistance sources. Several primer pairs were designed to follow an SNP (G/A) within the CA_011264 locus linked to the Pc5.1 locus. All primer pairs were designed on DNA sequences derived from CaDMR1, a homoserine kinase (HSK), which is a gene candidate responsible for the major QTL on chromosome P5 for resistance to P. capsici. A panel of 69 pepper genotypes from the Southern Seed germplasm collection was used to screen the primer pairs designed. Of these, two primers (Phyto_for_2 and Phyto_rev_2) surrounding the SNP proved successful in discriminating susceptible and resistant genotypes when combined with a restriction enzyme (BtgI). This new marker (called Phyto) worked as expected in all genotypes tested, proving to be an excellent candidate for marker-assisted selection in breeding programs aimed at introgressing the resistant locus into pure lines.
Collapse
Affiliation(s)
- Giacomo Bongiorno
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.B.); (A.D.N.); (S.C.); (G.M.); (V.C.)
| | - Annamaria Di Noia
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.B.); (A.D.N.); (S.C.); (G.M.); (V.C.)
- Progene Seed s.s.a., 97019 Vittoria, Italy
| | - Simona Ciancaleoni
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.B.); (A.D.N.); (S.C.); (G.M.); (V.C.)
| | - Gianpiero Marconi
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.B.); (A.D.N.); (S.C.); (G.M.); (V.C.)
| | - Vincenzo Cassibba
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.B.); (A.D.N.); (S.C.); (G.M.); (V.C.)
- Southern Seed s.r.l., 97019 Vittoria, Italy
| | - Emidio Albertini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121 Perugia, Italy; (G.B.); (A.D.N.); (S.C.); (G.M.); (V.C.)
| |
Collapse
|
3
|
Molinari S, Leonetti P. Inhibition of ROS-Scavenging Enzyme System Is a Key Event in Tomato Genetic Resistance against Root-Knot Nematodes. Int J Mol Sci 2023; 24:ijms24087324. [PMID: 37108485 PMCID: PMC10138560 DOI: 10.3390/ijms24087324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Genetic resistance in plants against incompatible pests is expressed by the activation of an immune system; however, the molecular mechanisms of pest recognition and expression of immunity, although long the object of investigation, are far from being fully understood. The immune response triggered by the infection of soil-borne parasites, such as root-knot nematodes (RKNs), to incompatible resistant tomato plants was studied and compared to the compatible response that occurred when RKNs attacked susceptible plants. In compatible interactions, the invading nematode juveniles were allowed to fully develop and reproduce, whilst that was impeded in incompatible interactions. In crude root extracts, a first assay of reactive oxygen species (ROS)-scavenging enzymatic activity was carried out at the earliest stages of tomato-RKN incompatible interaction. Membrane-bound and soluble CAT, which is the most active enzyme in hydrogen peroxide (H2O2) scavenging, was found to be specifically inhibited in roots of inoculated resistant plants until 5 days after inoculation, with respect to uninoculated plants. The expression of genes encoding for antioxidant enzymes, such as CAT and glutathione peroxidase (GPX), was not always inhibited in roots of nematode-infected resistant tomato. Therefore, the biochemical mechanisms of CAT inhibition were further investigated. Two CAT isozymes were characterized by size exclusion HPLC as a tetrameric form with a molecular weight of 220,000 dalton and its subunits (55,000 dalton). Fractions containing such isozymes were tested by their sensitivity to both salicylic acid (SA) and H2O2. It was evidenced that elevated concentrations of both chemicals led to a partial inactivation of CAT. Elevated concentrations of H2O2 in incompatible interactions have been suggested to be produced by membrane-bound superoxide anion generating, SOD, and isoperoxidase-enhanced activities. Such partial inactivation of CAT has been depicted as one of the earliest key metabolic events, which is specifically associated with tomato immunity to RKNs. Enhanced ROS production and the inhibition of ROS-scavenging systems have been considered to trigger all the metabolic events leading to cell death and tissue necrosis developed around the head of the invading juveniles by which this special type of plant resistance is exerted.
Collapse
Affiliation(s)
- Sergio Molinari
- Bari Unit, Institute for Sustainable Plant Protection IPSP, Department of Biology, Agricultural and Food Sciences, CNR, 70126 Bari, Italy
| | - Paola Leonetti
- Bari Unit, Institute for Sustainable Plant Protection IPSP, Department of Biology, Agricultural and Food Sciences, CNR, 70126 Bari, Italy
| |
Collapse
|
4
|
Tomato Root Colonization by Exogenously Inoculated Arbuscular Mycorrhizal Fungi Induces Resistance against Root-Knot Nematodes in a Dose-Dependent Manner. Int J Mol Sci 2022; 23:ijms23168920. [PMID: 36012177 PMCID: PMC9408505 DOI: 10.3390/ijms23168920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are generally recognized to induce plant growth and prime plants against soil-borne parasites, such as plant parasitic nematodes. However, the effectiveness of commercial formulates containing AMF has been questioned. Increasing amounts per plant of one commercial AMF-containing formulate, reported in the text as Myco, were used to detect the effects on growth of tomato plants and the resistance induced against root-knot nematodes (RKNs) The doses used per plant (0.5, 1.0, 2.0 g, reported as Myco1, Myco2, Myco3, respectively) were soil-drenched to growing potted plants; the effects of such treatments were analyzed both in plants not inoculated or inoculated by Meloidogyne incognita juveniles. Consistent increases in plant weight were apparent as soon as 7 days only after Myco2 treatments. Moreover, only treatments with Myco2 induced a consistent repression of the nematode infection observed in untreated plants. Conversely, treatments with Myco1 and Myco3 did not produce such an early growth improvement; some plant weight increase was observable only at 28 dpt. Accordingly, such Myco doses did not restrict the level of infestation observed in untreated plants. Control of infection was dependent on the dose of Myco provided to plants five days before nematode inoculation. About one month after all Myco treatments, several areas of roots were found to be colonized by AMF, although in Myco2-treated plants, three genes involved in the AMF colonization process (SlCCaMK, SlLYK9, and SlLYK13) were found to be over-expressed already at 7 dpt; over-expression was generally less consistent at 14 and 21 dpt. The expressions of two key genes of plant defense, the hypersensitive cell death inducer PR4b gene and the glutathione peroxidase-encoding GPX gene, were monitored in roots of Myco2-treated plants 3 and 7 days after nematode inoculation. PR4b was over-expressed and GPX was silenced in treated plants with respect to untreated plants. The repressive effect of Myco2 treatment against RKN infection was completely abolished when Myco2 suspensions were autoclaved to sterilization or treated with the potent anti-fungal agent amphotericin B, thus indicating that the biological control agents contained in the commercial formulate were living fungi.
Collapse
|
5
|
Kang WH, Lee J, Koo N, Kwon JS, Park B, Kim YM, Yeom SI. Universal gene co-expression network reveals receptor-like protein genes involved in broad-spectrum resistance in pepper (Capsicum annuum L.). HORTICULTURE RESEARCH 2022; 9:uhab003. [PMID: 35043174 PMCID: PMC8968494 DOI: 10.1093/hr/uhab003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/08/2021] [Indexed: 05/21/2023]
Abstract
Receptor-like proteins (RLPs) on plant cells have been implicated in immune responses and developmental processes. Although hundreds of RLP genes have been identified in plants, only a few RLPs have been functionally characterized in a limited number of plant species. Here, we identified RLPs in the pepper (Capsicum annuum) genome and performed comparative transcriptomics coupled with the analysis of conserved gene co-expression networks (GCNs) to reveal the role of core RLP regulators in pepper-pathogen interactions. A total of 102 RNA-seq datasets of pepper plants infected with four pathogens were used to construct CaRLP-targeted GCNs (CaRLP-GCNs). Resistance-responsive CaRLP-GCNs were merged to construct a universal GCN. Fourteen hub CaRLPs, tightly connected with defense-related gene clusters, were identified in eight modules. Based on the CaRLP-GCNs, we evaluated whether hub CaRLPs in the universal GCN are involved in the biotic stress response. Of the nine hub CaRLPs tested by virus-induced gene silencing, three genes (CaRLP264, CaRLP277, and CaRLP351) showed defense suppression with less hypersensitive response-like cell death in race-specific and non-host resistance response to viruses and bacteria, respectively, and consistently enhanced susceptibility to Ralstonia solanacearum and/or Phytophthora capsici. These data suggest that key CaRLPs are involved in the defense response to multiple biotic stresses and can be used to engineer a plant with broad-spectrum resistance. Together, our data show that generating a universal GCN using comprehensive transcriptome datasets can provide important clues to uncover genes involved in various biological processes.
Collapse
Affiliation(s)
- Won-Hee Kang
- Institute of Agriculture & Life Science, Gyeongsang National University, 501, Jinju-daero, Gajwa-dong, Jinju, 52828,
Republic of Korea
| | - Junesung Lee
- Department of Horticulture, Division of Applied Life Science (BK21 four), Gyeongsang National University, 501, Jinju-daero, Gajwa-dong, Jinju, 52828, Republic of Korea
| | - Namjin Koo
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ji-Su Kwon
- Department of Horticulture, Division of Applied Life Science (BK21 four), Gyeongsang National University, 501, Jinju-daero, Gajwa-dong, Jinju, 52828, Republic of Korea
| | - Boseul Park
- Department of Horticulture, Division of Applied Life Science (BK21 four), Gyeongsang National University, 501, Jinju-daero, Gajwa-dong, Jinju, 52828, Republic of Korea
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Genome Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, 125, Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seon-In Yeom
- Institute of Agriculture & Life Science, Gyeongsang National University, 501, Jinju-daero, Gajwa-dong, Jinju, 52828,
Republic of Korea
- Department of Horticulture, Division of Applied Life Science (BK21 four), Gyeongsang National University, 501, Jinju-daero, Gajwa-dong, Jinju, 52828, Republic of Korea
| |
Collapse
|
6
|
Leaf-to-Whole Plant Spread Bioassay for Pepper and Ralstonia solanacearum Interaction Determines Inheritance of Resistance to Bacterial Wilt for Further Breeding. Int J Mol Sci 2021; 22:ijms22052279. [PMID: 33668965 PMCID: PMC7956186 DOI: 10.3390/ijms22052279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 01/27/2023] Open
Abstract
Bacterial wilt (BW) disease from Ralstonia solanacearum is a serious disease and causes severe yield losses in chili peppers worldwide. Resistant cultivar breeding is the most effective in controlling BW. Thus, a simple and reliable evaluation method is required to assess disease severity and to investigate the inheritance of resistance for further breeding programs. Here, we developed a reliable leaf-to-whole plant spread bioassay for evaluating BW disease and then, using this, determined the inheritance of resistance to R. solanacearum in peppers. Capsicum annuum ‘MC4′ displayed a completely resistant response with fewer disease symptoms, a low level of bacterial cell growth, and significant up-regulations of defense genes in infected leaves compared to those in susceptible ‘Subicho’. We also observed the spreading of wilt symptoms from the leaves to the whole susceptible plant, which denotes the normal BW wilt symptoms, similar to the drenching method. Through this, we optimized the evaluation method of the resistance to BW. Additionally, we performed genetic analysis for resistance inheritance. The parents, F1 and 90 F2 progenies, were evaluated, and the two major complementary genes involved in the BW resistance trait were confirmed. These could provide an accurate evaluation to improve resistant pepper breeding efficiency against BW.
Collapse
|
7
|
Jain A, Singh HB, Das S. Deciphering plant-microbe crosstalk through proteomics studies. Microbiol Res 2020; 242:126590. [PMID: 33022544 DOI: 10.1016/j.micres.2020.126590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022]
Abstract
Proteomic approaches are being used to elucidate a better discretion of interactions occurring between host, pathogen, and/or beneficial microorganisms at the molecular level. Application of proteomic techniques, unravel pathogenicity, stress-related, and antioxidant proteins expressed amid plant-microbe interactions and good information have been generated. It is being perceived that a fine regulation of protein expression takes place for effective pathogen recognition, induction of resistance, and maintenance of host integrity. However, our knowledge of molecular plant-microbe interactions is still incomplete and inconsequential. This review aims to provide insight into numerous ways used for proteomic investigation including peptide/protein identification, separation, and quantification during host defense response. Here, we highlight the current progress in proteomics of defense responses elicited by bacterial, fungal, and viral pathogens in plants along with which the proteome level changes induced by beneficial microorganisms are also discussed.
Collapse
Affiliation(s)
- Akansha Jain
- Division of Plant Biology, Bose Institute Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054, West Bengal, India.
| | - Harikesh Bahadur Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Sampa Das
- Division of Plant Biology, Bose Institute Centenary Campus, P 1/12, CIT Scheme, VII-M, Kankurgachi, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
8
|
Tolosa LN, Zhang Z. The Role of Major Transcription Factors in Solanaceous Food Crops under Different Stress Conditions: Current and Future Perspectives. PLANTS 2020; 9:plants9010056. [PMID: 31906447 PMCID: PMC7020414 DOI: 10.3390/plants9010056] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 01/08/2023]
Abstract
Plant growth, development, and productivity are adversely affected by environmental stresses such as drought (osmotic stress), soil salinity, cold, oxidative stress, irradiation, and diverse diseases. These impacts are of increasing concern in light of climate change. Noticeably, plants have developed their adaptive mechanism to respond to environmental stresses by transcriptional activation of stress-responsive genes. Among the known transcription factors, DoF, WRKY, MYB, NAC, bZIP, ERF, ARF and HSF are those widely associated with abiotic and biotic stress response in plants. Genome-wide identification and characterization analyses of these transcription factors have been almost completed in major solanaceous food crops, emphasizing these transcription factor families which have much potential for the improvement of yield, stress tolerance, reducing marginal land and increase the water use efficiency of solanaceous crops in arid and semi-arid areas where plant demand more water. Most importantly, transcription factors are proteins that play a key role in improving crop yield under water-deficient areas and a place where the severity of pathogen is very high to withstand the ongoing climate change. Therefore, this review highlights the role of major transcription factors in solanaceous crops, current and future perspectives in improving the crop traits towards abiotic and biotic stress tolerance and beyond. We have tried to accentuate the importance of using genome editing molecular technologies like CRISPR/Cas9, Virus-induced gene silencing and some other methods to improve the plant potential in giving yield under unfavorable environmental conditions.
Collapse
Affiliation(s)
- Lemessa Negasa Tolosa
- Key Laboratory of Agricultural Water Resources, Hebie Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Shijiazhuang 050021, China;
- University of Chinese Academy Sciences, Beijing 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences CAS, Beijing 100101, China
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebie Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Shijiazhuang 050021, China;
- University of Chinese Academy Sciences, Beijing 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences CAS, Beijing 100101, China
- Correspondence:
| |
Collapse
|
9
|
Plouznikoff K, Asins MJ, de Boulois HD, Carbonell EA, Declerck S. Genetic analysis of tomato root colonization by arbuscular mycorrhizal fungi. ANNALS OF BOTANY 2019; 124:933-946. [PMID: 30753410 PMCID: PMC7145532 DOI: 10.1093/aob/mcy240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/27/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Arbuscular mycorrhizal fungi (AMF) play an important role in plant nutrition and protection against pests and diseases, as well as in soil structuration, nutrient cycling and, generally speaking, in sustainable agriculture, particularly under drought, salinity and low input or organic agriculture. However, little is known about the genetics of the AMF-plant association in tomato. The aim of this study was the genetic analysis of root AMF colonization in tomato via the detection of the quantitative trait loci (QTLs) involved. METHODS A population of 130 recombinant inbred lines derived from the wild species Solanum pimpinellifolium, genotyped for 1899 segregating, non-redundant single nucleotide polymorphisms (SNPs) from the SolCAP tomato panel, was characterized for intensity, frequency and arbuscular abundance of AMF colonization to detect the QTLs involved and to analyse the genes within their peaks (2-2.6 Mbp). KEY RESULTS The three AMF colonization parameters were highly correlated (0.78-0.97) and the best one, with the highest heritability (0.23), corresponded to colonization intensity. A total of eight QTLs in chromosomes 1, 3, 4, 5, 6, 8, 9 and 10 were detected. Seven of them simultaneously affected intensity and arbuscule abundance. The allele increasing the expression of the trait usually came from the wild parent in accordance with the parental means, and several epistatic interactions were found relevant for breeding purposes. SlCCaMK and SlLYK13 were found among the candidate genes. Carbohydrate transmembrane transporter activity, lipid metabolism and transport, metabolic processes related to nitrogen and phosphate-containing compounds, regulation of carbohydrates, and other biological processes involved in the plant defence were found to be over-represented within the QTL peaks. CONCLUSIONS Intensity is genetically the best morphological measure of tomato root AMF colonization. Wild alleles can improve AMF colonization, and the gene contents of AMF colonization QTLs might be important for explaining the establishment and functioning of the AMF-plant symbiosis.
Collapse
Affiliation(s)
- Katia Plouznikoff
- Université catholique de Louvain, Earth and Life Institute, Mycology, Louvain-la-Neuve, Belgium
| | - Maria J Asins
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | | | - Emilio A Carbonell
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | - Stéphane Declerck
- Université catholique de Louvain, Earth and Life Institute, Mycology, Louvain-la-Neuve, Belgium
| |
Collapse
|
10
|
Chen W, Li Y, Yan R, Xu L, Ren L, Liu F, Zeng L, Yang H, Chi P, Wang X, Chen K, Ma D, Fang X. Identification and Characterization of Plasmodiophora brassicae Primary Infection Effector Candidates that Suppress or Induce Cell Death in Host and Nonhost Plants. PHYTOPATHOLOGY 2019; 109:1689-1697. [PMID: 31188071 DOI: 10.1094/phyto-02-19-0039-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Clubroot caused by Plasmodiophora brassicaeis one of the most important diseases in cruciferous crops. The recognition of P. brassicae by host plants is thought to occur at the primary infection stage, but the underlying mechanism remains unclear. Secretory proteins as effector candidates play critical roles in the recognition of pathogens and the interactions between pathogens and hosts. In this study, 33 P. brassicae secretory proteins expressed during primary infection were identified through transcriptome, secretory protein prediction, and yeast signal sequence trap analyses. Furthermore, the proteins that could suppress or induce cell death were screened through an Agrobacterium-mediated plant virus transient expression system and a protoplast transient expression system. Two secretory proteins, PBCN_002550 and PBCN_005499, were found to be capable of inducing cell death associated with H2O2 accumulation and electrolyte leakage in Nicotiana benthamiana. Moreover, PBCN_002550 could also induce cell death in Chinese cabbage. In addition, 24 of the remaining 31 tested secretory proteins could suppress mouse Bcl-2-associated X protein-induced cell death, and 28 proteins could suppress PBCN_002550-induced cell death.
Collapse
Affiliation(s)
- Wang Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Yan Li
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Ruibin Yan
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Li Xu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Li Ren
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Fan Liu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Lingyi Zeng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Huan Yang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Peng Chi
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Xiuzhen Wang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Kunrong Chen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| | - Dongfang Ma
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, China
| | - Xiaoping Fang
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetics Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
| |
Collapse
|
11
|
Kim N, Kang WH, Lee J, Yeom SI. Development of Clustered Resistance Gene Analogs-Based Markers of Resistance to Phytophthora capsici in Chili Pepper. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1093186. [PMID: 30719438 PMCID: PMC6335758 DOI: 10.1155/2019/1093186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/24/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022]
Abstract
The soil-borne pathogen Phytophthora capsici causes severe destruction of Capsicum spp. Resistance in Capsicum against P. capsici is controlled by numerous minor quantitative trait loci (QTLs) and a consistent major QTL on chromosome 5. Molecular markers on Capsicum chromosome 5 have been developed to identify the predominant genetic contributor to resistance but have achieved little success. In this study, previously reported molecular markers were used to reanalyze the major QTL region on chromosome 5 (6.2 Mbp to 139.2 Mbp). Candidate resistance gene analogs (RGAs) were identified in the extended major QTL region including 14 nucleotide binding site leucine-rich repeats, 3 receptor-like kinases, and 1 receptor-like protein. Sequence comparison of the candidate RGAs was performed between two Capsicum germplasms that are resistant and susceptible, respectively, to P. capsici. 11 novel RGA-based markers were developed through high-resolution melting analysis which were closely linked to the major QTL for P. capsici resistance. Among the markers, CaNB-5480 showed the highest cosegregation rate at 86.9% and can be applied to genotyping of the germplasms that were not amenable by previous markers. With combination of three markers such as CaNB-5480, CaRP-5130 and CaNB-5330 increased genotyping accuracy for 61 Capsicum accessions. These could be useful to facilitate high-throughput germplasm screening and further characterize resistance genes against P. capsici in pepper.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Won-Hee Kang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jundae Lee
- Department of Horticulture, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
12
|
Kang WH, Yeom SI. Genome-wide Identification, Classification, and Expression Analysis of the Receptor-Like Protein Family in Tomato. THE PLANT PATHOLOGY JOURNAL 2018; 34:435-444. [PMID: 30369853 PMCID: PMC6200040 DOI: 10.5423/ppj.oa.02.2018.0032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/21/2018] [Accepted: 06/01/2018] [Indexed: 05/20/2023]
Abstract
Receptor-like proteins (RLPs) are involved in plant development and disease resistance. Only some of the RLPs in tomato (Solanum lycopersicum L.) have been functionally characterized though 176 genes encoding RLPs, which have been identified in the tomato genome. To further understand the role of RLPs in tomato, we performed genome-guided classification and transcriptome analysis of these genes. Phylogenic comparisons revealed that the tomato RLP members could be divided into eight subgroups and that the genes evolved independently compared to similar genes in Arabidopsis. Based on location and physical clustering analyses, we conclude that tomato RLPs likely expanded primarily through tandem duplication events. According to tissue specific RNA-seq data, 71 RLPs were expressed in at least one of the following tissues: root, leaf, bud, flower, or fruit. Several genes had expression patterns that were tissue specific. In addition, tomato RLP expression profiles after infection with different pathogens showed distinguish gene regulations according to disease induction and resistance response as well as infection by bacteria and virus. Notably, Some RLPs were highly and/or unique expressed in susceptible tomato to pathogen, suggesting that the RLP could be involved in disease response, possibly as a host-susceptibility factor. Our study could provide an important clues for further investigations into the function of tomato RLPs involved in developmental and response to pathogens.
Collapse
Affiliation(s)
- Won-Hee Kang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Seon-In Yeom
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828,
Korea
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21 Plus program), Gyeongsang National University, Jinju 52828,
Korea
- Corresponding author: Phone) +82-55-772-1917, FAX) +82-55-772-1919, E-mail)
| |
Collapse
|
13
|
Kim S, Park J, Yeom SI, Kim YM, Seo E, Kim KT, Kim MS, Lee JM, Cheong K, Shin HS, Kim SB, Han K, Lee J, Park M, Lee HA, Lee HY, Lee Y, Oh S, Lee JH, Choi E, Choi E, Lee SE, Jeon J, Kim H, Choi G, Song H, Lee J, Lee SC, Kwon JK, Lee HY, Koo N, Hong Y, Kim RW, Kang WH, Huh JH, Kang BC, Yang TJ, Lee YH, Bennetzen JL, Choi D. New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol 2017; 18:210. [PMID: 29089032 DOI: 10.1007/s13580-019-00157-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/19/2019] [Accepted: 10/06/2017] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Transposable elements are major evolutionary forces which can cause new genome structure and species diversification. The role of transposable elements in the expansion of nucleotide-binding and leucine-rich-repeat proteins (NLRs), the major disease-resistance gene families, has been unexplored in plants. RESULTS We report two high-quality de novo genomes (Capsicum baccatum and C. chinense) and an improved reference genome (C. annuum) for peppers. Dynamic genome rearrangements involving translocations among chromosomes 3, 5, and 9 were detected in comparison between C. baccatum and the two other peppers. The amplification of athila LTR-retrotransposons, members of the gypsy superfamily, led to genome expansion in C. baccatum. In-depth genome-wide comparison of genes and repeats unveiled that the copy numbers of NLRs were greatly increased by LTR-retrotransposon-mediated retroduplication. Moreover, retroduplicated NLRs are abundant across the angiosperms and, in most cases, are lineage-specific. CONCLUSIONS Our study reveals that retroduplication has played key roles for the massive emergence of NLR genes including functional disease-resistance genes in pepper plants.
Collapse
Affiliation(s)
- Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jieun Park
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yong-Min Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Eunyoung Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Myung-Shin Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Je Min Lee
- Department of Horticultural Science, Kyungpook National University, Daegu, 41566, South Korea
| | - Kyeongchae Cheong
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | - Ho-Sub Shin
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Saet-Byul Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Koeun Han
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jundae Lee
- Department of Horticulture, Chonbuk National University, Jeonju, 54896, South Korea
| | - Minkyu Park
- Department of Genetics, University of Georgia, Athens, GA, 30602-7223, USA
| | - Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hye-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Youngsill Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Soohyun Oh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Joo Hyun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Eunhye Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Eunbi Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - So Eui Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jongbum Jeon
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Hyunbin Kim
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Gobong Choi
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - Hyeunjeong Song
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
| | - JunKi Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sang-Choon Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin-Kyung Kwon
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Hea-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Namjin Koo
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Yunji Hong
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Ryan W Kim
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, South Korea
| | - Won-Hee Kang
- Department of Agricultural Plant Science, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jin Hoe Huh
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Vegetable Breeding Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Yong-Hwan Lee
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, 08826, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, South Korea
| | | | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
14
|
Lee HA, Kim S, Kim S, Choi D. Expansion of sesquiterpene biosynthetic gene clusters in pepper confers nonhost resistance to the Irish potato famine pathogen. THE NEW PHYTOLOGIST 2017. [PMID: 28631815 DOI: 10.1111/nph.14637] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chemical barriers contribute to nonhost resistance, which is defined as the resistance of an entire plant species to nonadapted pathogen species. However, the molecular basis of metabolic defense in nonhost resistance remains elusive. Here, we report genetic evidence for the essential role of phytoalexin capsidiol in nonhost resistance of pepper (Capsicum spp.) to potato late blight Phytophthora infestans using transcriptome and genome analyses. Two different genes for capsidiol biosynthesis, 5-epi-aristolochene synthase (EAS) and 5-epi-aristolochene-1,3-dihydroxylase (EAH), belong to multigene families. However, only a subset of EAS/EAH gene family members were highly induced upon P. infestans infection, which was associated with parallel accumulation of capsidiol in P. infestans-infected pepper. Silencing of EAS homologs in pepper resulted in a significant decrease in capsidiol accumulation and allowed the growth of nonadapted P. infestans that is highly sensitive to capsidiol. Phylogenetic and genomic analyses of EAS/EAH multigene families revealed that the emergence of pathogen-inducible EAS/EAH genes in Capsicum-specific genomic regions rendered pepper a nonhost of P. infestans. This study provides insights into evolutionary aspects of nonhost resistance based on the combination of a species-specific phytoalexin and sensitivity of nonadapted pathogens.
Collapse
Affiliation(s)
- Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
- Division of Eco-Friendly Horticulture, Yonam College, Cheonan, 31005, Korea
| | - Sejun Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
15
|
Kang WH, Kim S, Lee HA, Choi D, Yeom SI. Genome-wide analysis of Dof transcription factors reveals functional characteristics during development and response to biotic stresses in pepper. Sci Rep 2016; 6:33332. [PMID: 27653666 PMCID: PMC5032028 DOI: 10.1038/srep33332] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/25/2016] [Indexed: 11/10/2022] Open
Abstract
The DNA-binding with one zinc finger proteins (Dofs) are a plant-specific family of transcription factors. The Dofs are involved in a variety of biological processes such as phytohormone production, seed development, and environmental adaptation. Dofs have been previously identified in several plants, but not in pepper. We identified 33 putative Dof genes in pepper (CaDofs). To gain an overview of the CaDofs, we analyzed phylogenetic relationships, protein motifs, and evolutionary history. We divided the 33 CaDofs, containing 25 motifs, into four major groups distributed on eight chromosomes. We discovered an expansion of the CaDofs dated to a recent duplication event. Segmental duplication that occurred before the speciation of the Solanaceae lineages was predominant among the CaDofs. The global gene-expression profiling of the CaDofs by RNA-seq analysis showed distinct temporal and pathogen-specific variation during development and response to biotic stresses (two TMV strains, PepMoV, and Phytophthora capsici), suggesting functional diversity among the CaDofs. These results will provide the useful clues into the responses of Dofs in biotic stresses and promote a better understanding of their multiple function in pepper and other species.
Collapse
Affiliation(s)
- Won-Hee Kang
- Department of Agricultural Plant Science, Institute of Agriculture &Life Science, Gyeongsang National University, 660-701, South Korea
| | - Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Institute of Agriculture &Life Science, Gyeongsang National University, 660-701, South Korea
| |
Collapse
|
16
|
Jin JH, Zhang HX, Tan JY, Yan MJ, Li DW, Khan A, Gong ZH. A New Ethylene-Responsive Factor CaPTI1 Gene of Pepper (Capsicum annuum L.) Involved in the Regulation of Defense Response to Phytophthora capsici. FRONTIERS IN PLANT SCIENCE 2016; 6:1217. [PMID: 26779241 PMCID: PMC4705296 DOI: 10.3389/fpls.2015.01217] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/17/2015] [Indexed: 05/18/2023]
Abstract
Ethylene-responsive factors (ERF) are usually considered to play diverse roles in plant response to biotic and abiotic stresses. In this study, an ERF gene CaPTI1 was isolated from pepper transcriptome database. CaPTI1 contains an open reading frame (ORF) of 543 bp, which encodes a putative polypeptide of 180 amino acids with a theoretical molecular weight of 20.30 kDa. Results of expression profile showed that CaPTI1 had a highest expression level in roots and this gene could not only response to the infection of Phytophthora capsici and the stresses of cold and drought, but also be induced by the signaling molecule (salicylic acid, Methyl Jasmonate, Ethephon, and hydogen peroxide). Furthermore, virus-induce gene silencing (VIGS) of CaPTI1 in pepper weakened the defense response significantly by reducing the expression of defense related genes CaPR1, CaDEF1 and CaSAR82 and also the root activity. These results suggested that CaPTI1 is involved in the regulation of defense response to P. capsici in pepper.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F UniversityYangling, China
| |
Collapse
|
17
|
Monjil MS, Nozawa T, Shibata Y, Takemoto D, Ojika M, Kawakita K. Methanol extract of mycelia from Phytophthora infestans-induced resistance in potato. C R Biol 2015; 338:185-96. [PMID: 25683100 DOI: 10.1016/j.crvi.2015.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 12/02/2014] [Accepted: 01/14/2015] [Indexed: 01/12/2023]
Abstract
Plants recognize certain microbial compounds as elicitors in their active defence mechanisms. It has been shown that a series of defence reactions are induced in potato plant cells after treatment with water-soluble hyphal wall components prepared from Phytophthora infestans. In this study, a methanol extract from mycelia of P. infestans (MEM), which contains lipophilic compounds, was used as another elicitor for the induction of the defence reactions in potato. MEM elicitor induced reactive oxygen species (ROS), especially O2(-) and H2O2 production, and nitric oxide (NO) generation in potato leaves and suspension-cultured cells. Hypersensitive cell death was detected in potato leaves within 6-8 h after MEM elicitor treatment. The accumulation of phytoalexins was detected by MEM elicitor treatment in potato tubers. In potato suspension-cultured cells, several defence-related genes were induced by MEM elicitors, namely Strboh, Sthsr203J, StPVS3, StPR1, and StNR5, which regulate various defence-related functions. Enhanced resistance against P. infestans was found in MEM-treated potato plants. These results suggested that MEM elicitor is recognized by host and enhances defence activities to produce substances inhibitory to pathogens.
Collapse
Affiliation(s)
| | - Takeshi Nozawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Yusuke Shibata
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Makoto Ojika
- Plant Pathology Laboratory, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Kazuhito Kawakita
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| |
Collapse
|
18
|
Choi HW, Hwang BK. Molecular and cellular control of cell death and defense signaling in pepper. PLANTA 2015; 241:1-27. [PMID: 25252816 DOI: 10.1007/s00425-014-2171-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/11/2014] [Indexed: 06/03/2023]
Abstract
Pepper (Capsicum annuum L.) provides a good experimental system for studying the molecular and functional genomics underlying the ability of plants to defend themselves against microbial pathogens. Cell death is a genetically programmed response that requires specific host cellular factors. Hypersensitive response (HR) is defined as rapid cell death in response to a pathogen attack. Pepper plants respond to pathogen attacks by activating genetically controlled HR- or disease-associated cell death. HR cell death, specifically in incompatible interactions between pepper and Xanthomonas campestris pv. vesicatoria, is mediated by the molecular genetics and biochemical machinery that underlie pathogen-induced cell death in plants. Gene expression profiles during the HR-like cell death response, virus-induced gene silencing and transient and transgenic overexpression approaches are used to isolate and identify HR- or disease-associated cell death genes in pepper plants. Reactive oxygen species, nitric oxide, cytosolic calcium ion and defense-related hormones such as salicylic acid, jasmonic acid, ethylene and abscisic acid are involved in the execution of pathogen-induced cell death in plants. In this review, we summarize recent molecular and cellular studies of the pepper cell death-mediated defense response, highlighting the signaling events of cell death in disease-resistant pepper plants. Comprehensive knowledge and understanding of the cellular functions of pepper cell death response genes will aid the development of novel practical approaches to enhance disease resistance in pepper, thereby helping to secure the future supply of safe and nutritious pepper plants worldwide.
Collapse
Affiliation(s)
- Hyong Woo Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Republic of Korea
| | | |
Collapse
|
19
|
Kim SM, Bae C, Oh SK, Choi D. A pepper (Capsicum annuum L.) metacaspase 9 (Camc9) plays a role in pathogen-induced cell death in plants. MOLECULAR PLANT PATHOLOGY 2013; 14:557-66. [PMID: 23522353 PMCID: PMC6638822 DOI: 10.1111/mpp.12027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Metacaspases, which belong to the cysteine-type C14 protease family, are most structurally similar to mammalian caspases than any other caspase-like protease in plants. Atmc9 (Arabidopsis thaliana metacaspase 9) has a unique domain structure, and distinct biochemical characteristics, such as Ca²⁺ binding, pH, redox status, S-nitrosylation and specific protease inhibitors. However, the biological roles of Atmc9 in plant-pathogen interactions remain largely unknown. In this study, a metacaspase gene present as a single copy in the pepper genome, and sharing 54% amino acid sequence identity with Atmc9, was isolated and named Capsicum annuum metacaspase 9 (Camc9). Camc9 encodes a 318-amino-acid polypeptide with an estimated molecular weight of 34.6 kDa, and shares approximately 40% amino acid sequence identity with known type II metacaspases in plants. Quantitative reverse transcription-polymerase chain reaction analyses revealed that the expression of Camc9 was induced by infections of Xanthomonas campestris pv. vesicatoria race 1 and race 3 and treatment with methyl jasmonate. Suppression of Camc9 expression using virus-induced gene silencing enhanced disease resistance and suppressed cell death symptom development following infection with virulent bacterial pathogens. By contrast, overexpression of Camc9 by transient or stable transformation enhanced disease susceptibility and pathogen-induced cell death by regulation of reactive oxygen species production and defence-related gene expression. These results suggest that Camc9 is a possible member of the metacaspase gene family and plays a role as a positive regulator of pathogen-induced cell death in the plant kingdom.
Collapse
Affiliation(s)
- Su-Min Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, South Korea
| | | | | | | |
Collapse
|
20
|
Zhang YL, Jia QL, Li DW, Wang JE, Yin YX, Gong ZH. Characteristic of the pepper CaRGA2 gene in defense responses against Phytophthora capsici Leonian. Int J Mol Sci 2013; 14:8985-9004. [PMID: 23698759 PMCID: PMC3676768 DOI: 10.3390/ijms14058985] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 11/17/2022] Open
Abstract
The most significant threat to pepper production worldwide is the Phytophthora blight, which is caused by the oomycete pathogen, Phytophthora capsici Leonian. In an effort to help control this disease, we isolated and characterized a P. capsici resistance gene, CaRGA2, from a high resistant pepper (C. annuum CM334) and analyzed its function by the method of real-time PCR and virus-induced gene silencing (VIGS). The CaRGA2 has a full-length cDNA of 3,018 bp with 2,874 bp open reading frame (ORF) and encodes a 957-aa protein. The protein has a predicted molecular weight of 108.6 kDa, and the isoelectric point is 8.106. Quantitative real-time PCR indicated that CaRGA2 expression was rapidly induced by P. capsici. The gene expression pattern was different between the resistant and susceptible cultivars. CaRGA2 was quickly expressed in the resistant cultivar, CM334, and reached to a peak at 24 h after inoculation with P. capsici, five-fold higher than that of susceptible cultivar. Our results suggest that CaRGA2 has a distinct pattern of expression and plays a critical role in P. capsici stress tolerance. When the CaRGA2 gene was silenced via VIGS, the resistance level was clearly suppressed, an observation that was supported by semi-quantitative RT-PCR and detached leave inoculation. VIGS analysis revealed their importance in the surveillance to P. capsici in pepper. Our results support the idea that the CaRGA2 gene may show their response in resistance against P. capsici. These analyses will aid in an effort towards breeding for broad and durable resistance in economically important pepper cultivars.
Collapse
Affiliation(s)
- Ying-Li Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (Y.-L.Z.); (Q.-L.J.); (D.-W.L.); (J.-E.W.); (Y.-X.Y.)
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qing-Li Jia
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (Y.-L.Z.); (Q.-L.J.); (D.-W.L.); (J.-E.W.); (Y.-X.Y.)
| | - Da-Wei Li
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (Y.-L.Z.); (Q.-L.J.); (D.-W.L.); (J.-E.W.); (Y.-X.Y.)
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun-E Wang
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (Y.-L.Z.); (Q.-L.J.); (D.-W.L.); (J.-E.W.); (Y.-X.Y.)
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yan-Xu Yin
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (Y.-L.Z.); (Q.-L.J.); (D.-W.L.); (J.-E.W.); (Y.-X.Y.)
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (Y.-L.Z.); (Q.-L.J.); (D.-W.L.); (J.-E.W.); (Y.-X.Y.)
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
21
|
Krause C, Richter S, Knöll C, Jürgens G. Plant secretome - from cellular process to biological activity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2429-41. [PMID: 23557863 DOI: 10.1016/j.bbapap.2013.03.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/19/2013] [Accepted: 03/25/2013] [Indexed: 10/27/2022]
Abstract
Recent studies suggest that plants secrete a large number of proteins and peptides into the extracellular space. Secreted proteins play a crucial role in stress response, communication and development of organisms. Here we review the current knowledge of the secretome of more than ten plant species, studied in natural conditions or during (a)biotic stress. This review not only deals with the classical secretory route via endoplasmic reticulum and Golgi followed by proteins containing a known N-terminal signal peptide, but also covers new findings about unconventional secretion of leaderless proteins. We describe alternative secretion pathways and the involved compartments like the recently discovered EXPO. The well characterized secreted peptides that function as ligands of receptor proteins exemplify the biological significance and activity of the secretome. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
Affiliation(s)
- Cornelia Krause
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 3, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
22
|
Monjil MS, Shibata Y, Takemoto D, Kawakita K. Bis-aryl methanone compound is a candidate of nitric oxide producing elicitor and induces resistance in Nicotiana benthamiana against Phytophthora infestans. Nitric Oxide 2013; 29:34-45. [PMID: 23291305 DOI: 10.1016/j.niox.2012.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/22/2012] [Accepted: 12/27/2012] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) is important in some physiological responses of plants and plays a crucial role in the regulation of both defense responses and inducing resistance to fungal pathogens. NUBS-4190, a new bis-aryl-methanone compound elicited NO production and defense responses in Nicotiana benthamiana against Phytophthora infestans. NUBS-4190 induced resistance in N. benthamiana to P. infestans, without association of reactive oxygen generation and hypersensitive cell death. Callose induction was reduced in NUBS-4190-treated N. benthamiana leaves after challenge inoculation of P. infestans indicating the penetration resistance. Involvement of pathogenesis-related 1a (NbPR1a) and nitric oxide associated 1 (NbNOA1) genes in the induced resistance to N. benthamiana against P. infestans was found to be associated with resistance. Increased susceptibility in NbPR1a- and NbNOA1-silenced plants correlated with the constitutive accumulation of PR1a transcripts and NO associated salicylic acid. Moreover, reduced NO generation in NOA1 silenced N. benthamiana plants treated with NUBS-4190 indicated that NbNOA1 is involved in NUBS-4190-mediated NO production and is required for defense responses.
Collapse
|
23
|
Kang WH, Seo JK, Chung BN, Kim KH, Kang BC. Helicase domain encoded by Cucumber mosaic virus RNA1 determines systemic infection of Cmr1 in pepper. PLoS One 2012; 7:e43136. [PMID: 22905216 PMCID: PMC3419664 DOI: 10.1371/journal.pone.0043136] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/17/2012] [Indexed: 11/24/2022] Open
Abstract
The Cmr1 gene in peppers confers resistance to Cucumber mosaic virus isolate-P0 (CMV-P0). Cmr1 restricts the systemic spread of CMV strain-Fny (CMV-Fny), whereas this gene cannot block the spread of CMV isolate-P1 (CMV-P1) to the upper leaves, resulting in systemic infection. To identify the virulence determinant of CMV-P1, six reassortant viruses and six chimeric viruses derived from CMV-Fny and CMV-P1 cDNA clones were used. Our results demonstrate that the C-terminus of the helicase domain encoded by CMV-P1 RNA1 determines susceptibility to systemic infection, and that the helicase domain contains six different amino acid substitutions between CMV-Fny and CMV-P1(.) To identify the key amino acids of the helicase domain determining systemic infection with CMV-P1, we then constructed amino acid substitution mutants. Of the mutants tested, amino acid residues at positions 865, 896, 957, and 980 in the 1a protein sequence of CMV-P1 affected the systemic infection. Virus localization studies with GFP-tagged CMV clones and in situ localization of virus RNA revealed that these four amino acid residues together form the movement determinant for CMV-P1 movement from the epidermal cell layer to mesophyll cell layers. Quantitative real-time PCR revealed that CMV-P1 and a chimeric virus with four amino acid residues of CMV-P1 accumulated more genomic RNA in inoculated leaves than did CMV-Fny, indicating that those four amino acids are also involved in virus replication. These results demonstrate that the C-terminal region of the helicase domain is responsible for systemic infection by controlling virus replication and cell-to-cell movement. Whereas four amino acids are responsible for acquiring virulence in CMV-Fny, six amino acid (positions at 865, 896, 901, 957, 980 and 993) substitutions in CMV-P1 were required for complete loss of virulence in 'Bukang'.
Collapse
Affiliation(s)
- Won-Hee Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jang-Kyun Seo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Bong Nam Chung
- National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon, Korea
| | - Kook-Hyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
24
|
Seo E, Yeom SI, Jo S, Jeong H, Kang BC, Choi D. Ectopic expression of Capsicum-specific cell wall protein Capsicum annuum senescence-delaying 1 (CaSD1) delays senescence and induces trichome formation in Nicotiana benthamiana. Mol Cells 2012; 33:415-22. [PMID: 22441673 PMCID: PMC3887797 DOI: 10.1007/s10059-012-0017-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 11/27/2022] Open
Abstract
Secreted proteins are known to have multiple roles in plant development, metabolism, and stress response. In a previous study to understand the roles of secreted proteins, Capsicum annuum secreted proteins (CaS) were isolated by yeast secretion trap. Among the secreted proteins, we further characterized Capsicum annuum senescence-delaying 1 (CaSD1), a gene encoding a novel secreted protein that is present only in the genus Capsicum. The deduced CaSD1 contains multiple repeats of the amino acid sequence KPPIHNHKPTDYDRS. Interestingly, the number of repeats varied among cultivars and species in the Capsicum genus. CaSD1 is constitutively expressed in roots, and Agrobacterium-mediated transient overexpression of CaSD1 in Nicotiana benthamiana leaves resulted in delayed senescence with a dramatically increased number of trichomes and enlarged epidermal cells. Furthermore, senescence- and cell division-related genes were differentially regulated by CaSD1-overexpressing plants. These observations imply that the pepper-specific cell wall protein CaSD1 plays roles in plant growth and development by regulating cell division and differentiation.
Collapse
Affiliation(s)
- Eunyoung Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921,
Korea
| | - Seon-In Yeom
- Department of Plant Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921,
Korea
| | | | - Heejin Jeong
- Department of Plant Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921,
Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921,
Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921,
Korea
| |
Collapse
|
25
|
Yeom SI, Seo E, Oh SK, Kim KW, Choi D. A common plant cell-wall protein HyPRP1 has dual roles as a positive regulator of cell death and a negative regulator of basal defense against pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:755-68. [PMID: 22023393 DOI: 10.1111/j.1365-313x.2011.04828.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although hybrid proline-rich proteins (HyPRPs) are ubiquitous in plants, little is known about their roles other than as cell-wall structural proteins. We identified the gene HyPRP1 in Capsicum annuum and Nicotiana benthamiana, which encodes a protein containing proline-rich domain and eight-cysteine motif (8CM) that is constitutively expressed in various organs, mostly in the root, but is down-regulated upon inoculation with either incompatible or compatible pathogens. Ectopic expression of HyPRP1 in plants accelerated cell death, showing developmental abnormality with down-regulation of ROS-scavenging genes, and enhanced pathogen susceptibility suppressing expression of defense-related genes. Conversely, silencing of HyPRP1 suppressed pathogen-induced cell death, but enhanced disease resistance, with up-regulation of defense-related genes and inhibition of in planta growth of bacterial pathogens independently of signal molecule-mediated pathways. Furthermore, the secreted 8CM was sufficient for these HyPRP1 functions. Together, our results suggest that a common plant cell-wall structural protein, HyPRP1, performs distinct dual roles in positive regulation of cell death and negative regulation of basal defense against pathogen.
Collapse
Affiliation(s)
- Seon-In Yeom
- Department of Plant Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | | | | | | | | |
Collapse
|