1
|
Ali J, Tonğa A, Islam T, Mir S, Mukarram M, Konôpková AS, Chen R. Defense strategies and associated phytohormonal regulation in Brassica plants in response to chewing and sap-sucking insects. FRONTIERS IN PLANT SCIENCE 2024; 15:1376917. [PMID: 38645389 PMCID: PMC11026728 DOI: 10.3389/fpls.2024.1376917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024]
Abstract
Plants have evolved distinct defense strategies in response to a diverse range of chewing and sucking insect herbivory. While chewing insect herbivores, exemplified by caterpillars and beetles, cause visible tissue damage and induce jasmonic acid (JA)-mediated defense responses, sucking insects, such as aphids and whiteflies, delicately tap into the phloem sap and elicit salicylic acid (SA)-mediated defense responses. This review aims to highlight the specificity of defense strategies in Brassica plants and associated underlying molecular mechanisms when challenged by herbivorous insects from different feeding guilds (i.e., chewing and sucking insects). To establish such an understanding in Brassica plants, the typical defense responses were categorized into physical, chemical, and metabolic adjustments. Further, the impact of contrasting feeding patterns on Brassica is discussed in context to unique biochemical and molecular modus operandi that governs the resistance against chewing and sucking insect pests. Grasping these interactions is crucial to developing innovative and targeted pest management approaches to ensure ecosystem sustainability and Brassica productivity.
Collapse
Affiliation(s)
- Jamin Ali
- College of Plant Protection, Jilin Agricultural University, Changchun, China
- School of Life Sciences, Keele University, Newcastle-Under-Lyme, United Kingdom
| | - Adil Tonğa
- Entomology Department, Diyarbakır Plant Protection Research Institute, Diyarbakir, Türkiye
| | - Tarikul Islam
- Department of Entomology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Entomology, Rutgers University, New Brunswick, NJ, United States
| | - Sajad Mir
- Entomology Section, Sher-E-Kashmir University of Agricultural Science and Technology, Kashmir, India
| | - Mohammad Mukarram
- Food and Plant Biology Group, Department of Plant Biology, Universidad de la República, Montevideo, Uruguay
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - Alena Sliacka Konôpková
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
- Institute of Forest Ecology, Slovak Academy of Sciences, Zvolen, Slovakia
| | - Rizhao Chen
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
Rumyantsev SD, Veselova SV, Burkhanova GF, Alekseev VY, Maksimov IV. Bacillus subtilis 26D Triggers Induced Systemic Resistance against Rhopalosiphum padi L. by Regulating the Expression of Genes AGO, DCL and microRNA in Bread Spring Wheat. Microorganisms 2023; 11:2983. [PMID: 38138127 PMCID: PMC10745712 DOI: 10.3390/microorganisms11122983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Bacillus subtilis 26D is a plant growth-promoting endophytic bacteria capable of inducing systemic resistance through the priming mechanism, which includes plant genome reprogramming and the phenomenon of RNA interference (RNAi) and microRNA (miRNAs). The phloem-feeding insect bird cherry-oat aphid Rhopalosiphum padi L. is a serious pest that causes significant damage to crops throughout the world. However, the function of plant miRNAs in the response to aphid infestation remains unclear. The results of this work showed that B. subtilis 26D stimulated aphid resistance in wheat plants, inducing the expression of genes of hormonal signaling pathways ICS, WRKY13, PR1, ACS, EIN3, PR3, and ABI5. In addition, B. subtilis 26D activated the RNAi mechanism and regulated the expression of nine conserved miRNAs through activation of the ethylene, salicylic acid (SA), and abscisic acid (ABA) signaling pathways, which was demonstrated by using treatments with phytohormones. Treatment of plants with SA, ethylene, and ABA acted in a similar manner to B. subtilis 26D on induction of the expression of the AGO4, AGO5 and DCL2, DCL4 genes, as well as the expression of nine conserved miRNAs. Different patterns of miRNA expression were found in aphid-infested plants and in plants treated with B. subtilis 26D or SA, ethylene, and ABA and infested by aphids, suggesting that miRNAs play multiple roles in the plant response to phloem-feeding insects, associated with effects on hormonal signaling pathways, redox metabolism, and the synthesis of secondary metabolites. Our study provides new data to further elucidate the fine mechanisms of bacterial-induced priming. However, further extensive work is needed to fully unravel these mechanisms.
Collapse
Affiliation(s)
| | - Svetlana V. Veselova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 71, 450054 Ufa, Russia; (S.D.R.); (G.F.B.); (V.Y.A.); (I.V.M.)
| | | | | | | |
Collapse
|
3
|
Krieger C, Halter D, Baltenweck R, Cognat V, Boissinot S, Maia-Grondard A, Erdinger M, Bogaert F, Pichon E, Hugueney P, Brault V, Ziegler-Graff V. An Aphid-Transmitted Virus Reduces the Host Plant Response to Its Vector to Promote Its Transmission. PHYTOPATHOLOGY 2023; 113:1745-1760. [PMID: 37885045 DOI: 10.1094/phyto-12-22-0454-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The success of virus transmission by vectors relies on intricate trophic interactions between three partners, the host plant, the virus, and the vector. Despite numerous studies that showed the capacity of plant viruses to manipulate their host plant to their benefit, and potentially of their transmission, the molecular mechanisms sustaining this phenomenon has not yet been extensively analyzed at the molecular level. In this study, we focused on the deregulations induced in Arabidopsis thaliana by an aphid vector that were alleviated when the plants were infected with turnip yellows virus (TuYV), a polerovirus strictly transmitted by aphids in a circulative and nonpropagative mode. By setting up an experimental design mimicking the natural conditions of virus transmission, we analyzed the deregulations in plants infected with TuYV and infested with aphids by a dual transcriptomic and metabolomic approach. We observed that the virus infection alleviated most of the gene deregulations induced by the aphids in a noninfected plant at both time points analyzed (6 and 72 h) with a more pronounced effect at the later time point of infestation. The metabolic composition of the infected and infested plants was altered in a way that could be beneficial for the vector and the virus transmission. Importantly, these substantial modifications observed in infected and infested plants correlated with a higher TuYV transmission efficiency. This study revealed the capacity of TuYV to alter the plant nutritive content and the defense reaction against the aphid vector to promote the viral transmission.
Collapse
Affiliation(s)
- Célia Krieger
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - David Halter
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | | | - Valérie Cognat
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | | | | | - Monique Erdinger
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Florent Bogaert
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Elodie Pichon
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | | | - Véronique Brault
- INRAE, Université de Strasbourg, SVQV UMR1131, 68000 Colmar, France
| | - Véronique Ziegler-Graff
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
4
|
Solis-Ortiz CS, Gonzalez-Bernal J, Kido-Díaz HA, Peña-Uribe CA, López-Bucio JS, López-Bucio J, Guevara-García ÁA, García-Pineda E, Villegas J, Campos-García J, Reyes de La Cruz H. Bacterial cyclodipeptides elicit Arabidopsis thaliana immune responses reducing the pathogenic effects of Pseudomonas aeruginosa PAO1 strains on plant development. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153738. [PMID: 35690030 DOI: 10.1016/j.jplph.2022.153738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Plants being sessile organisms are exposed to various biotic and abiotic factors, thus causing stress. The Pseudomonas aeruginosa bacterium is an opportunistic pathogen for animals, insects, and plants. Direct exposure of Arabidopsis thaliana to the P. aeruginosa PAO1 strain induces plant death by producing a wide variety of virulence factors, which are regulated mainly by quorum sensing systems. Besides virulence factors, P. aeruginosa PAO1 also produces cyclodipeptides (CDPs), which possess auxin-like activity and promote plant growth through activation of the target of the rapamycin (AtTOR) pathway. On the other hand, plant defense mechanisms are regulated through the production of phytohormones, such as salicylic acid (SA) and jasmonic acid (JA), which are induced in response to pathogen-associated molecular patterns (PAMPs), activating defense genes associated with SA and JA such as PATHOGENESIS-RELATED-1 (PR-1) and LIPOXYGENASE2 (LOX2), respectively. PR proteins are suggested to play critical roles in coordinating the Systemic Acquired Resistance (SAR). In contrast, LOX proteins (LOX2, LOX3, and LOX4) have been associated with the production of JA by producing its precursors, oxylipins. The activation of defense mechanisms involves signaling cascades such as Mitogen-Activated Protein Kinases (MAPKs) or the TOR pathway as a switch for re-directing energy towards defense or growth. In this work, we challenged A. thaliana (wild type, mpk6 or mpk3 mutants, and overexpressing TOR) seedlings with P. aeruginosa PAO1 strains to identify the role of bacterial CDPs in the plant immune response. Results showed that the pre-exposure of these Arabidopsis seedlings to CDPs significantly reduced plant infection of the pathogenic P. aeruginosa PAO1 strains, indicating that plants that over-express AtTOR or lack MPK3/MPK6 protein-kinases are more susceptible to the pathogenic effects. In addition, CDPs induced the GUS activity only in the LOX2::GUS plants, indicative of JA-signaling activation. Our findings indicate that the CDPs are molecules that trigger SA-independent and JA-dependent defense responses in A. thaliana; hence, bacterial CDPs may be considered elicitors of the Arabidopsis immune response to pathogens.
Collapse
Affiliation(s)
- Cristhian Said Solis-Ortiz
- Laboratorio de Biotecnología Molecular de Plantas, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - Javier Gonzalez-Bernal
- Laboratorio de Biotecnología Molecular de Plantas, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - Héctor Antonio Kido-Díaz
- Laboratorio de Biotecnología Molecular de Plantas, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - Cesar Artuto Peña-Uribe
- Laboratorio de Biotecnología Molecular de Plantas, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - Jesús Salvador López-Bucio
- Laboratorio de Biotecnología Molecular de Plantas, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - José López-Bucio
- Laboratorio de Biología del Desarrollo Vegetal, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | | | - Ernesto García-Pineda
- Laboratorio de Bioquímica y Biología Molecular de Plantas, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - Javier Villegas
- Laboratorio de Interacción Suelo Planta Microorganismo, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico
| | - Jesús Campos-García
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico.
| | - Homero Reyes de La Cruz
- Laboratorio de Biotecnología Molecular de Plantas, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
5
|
Ullah C, Schmidt A, Reichelt M, Tsai CJ, Gershenzon J. Lack of antagonism between salicylic acid and jasmonate signalling pathways in poplar. THE NEW PHYTOLOGIST 2022; 235:701-717. [PMID: 35489087 DOI: 10.1111/nph.18148] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Salicylic acid (SA) and jasmonic acid (JA) often play distinct roles in plant defence against pathogens. Research from Arabidopsis thaliana has established that SA- and JA-mediated defences are more effective against biotrophs and necrotrophs, respectively. These two hormones often interact antagonistically in response to particular attackers, with the induction of one leading to suppression of the other. Here, we report a contrasting pattern in the woody perennial Populus: positive SA-JA interplay. Using genetically engineered high SA lines of black poplar and wild-type lines after exogenous hormone application, we quantified SA and JA metabolites, signalling gene transcripts, antifungal flavonoids and resistance to rust (Melampsora larici-populina). Salicylic acid and JA metabolites were induced concurrently upon rust infection in poplar genotypes with varying resistance levels. Analysis of SA-hyperaccumulating transgenic poplar lines showed increased jasmonate levels, elevated flavonoid content and enhanced rust resistance, but no discernible reduction in growth. Exogenous application of either SA or JA triggered the accumulation of the other hormone. Expression of pathogenesis-related (PR) genes, frequently used as markers for SA signalling, was not correlated with SA content, but rather activated in proportion to pathogen infection. We conclude that SA and JA pathways interact positively in poplar resulting in the accumulation of flavonoid phytoalexins.
Collapse
Affiliation(s)
- Chhana Ullah
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Chung-Jui Tsai
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
- School of Forestry and Natural Resources, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| |
Collapse
|
6
|
Bera S, Arena GD, Ray S, Flannigan S, Casteel CL. The Potyviral Protein 6K1 Reduces Plant Proteases Activity during Turnip mosaic virus Infection. Viruses 2022; 14:1341. [PMID: 35746814 PMCID: PMC9229136 DOI: 10.3390/v14061341] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 12/25/2022] Open
Abstract
Potyviral genomes encode just 11 major proteins and multifunctionality is associated with most of these proteins at different stages of the virus infection cycle. Some potyviral proteins modulate phytohormones and protein degradation pathways and have either pro- or anti-viral/insect vector functions. Our previous work demonstrated that the potyviral protein 6K1 has an antagonistic effect on vectors when expressed transiently in host plants, suggesting plant defenses are regulated. However, to our knowledge the mechanisms of how 6K1 alters plant defenses and how 6K1 functions are regulated are still limited. Here we show that the 6K1 from Turnip mosaic virus (TuMV) reduces the abundance of transcripts related to jasmonic acid biosynthesis and cysteine protease inhibitors when expressed in Nicotiana benthamiana relative to controls. 6K1 stability increased when cysteine protease activity was inhibited chemically, showing a mechanism to the rapid turnover of 6K1 when expressed in trans. Using RNAseq, qRT-PCR, and enzymatic assays, we demonstrate TuMV reprograms plant protein degradation pathways on the transcriptional level and increases 6K1 stability at later stages in the infection process. Moreover, we show 6K1 decreases plant protease activity in infected plants and increases TuMV accumulation in systemic leaves compared to controls. These results suggest 6K1 has a pro-viral function in addition to the anti-insect vector function we observed previously. Although the host targets of 6K1 and the impacts of 6K1-induced changes in protease activity on insect vectors are still unknown, this study enhances our understanding of the complex interactions occurring between plants, potyviruses, and vectors.
Collapse
Affiliation(s)
- Sayanta Bera
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| | - Gabriella D. Arena
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico de São Paulo, São Paulo 04014-002, Brazil;
| | - Swayamjit Ray
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| | - Sydney Flannigan
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| | - Clare L. Casteel
- School of Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14850, USA; (S.B.); (S.R.); (S.F.)
| |
Collapse
|
7
|
Reactive Oxygen Species Initiate Defence Responses of Potato Photosystem II to Sap-Sucking Insect Feeding. INSECTS 2022; 13:insects13050409. [PMID: 35621745 PMCID: PMC9147889 DOI: 10.3390/insects13050409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Potato is one of the most universally cultivated horticultural crops and is vulnerable to a range of herbivorous insects. One of them is the brown marmorated stink bug, an invasive polyphagous sap-sucking agricultural insect pest that penetrates the phloem to sieve elements and removes sap via a specialized mouthpart, the stylet. By using the chlorophyll fluorescence imaging methodology, we examined potato photosystem II (PSII) photochemistry responses in the area of feeding on the whole leaf area. Highly increased reactive oxygen species (ROS) generation was observed as rapidly as 3 min after feeding to initiate defence responses and can be considered the primary plant defence response mechanism against herbivores. Our experimental results confirmed that chlorophyll fluorescence imaging methodology can detect spatial heterogeneity of PSII efficiency at the whole leaf surface and is a promising tool for investigating plant response mechanisms of sap-sucking insect herbivores. We suggest that PSII responses to insect feeding underlie ROS-dependent signalling. We conclude that the potato PSII response mechanism to sap-sucking insect herbivores is described by the induction of the defence response to reduce herbivory damage, instead of induction of tolerance, through a compensatory photosynthetic response mechanism that is observed after chewing insect feeding. Abstract Potato, Solanum tuberosum L., one of the most commonly cultivated horticultural crops throughout the world, is susceptible to a variety of herbivory insects. In the present study, we evaluated the consequence of feeding by the sap-sucking insect Halyomorpha halys on potato leaf photosynthetic efficiency. By using chlorophyll fluorescence imaging methodology, we examined photosystem II (PSII) photochemistry in terms of feeding and at the whole leaf area. The role of reactive oxygen species (ROS) in potato’s defence response mechanism immediately after feeding was also assessed. Even 3 min after feeding, increased ROS generation was observed to diffuse through the leaf central vein, probably to act as a long-distance signalling molecule. The proportion of absorbed energy being used in photochemistry (ΦPSII) at the whole leaf level, after 20 min of feeding, was reduced by 8% compared to before feeding due to the decreased number of open PSII reaction centres (qp). After 90 min of feeding, ΦPSII decreased by 46% at the whole leaf level. Meanwhile, at the feeding zones, which were located mainly in the proximity of the leaf midrib, ΦPSII was lower than 85%, with a concurrent increase in singlet-excited oxygen (1O2) generation, which is considered to be harmful. However, the photoprotective mechanism (ΦNPQ), which was highly induced 90 min after feeding, was efficient to compensate for the decrease in the quantum yield of PSII photochemistry (ΦPSII). Therefore, the quantum yield of non-regulated energy loss in PSII (ΦNO), which represents 1O2 generation, remained unaffected at the whole leaf level. We suggest that the potato PSII response to sap-sucking insect feeding underlies the ROS-dependent signalling that occurs immediately and initiates a photoprotective PSII defence response to reduce herbivory damage. A controlled ROS burst can be considered the primary plant defence response mechanism to herbivores.
Collapse
|