1
|
Zaheer U, Munir F, Salum YM, He W. Function and regulation of plant ARGONAUTE proteins in response to environmental challenges: a review. PeerJ 2024; 12:e17115. [PMID: 38560454 PMCID: PMC10979746 DOI: 10.7717/peerj.17115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Environmental stresses diversely affect multiple processes related to the growth, development, and yield of many crops worldwide. In response, plants have developed numerous sophisticated defense mechanisms at the cellular and subcellular levels to react and adapt to biotic and abiotic stressors. RNA silencing, which is an innate immune mechanism, mediates sequence-specific gene expression regulation in higher eukaryotes. ARGONAUTE (AGO) proteins are essential components of the RNA-induced silencing complex (RISC). They bind to small noncoding RNAs (sRNAs) and target complementary RNAs, causing translational repression or triggering endonucleolytic cleavage pathways. In this review, we aim to illustrate the recently published molecular functions, regulatory mechanisms, and biological roles of AGO family proteins in model plants and cash crops, especially in the defense against diverse biotic and abiotic stresses, which could be helpful in crop improvement and stress tolerance in various plants.
Collapse
Affiliation(s)
- Uroosa Zaheer
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Faisal Munir
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yussuf Mohamed Salum
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Weiyi He
- Plant Protection, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Plant Protection, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Miloro F, Kis A, Havelda Z, Dalmadi Á. Barley AGO4 proteins show overlapping functionality with distinct small RNA-binding properties in heterologous complementation. PLANT CELL REPORTS 2024; 43:96. [PMID: 38480545 PMCID: PMC10937801 DOI: 10.1007/s00299-024-03177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
KEY MESSAGE Barley AGO4 proteins complement expressional changes of epigenetically regulated genes in Arabidopsis ago4-3 mutant and show a distinct affinity for the 5' terminal nucleotide of small RNAs, demonstrating functional conservation and divergence. The function of Argonaute 4 (AGO4) in Arabidopsis thaliana has been extensively characterized; however, its role in monocots, which have large genomes abundantly supplemented with transposable elements (TEs), remains elusive. The study of barley AGO4 proteins can provide insights into the conserved aspects of RNA-directed DNA methylation (RdDM) and could also have further applications in the field of epigenetics or crop improvement. Bioinformatic analysis of RNA sequencing data identified two active AGO4 genes in barley, HvAGO4a and HvAGO4b. These genes function similar to AtAGO4 in an Arabidopsis heterologous complementation system, primarily binding to 24-nucleotide long small RNAs (sRNAs) and triggering methylation at specific target loci. Like AtAGO4, HvAGO4B exhibits a preference for binding sRNAs with 5' adenine residue, while also accepting 5' guanine, uracil, and cytosine residues. In contrast, HvAGO4A selectively binds only sRNAs with a 5' adenine residue. The diverse binding capacity of barley AGO4 proteins is reflected in TE-derived sRNAs and in their varying abundance. Both barley AGO4 proteins effectively restore the levels of extrachromosomal DNA and transcript abundancy of the heat-activated ONSEN retrotransposon to those observed in wild-type Arabidopsis plants. Our study provides insight into the distinct binding specificities and involvement in TE regulation of barley AGO4 proteins in Arabidopsis by heterologous complementation.
Collapse
Affiliation(s)
- Fabio Miloro
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary
| | - András Kis
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
| | - Zoltán Havelda
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary
| | - Ágnes Dalmadi
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary.
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary.
| |
Collapse
|
3
|
Chen L, Liu Y, Li S, Ji Y, Sun F, Zou B. DICER-LIKE2 Plays a Crucial Role in Rice Stripe Virus Coat Protein-Mediated Virus Resistance in Arabidopsis. Viruses 2023; 15:2239. [PMID: 38005916 PMCID: PMC10675384 DOI: 10.3390/v15112239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Virus coat protein (CP)-mediated resistance is considered an effective antiviral defense strategy that has been used to develop robust resistance to viral infection. Rice stripe virus (RSV) causes significant losses in rice production in eastern Asia. We previously showed that the overexpression of RSV CP in Arabidopsis plants results in immunity to RSV infection, using the RSV-Arabidopsis pathosystem, and this CP-mediated viral resistance depends on the function of DCLs and is mostly involved in RNA silencing. However, the special role of DCLs in producing t-siRNAs in CP transgenic Arabidopsis plants is not fully understood. In this study, we show that RSV CP transgenic Arabidopsis plants with the dcl2 mutant background exhibited similar virus susceptibility to non-transgenic plants and were accompanied by the absence of transgene-derived small interfering RNAs (t-siRNAs) from the CP region. The dcl2 mutation eliminated the accumulation of CP-derived t-siRNAs, including those generated by other DCL enzymes. In contrast, we also developed RSV CP transgenic Arabidopsis plants with the dcl4 mutant background, and these CP transgenic plants showed immunity to virus infection and accumulated comparable amounts of CP-derived t-siRNAs to CP transgenic Arabidopsis plants with the wild-type background except for a significant increase in the abundance of 22 nt t-siRNA reads. Overall, our data indicate that DCL2 plays an essential, as opposed to redundant, role in CP-derived t-siRNA production and induces virus resistance in RSV CP transgenic Arabidopsis plants.
Collapse
Affiliation(s)
- Li Chen
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China;
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (S.L.); (Y.J.)
| | - Yanan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (S.L.); (Y.J.)
| | - Shuo Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (S.L.); (Y.J.)
| | - Yinghua Ji
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (S.L.); (Y.J.)
| | - Feng Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (S.L.); (Y.J.)
| | - Baohong Zou
- The State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
4
|
Silva-Martins G, Roussin-Léveillée C, Bolaji A, Veerapen VP, Moffett P. A Jasmonic Acid-Related Mechanism Affects ARGONAUTE5 Expression and Antiviral Defense Against Potato Virus X in Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:425-433. [PMID: 36853196 DOI: 10.1094/mpmi-11-22-0224-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
During virus infection, Argonaute (AGO) proteins bind to Dicer-produced virus small interfering RNAs and target viral RNA based on sequence complementarity, thereby limiting virus proliferation. The Arabidopsis AGO2 protein is important for resistance to multiple viruses, including potato virus X (PVX). In addition, AGO5 is important in systemic defense against PVX. Normally AGO5 is expressed only in reproductive tissues, and its induction by virus infection is thought to be important for its participation in antiviral defense. However, it is unclear what mechanisms induce AGO5 expression in response to virus infection. Here, we show that dde2-2, a mutant compromised in jasmonic acid (JA) biosynthesis, displays constitutive upregulation of AGO5. This mutant also showed increased resistance to PVX and this resistance was dependent on a functional AGO5 gene. Furthermore, methyl jasmonate treatment ablated AGO5 expression in leaves during virus infection and resulted in increased susceptibility to virus. Our results further support a role for AGO5 in antiviral RNA silencing and a negative regulation by JA, a plant hormone associated with defense against plant-feeding arthropods, which are often the vectors of plant viruses. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Guilherme Silva-Martins
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | | | - Ayooluwa Bolaji
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Varusha Pillay Veerapen
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|
5
|
Vermeulen A, Takken FLW, Sánchez-Camargo VA. Translation Arrest: A Key Player in Plant Antiviral Response. Genes (Basel) 2023; 14:1293. [PMID: 37372472 DOI: 10.3390/genes14061293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Plants evolved several mechanisms to protect themselves against viruses. Besides recessive resistance, where compatible host factors required for viral proliferation are absent or incompatible, there are (at least) two types of inducible antiviral immunity: RNA silencing (RNAi) and immune responses mounted upon activation of nucleotide-binding domain leucine-rich repeat (NLR) receptors. RNAi is associated with viral symptom recovery through translational repression and transcript degradation following recognition of viral double-stranded RNA produced during infection. NLR-mediated immunity is induced upon (in)direct recognition of a viral protein by an NLR receptor, triggering either a hypersensitive response (HR) or an extreme resistance response (ER). During ER, host cell death is not apparent, and it has been proposed that this resistance is mediated by a translational arrest (TA) of viral transcripts. Recent research indicates that translational repression plays a crucial role in plant antiviral resistance. This paper reviews current knowledge on viral translational repression during viral recovery and NLR-mediated immunity. Our findings are summarized in a model detailing the pathways and processes leading to translational arrest of plant viruses. This model can serve as a framework to formulate hypotheses on how TA halts viral replication, inspiring new leads for the development of antiviral resistance in crops.
Collapse
Affiliation(s)
- Annemarie Vermeulen
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Frank L W Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Victor A Sánchez-Camargo
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
6
|
Komatsu K, Hammond J. Plantago asiatica mosaic virus: An emerging plant virus causing necrosis in lilies and a new model RNA virus for molecular research. MOLECULAR PLANT PATHOLOGY 2022; 23:1401-1414. [PMID: 35856603 PMCID: PMC9452766 DOI: 10.1111/mpp.13243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/01/2023]
Abstract
TAXONOMY Plantago asiatica mosaic virus belongs to the genus Potexvirus in the family Alphaflexiviridae of the order Tymovirales. VIRION AND GENOME PROPERTIES Plantago asiatica mosaic virus (PlAMV) has flexuous virions of approximately 490-530 nm in length and 10-15 nm in width. The genome of PlAMV consists of a single-stranded, positive-sense RNA of approximately 6.13 kb. It contains five open reading frames (ORFs 1-5), encoding a putative viral polymerase (RdRp), movement proteins (triple gene block proteins, TGBp1-3), and coat protein (CP), respectively. HOST RANGE PlAMV has an exceptionally wide host range and has been isolated from various wild plants, including Plantago asiatica, Nandina domestica, Rehmannia glutinosa, and other weed plants. Experimentally PlAMV can infect many plant species including Nicotiana benthamiana and Arabidopsis thaliana. It also infects ornamental lilies and frequently causes severe necrotic symptoms. However, host range varies depending on isolates, which show significant biological diversity within the species. GENOME DIVERSITY PlAMV can be separated into five clades based on phylogenetic analyses; nucleotide identities are significantly low between isolates in the different clades. TRANSMISSION PlAMV is not reported to be transmitted by biological vectors. Virions of PlAMV are quite stable and it can be transmitted efficiently by mechanical contact. DISEASE SYMPTOMS PlAMV causes red-rusted systemic necrosis in ornamental lilies, but it shows much weaker, if any, symptoms in wild plants such as P. asiatica. CONTROL Control of the disease caused by PlAMV is based mainly on rapid diagnosis and elimination of the infected bulbs or plants.
Collapse
Affiliation(s)
- Ken Komatsu
- Graduate School of AgricultureTokyo University of Agriculture and Technology (TUAT)FuchuJapan
| | - John Hammond
- US Department of AgricultureAgricultural Research Service (USDA‐ARS)BeltsvilleMarylandUSA
| |
Collapse
|
7
|
Abstract
Adaptive antiviral immunity in plants is an RNA-based mechanism in which small RNAs derived from both strands of the viral RNA are guides for an Argonaute (AGO) nuclease. The primed AGO specifically targets and silences the viral RNA. In plants this system has diversified to involve mobile small interfering RNAs (siRNAs), an amplification system involving secondary siRNAs and targeting mechanisms involving DNA methylation. Most, if not all, plant viruses encode multifunctional proteins that are suppressors of RNA silencing that may also influence the innate immune system and fine-tune the virus-host interaction. Animal viruses similarly trigger RNA silencing, although it may be masked in differentiated cells by the interferon system and by the action of the virus-encoded suppressor proteins. There is huge potential for RNA silencing to combat viral disease in crops, farm animals, and people, although there are complications associated with the various strategies for siRNA delivery including transgenesis. Alternative approaches could include using breeding or small molecule treatment to enhance the inherent antiviral capacity of infected cells.
Collapse
Affiliation(s)
- David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
8
|
Song Y, Hanner RH, Meng B. Transcriptomic Analyses of Grapevine Leafroll-Associated Virus 3 Infection in Leaves and Berries of 'Cabernet Franc'. Viruses 2022; 14:v14081831. [PMID: 36016453 PMCID: PMC9415066 DOI: 10.3390/v14081831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is one of the most important viruses affecting global grape and wine production. GLRaV-3 is the chief agent associated with grapevine leafroll disease (GLRD), the most prevalent and economically destructive grapevine viral disease complex. Response of grapevine to GLRaV-3 infection at the gene expression level is poorly characterized, limiting the understanding of GLRaV-3 pathogenesis and viral-associated symptom development. In this research, we used RNA-Seq to profile the changes in global gene expression of Cabernet franc, a premium red wine grape, analyzing leaf and berry tissues at three key different developmental stages. We have identified 1457 differentially expressed genes (DEGs) in leaves and 1181 DEGs in berries. The expression profiles of a subset of DEGs were validated through RT-qPCR, including those involved in photosynthesis (VvPSBP1), carbohydrate partitioning (VvSUT2, VvHT5, VvGBSS1, and VvSUS), flavonoid biosynthesis (VvUFGT, VvLAR1, and VvFLS), defense response (VvPR-10.3, and VvPR-10.7), and mitochondrial activities (ETFB, TIM13, and NDUFA1). GLRaV-3 infection altered source-sink relationship between leaves and berries. Photosynthesis and photosynthate assimilation were inhibited in mature leaves while increased in young berries. The expression of genes involved in anthocyanin biosynthesis increased in GLRaV-3-infected leaves, correlating with interveinal tissue reddening, a hallmark of GLRD symptoms. Notably, we identified changes in gene expression that suggest a compromised sugar export and increased sugar retrieval in GLRaV-3-infected leaves. Genes associated with mitochondria were down-regulated in both leaves and berries of Cabernet franc infected with GLRaV-3. Results of the present study suggest that GLRaV-3 infection may disrupt mitochondrial function in grapevine leaves, leading to repressed sugar export and accumulation of sugar in mature leaf tissues. The excessive sugar accumulation in GLRaV-3-infected leaves may trigger downstream GLRD symptom development and negatively impact berry quality. We propose a working model to account for the molecular events underlying the pathogenesis of GLRaV-3 and symptom development.
Collapse
Affiliation(s)
- Yashu Song
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Robert H. Hanner
- Department of Integrative Biology and Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Baozhong Meng
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence: ; Tel.: +1-519-824-4120 (ext. 53876)
| |
Collapse
|
9
|
Zhou J, Qi A, Wang B, Zhang X, Dong Q, Liu J. Integrated Analyses of Transcriptome and Chlorophyll Fluorescence Characteristics Reveal the Mechanism Underlying Saline-Alkali Stress Tolerance in Kosteletzkya pentacarpos. FRONTIERS IN PLANT SCIENCE 2022; 13:865572. [PMID: 35599866 PMCID: PMC9122486 DOI: 10.3389/fpls.2022.865572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
In recent years, soil salinization has become increasingly severe, and the ecological functions of saline-alkali soils have deteriorated because of the lack of plants. Therefore, understanding the tolerance mechanisms of saline-alkali-tolerant plants has become crucial to restore the ecological functions of saline-alkali soils. In this study, we evaluated the molecular mechanism underlying the tolerance of Kosteletzkya pentacarpos L. (seashore mallow) seedlings treated with 0.05 or 0.5% saline-alkali solution (NaCl: NaHCO3 = 4:1 mass ratio) for 1 and 7 days. We identified the key genes involved in tolerance to saline-alkali stress using orthogonal partial least squares regression analysis (OPLS-RA) based on both chlorophyll fluorescence indexes and stress-responsive genes using transcriptome analysis, and, finally, validated their expression using qRT-PCR. We observed minor changes in the maximum photochemical efficiency of the stressed seedlings, whose photosynthetic performance remained stable. Moreover, compared to the control, other indicators varied more evidently on day 7 of 0.5% saline-alkali treatment, but no variations were observed in other treatments. Transcriptome analysis revealed a total of 54,601 full-length sequences, with predominantly downregulated differentially expressed gene (DEG) expression. In the high concentration treatment, the expression of 89.11 and 88.38% of DEGs was downregulated on days 1 and 7, respectively. Furthermore, nine key genes, including KpAGO4, KpLARP1C, and KpPUB33, were involved in negative regulatory pathways, such as siRNA-mediated DNA methylation, inhibition of 5'-terminal oligopyrimidine mRNA translation, ubiquitin/proteasome degradation, and other pathways, including programmed cell death. Finally, quantitative analysis suggested that the expression of key genes was essentially downregulated. Thus, these genes can be used in plant molecular breeding in the future to generate efficient saline-alkali-tolerant plant germplasm resources to improve the ecological functions of saline-alkali landscapes.
Collapse
Affiliation(s)
- Jian Zhou
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Center of Horticulture Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Anguo Qi
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Center of Horticulture Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Baoquan Wang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Province Engineering Center of Horticulture Plant Resource Utilization and Germplasm Enhancement, Xinxiang, China
| | - Xiaojing Zhang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Qidi Dong
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| | - Jinxiu Liu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
10
|
Jin L, Chen M, Xiang M, Guo Z. RNAi-Based Antiviral Innate Immunity in Plants. Viruses 2022; 14:v14020432. [PMID: 35216025 PMCID: PMC8875485 DOI: 10.3390/v14020432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple antiviral immunities were developed to defend against viral infection in hosts. RNA interference (RNAi)-based antiviral innate immunity is evolutionarily conserved in eukaryotes and plays a vital role against all types of viruses. During the arms race between the host and virus, many viruses evolve viral suppressors of RNA silencing (VSRs) to inhibit antiviral innate immunity. Here, we reviewed the mechanism at different stages in RNAi-based antiviral innate immunity in plants and the counteractions of various VSRs, mainly upon infection of RNA viruses in model plant Arabidopsis. Some critical challenges in the field were also proposed, and we think that further elucidating conserved antiviral innate immunity may convey a broad spectrum of antiviral strategies to prevent viral diseases in the future.
Collapse
|
11
|
Small RNAs Participate in Plant-Virus Interaction and Their Application in Plant Viral Defense. Int J Mol Sci 2022; 23:ijms23020696. [PMID: 35054880 PMCID: PMC8775341 DOI: 10.3390/ijms23020696] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Small RNAs are significant regulators of gene expression, which play multiple roles in plant development, growth, reproductive and stress response. It is generally believed that the regulation of plants’ endogenous genes by small RNAs has evolved from a cellular defense mechanism for RNA viruses and transposons. Most small RNAs have well-established roles in the defense response, such as viral response. During viral infection, plant endogenous small RNAs can direct virus resistance by regulating the gene expression in the host defense pathway, while the small RNAs derived from viruses are the core of the conserved and effective RNAi resistance mechanism. As a counter strategy, viruses evolve suppressors of the RNAi pathway to disrupt host plant silencing against viruses. Currently, several studies have been published elucidating the mechanisms by which small RNAs regulate viral defense in different crops. This paper reviews the distinct pathways of small RNAs biogenesis and the molecular mechanisms of small RNAs mediating antiviral immunity in plants, as well as summarizes the coping strategies used by viruses to override this immune response. Finally, we discuss the current development state of the new applications in virus defense based on small RNA silencing.
Collapse
|
12
|
Kuo S, Hu C, Huang Y, Lee C, Luo M, Tu C, Lee S, Lin N, Hsu Y. Argonaute 5 family proteins play crucial roles in the defence against Cymbidium mosaic virus and Odontoglossum ringspot virus in Phalaenopsis aphrodite subsp. formosana. MOLECULAR PLANT PATHOLOGY 2021; 22:627-643. [PMID: 33749125 PMCID: PMC8126185 DOI: 10.1111/mpp.13049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 05/27/2023]
Abstract
The orchid industry faces severe threats from diseases caused by viruses. Argonaute proteins (AGOs) have been shown to be the major components in the antiviral defence systems through RNA silencing in many model plants. However, the roles of AGOs in orchids against viral infections have not been analysed comprehensively. In this study, Phalaenopsis aphrodite subsp. formosana was chosen as the representative to analyse the AGOs (PaAGOs) involved in the defence against two major viruses of orchids, Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV). A total of 11 PaAGOs were identified from the expression profile analyses of these PaAGOs in P. aphrodite subsp. formosana singly or doubly infected with CymMV and/or ORSV. PaAGO5b was found to be the only one highly induced. Results from overexpression of individual PaAGO5 family genes revealed that PaAGO5a and PaAGO5b play central roles in the antiviral defence mechanisms of P. aphrodite subsp. formosana. Furthermore, a virus-induced gene silencing vector based on Foxtail mosaic virus was developed to corroborate the function of PaAGO5s. The results confirmed their importance in the defences against CymMV and ORSV. Our findings may provide useful information for the breeding of traits for resistance or tolerance to CymMV or ORSV infections in Phalaenopsis orchids.
Collapse
Affiliation(s)
- Song‐Yi Kuo
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Chung‐Chi Hu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| | - Ying‐Wen Huang
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| | - Chin‐Wei Lee
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
| | - Meng‐Jhe Luo
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Chin‐Wei Tu
- Microbial GenomicNational Chung Hsing University and Academia SinicaTaichungTaiwan
| | - Shu‐Chuan Lee
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Na‐Sheng Lin
- Institute of Plant and Microbial BiologyAcademia SinicaTaipeiTaiwan
| | - Yau‐Heiu Hsu
- Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
13
|
Ross BT, Zidack NK, Flenniken ML. Extreme Resistance to Viruses in Potato and Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:658981. [PMID: 33889169 PMCID: PMC8056081 DOI: 10.3389/fpls.2021.658981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 05/31/2023]
Abstract
Plant pathogens, including viruses, negatively impact global crop production. Plants have evolved complex immune responses to pathogens. These responses are often controlled by nucleotide-binding leucine-rich repeat proteins (NLRs), which recognize intracellular, pathogen-derived proteins. Genetic resistance to plant viruses is often phenotypically characterized by programmed cell death at or near the infection site; a reaction termed the hypersensitive response. Although visualization of the hypersensitive response is often used as a hallmark of resistance, the molecular mechanisms leading to the hypersensitive response and associated cell death vary. Plants with extreme resistance to viruses rarely exhibit symptoms and have little to no detectable virus replication or spread beyond the infection site. Both extreme resistance and the hypersensitive response can be activated by the same NLR genes. In many cases, genes that normally provide an extreme resistance phenotype can be stimulated to cause a hypersensitive response by experimentally increasing cellular levels of pathogen-derived elicitor protein(s). The molecular mechanisms of extreme resistance and its relationship to the hypersensitive response are largely uncharacterized. Studies on potato and soybean cultivars that are resistant to strains of Potato virus Y (PVY), Potato virus X (PVX), and Soybean mosaic virus (SMV) indicate that abscisic acid (ABA)-mediated signaling and NLR nuclear translocation are important for the extreme resistance response. Recent research also indicates that some of the same proteins are involved in both extreme resistance and the hypersensitive response. Herein, we review and synthesize published studies on extreme resistance in potato and soybean, and describe studies in additional species, including model plant species, to highlight future research avenues that may bridge the gaps in our knowledge of plant antiviral defense mechanisms.
Collapse
Affiliation(s)
- Brian T. Ross
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Nina K. Zidack
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
14
|
Chiumenti M, Greco C, De Stradis A, Loconsole G, Cavalieri V, Altamura G, Zicca S, Saldarelli P, Saponari M. Olea Europaea Geminivirus: A Novel Bipartite Geminivirid Infecting Olive Trees. Viruses 2021; 13:v13030481. [PMID: 33804134 PMCID: PMC8000510 DOI: 10.3390/v13030481] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/29/2022] Open
Abstract
In 2014, high-throughput sequencing of libraries of total DNA from olive trees allowed the identification of two geminivirus-like contigs. After conventional resequencing of the two genomic DNAs, their analysis revealed they belonged to the same viral entity, for which the provisional name of Olea europaea geminivirus (OEGV) was proposed. Although DNA-A showed a genome organization similar to that of New World begomoviruses, DNA-B had a peculiar ORF arrangement, consisting of a movement protein (MP) in the virion sense and a protein with unknown function on the complementary sense. Phylogenetic analysis performed either on full-length genome or on coat protein, replication associated protein (Rep), and MP sequences did not endorse the inclusion of this virus in any of the established genera in the family Geminiviridae. A survey of 55 plants revealed that the virus is widespread in Apulia (Italy) with 91% of the samples testing positive, although no correlation of OEGV with a disease or specific symptoms was encountered. Southern blot assay suggested that the virus is not integrated in the olive genome. The study of OEGV-derived siRNA obtained from small RNA libraries of leaves and fruits of three different cultivars, showed that the accumulation of the two genomic components is influenced by the plant genotype while virus-derived-siRNA profile is in line with other geminivirids reported in literature. Single-nucleotide polymorphism (SNP) analysis unveiled a low intra-specific variability.
Collapse
Affiliation(s)
- Michela Chiumenti
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
- Correspondence: (M.C.); (G.L.)
| | - Claudia Greco
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
- Dipartimento di Scienze del suolo, della Pianta e degli Alimenti, University of Bari “Aldo Moro”, Via Amendola, 165/A, 70126 Bari, Italy
| | - Angelo De Stradis
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
| | - Giuliana Loconsole
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
- Correspondence: (M.C.); (G.L.)
| | - Vincenzo Cavalieri
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
| | - Giuseppe Altamura
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
| | - Stefania Zicca
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
| | - Pasquale Saldarelli
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
| | - Maria Saponari
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
| |
Collapse
|
15
|
Palomar VM, Garciarrubio A, Garay-Arroyo A, Martínez-Martínez C, Rosas-Bringas O, Reyes JL, Covarrubias AA. The canonical RdDM pathway mediates the control of seed germination timing under salinity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:691-707. [PMID: 33131171 DOI: 10.1111/tpj.15064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/11/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Plants respond to adverse environmental cues by adjusting a wide variety of processes through highly regulated mechanisms to maintain plant homeostasis for survival. As a result of the sessile nature of plants, their response, adjustment and adaptation to the changing environment is intimately coordinated with their developmental programs through the crosstalk of regulatory networks. Germination is a critical process in the plant life cycle, and thus plants have evolved various strategies to control the timing of germination according to their local environment. The mechanisms involved in these adjustment responses are largely unknown, however. Here, we report that mutations in core elements of canonical RNA-directed DNA methylation (RdDM) affect the germination and post-germination growth of Arabidopsis seeds grown under salinity stress. Transcriptomic and whole-genome bisulfite sequencing (WGBS) analyses support the involvement of this pathway in the control of germination timing and post-germination growth under salinity stress by preventing the transcriptional activation of genes implicated in these processes. Subsequent transcriptional effects on genes that function in relation to these developmental events support this conclusion.
Collapse
Affiliation(s)
- Víctor Miguel Palomar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - Alejandro Garciarrubio
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Circuito Exterior S/N anexo Jardín Botánico Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04500, México
| | - Coral Martínez-Martínez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - Omar Rosas-Bringas
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - José L Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| | - Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Mor. C.P, 62250, Mexico
| |
Collapse
|
16
|
Silva-Martins G, Bolaji A, Moffett P. What does it take to be antiviral? An Argonaute-centered perspective on plant antiviral defense. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6197-6210. [PMID: 32835379 DOI: 10.1093/jxb/eraa377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
RNA silencing is a major mechanism of constitutive antiviral defense in plants, mediated by a number of proteins, including the Dicer-like (DCL) and Argonaute (AGO) endoribonucleases. Both DCL and AGO protein families comprise multiple members. In particular, the AGO protein family has expanded considerably in different plant lineages, with different family members having specialized functions. Although the general mode of action of AGO proteins is well established, the properties that make different AGO proteins more or less efficient at targeting viruses are less well understood. In this report, we review methodologies used to study AGO antiviral activity and current knowledge about which AGO family members are involved in antiviral defense. In addition, we discuss what is known about the different properties of AGO proteins thought to be associated with this function.
Collapse
Affiliation(s)
| | - Ayooluwa Bolaji
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
17
|
Wang L, Ding Y, He L, Zhang G, Zhu JK, Lozano-Duran R. A virus-encoded protein suppresses methylation of the viral genome through its interaction with AGO4 in the Cajal body. eLife 2020; 9:e55542. [PMID: 33064077 PMCID: PMC7567605 DOI: 10.7554/elife.55542] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022] Open
Abstract
In plants, establishment of de novo DNA methylation is regulated by the RNA-directed DNA methylation (RdDM) pathway. RdDM machinery is known to concentrate in the Cajal body, but the biological significance of this localization has remained elusive. Here, we show that the antiviral methylation of the Tomato yellow leaf curl virus (TYLCV) genome requires the Cajal body in Nicotiana benthamiana cells. Methylation of the viral genome is countered by a virus-encoded protein, V2, which interacts with the central RdDM component AGO4, interfering with its binding to the viral DNA; Cajal body localization of the V2-AGO4 interaction is necessary for the viral protein to exert this function. Taken together, our results draw a long sought-after functional connection between RdDM, the Cajal body, and antiviral DNA methylation, paving the way for a deeper understanding of DNA methylation and antiviral defences in plants.
Collapse
Affiliation(s)
- Liping Wang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Yi Ding
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Li He
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| | - Guiping Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| | - Rosa Lozano-Duran
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
18
|
Martins TF, Souza PFN, Alves MS, Silva FDA, Arantes MR, Vasconcelos IM, Oliveira JTA. Identification, characterization, and expression analysis of cowpea (Vigna unguiculata [L.] Walp.) miRNAs in response to cowpea severe mosaic virus (CPSMV) challenge. PLANT CELL REPORTS 2020; 39:1061-1078. [PMID: 32388590 DOI: 10.1007/s00299-020-02548-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/04/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Cowpea miRNAs and Argonaute genes showed differential expression patterns in response to CPSMV challenge Several biotic stresses affect cowpea production and yield. CPSMV stands out for causing severe negative impacts on cowpea. Plants have two main induced immune systems. In the basal system (PTI, PAMP-triggered immunity), plants recognize and respond to conserved molecular patterns associated with pathogens (PAMPs). The second type (ETI, Effector-triggered immunity) is induced after plant recognition of specific factors from pathogens. RNA silencing is another important defense mechanism in plants. Our research group has been using biochemical and proteomic approaches to learn which proteins and pathways are involved and could explain why some cowpea genotypes are resistant whereas others are susceptible to CPSMV. This current study was conducted to determine the role of cowpea miRNA in the interaction between a resistant cowpea genotype (BRS-Marataoã) and CPSMV. Previously identified and deposited plant microRNA sequences were used to find out all possible microRNAs in the cowpea genome. This search detected 617 mature microRNAs, which were distributed in 89 microRNA families. Next, 4 out of these 617 miRNAs and their possible target genes that encode the proteins Kat-p80, DEAD-Box, GST, and SPB9, all involved in the defense response of cowpea to CPSMV, had their expression compared between cowpea leaves uninoculated and inoculated with CPSMV. Additionally, the differential expression of genes that encode the Argonaute (AGO) proteins 1, 2, 4, 6, and 10 is reported. In summary, the studied miRNAs and AGO 2 and AGO4 associated genes showed differential expression patterns in response to CPSMV challenge, which indicate their role in cowpea defense.
Collapse
Affiliation(s)
- Thiago F Martins
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Murilo S Alves
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Fredy Davi A Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Mariana R Arantes
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Ilka M Vasconcelos
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, CE, Brazil.
| |
Collapse
|
19
|
Zhang C, Wei Y, Xu L, Wu KC, Yang L, Shi CN, Yang GY, Chen D, Yu FF, Xie Q, Ding SW, Wu JG. A Bunyavirus-Inducible Ubiquitin Ligase Targets RNA Polymerase IV for Degradation during Viral Pathogenesis in Rice. MOLECULAR PLANT 2020; 13:836-850. [PMID: 32087369 DOI: 10.1016/j.molp.2020.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/18/2020] [Accepted: 02/14/2020] [Indexed: 05/19/2023]
Abstract
The ubiquitin-proteasome system (UPS) is an important post-translational regulatory mechanism that controls many cellular functions in eukaryotes. Here, we show that stable expression of P3 protein encoded by Rice grassy stunt virus (RGSV), a negative-strand RNA virus in the Bunyavirales, causes developmental abnormities similar to the disease symptoms caused by RGSV, such as dwarfing and excess tillering, in transgenic rice plants. We found that both transgenic expression of P3 and RGSV infection induce ubiquitination and UPS-dependent degradation of rice NUCLEAR RNA POLYMERASE D1a (OsNRPD1a), one of two orthologs of the largest subunit of plant-specific RNA polymerase IV (Pol IV), which is required for RNA-directed DNA methylation (RdDM). Furthermore, we identified a P3-inducible U-box type E3 ubiquitin ligase, designated as P3-inducible protein 1 (P3IP1), which interacts with OsNRPD1a and mediates its ubiquitination and UPS-dependent degradation in vitro and in vivo. Notably, both knockdown of OsNRPD1 and overexpression of P3IP1 in rice plants induced developmental phenotypes similar to RGSV disease symptomss. Taken together, our findings reveal a novel virulence mechanism whereby plant pathogens target host RNA Pol IV for UPS-dependent degradation to induce disease symptoms. Our study also identified an E3 ubiquitin ligase, which targets the RdDM compotent NRPD1 for UPS-mediated degradation in rice.
Collapse
Affiliation(s)
- Chao Zhang
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Wei
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Le Xu
- Center for Plant Biology, Tsinghua-Peking Center for Life Sciences, College of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kang-Cheng Wu
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liang Yang
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao-Nan Shi
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guo-Yi Yang
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dong Chen
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fei-Fei Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Jian-Guo Wu
- Vector-borne Virus Research Center, Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
20
|
Brosseau C, Bolaji A, Roussin-Léveillée C, Zhao Z, Biga S, Moffett P. Natural variation in the Arabidopsis AGO2 gene is associated with susceptibility to potato virus X. THE NEW PHYTOLOGIST 2020; 226:866-878. [PMID: 31880814 DOI: 10.1111/nph.16397] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
RNA silencing functions as an anti-viral defence in plants through the action of DICER-like (DCL) and ARGONAUTE (AGO) proteins. Despite the importance of this mechanism, little is known about the functional consequences of variation in genes encoding RNA silencing components. The AGO2 protein has been shown to be important for defense against multiple viruses, and we investigated how naturally occurring differences in AGO2 between and within species affects its antiviral activities. We find that the AGO2 protein from Arabidopsis thaliana, but not Nicotiana benthamiana, effectively limits potato virus X (PVX). Consistent with this, we find that the A. thaliana AGO2 gene shows a high incidence of polymorphisms between accessions, with evidence of selective pressure. Using functional analyses, we identify polymorphisms that specifically affect AGO2 antiviral activity, without interfering with other AGO2-associated functions such as anti-bacterial resistance or DNA methylation. Our results suggest that viruses adapt to overcome RNA silencing in their hosts. Furthermore, they indicate that plant-virus interactions have influenced natural variation in RNA-silencing components and that the latter may be a source of genetically encoded virus resistance.
Collapse
Affiliation(s)
- Chantal Brosseau
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Ayooluwa Bolaji
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | | | - Zhenxing Zhao
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Sébastien Biga
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Peter Moffett
- Département de Biologie, Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
21
|
Ma X, Zhou Y, Moffett P. Alterations in cellular RNA decapping dynamics affect tomato spotted wilt virus cap snatching and infection in Arabidopsis. THE NEW PHYTOLOGIST 2019; 224:789-803. [PMID: 31292958 DOI: 10.1111/nph.16049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
RNA processing and decay pathways have important impacts on RNA viruses, particularly animal-infecting bunyaviruses, which utilize a cap-snatching mechanism to translate their mRNAs. However, their effects on plant-infecting bunyaviruses have not been investigated. The roles of mRNA degradation and non-sense-mediated decay components, including DECAPPING 2 (DCP2), EXORIBONUCLEASE 4 (XRN4), ASYMMETRIC LEAVES2 (AS2) and UP-FRAMESHIFT 1 (UPF1) were investigated in infection of Arabidopsis thaliana by several RNA viruses, including the bunyavirus, tomato spotted wilt virus (TSWV). TSWV infection on mutants with decreased or increased RNA decapping ability resulted in increased and decreased susceptibility, respectively. By contrast, these mutations had the opposite, or no, effect on RNA viruses that use different mRNA capping strategies. Consistent with this, the RNA capping efficiency of TSWV mRNA was higher in a dcp2 mutant. Furthermore, the TSWV N protein partially colocalized with RNA processing body (PB) components and altering decapping activity by heat shock or coinfection with another virus resulted in corresponding changes in TSWV accumulation. The present results indicate that TSWV infection in plants depends on its ability to snatch caps from mRNAs destined for decapping in PBs and that genetic or environmental alteration of RNA processing dynamics can affect infection outcomes.
Collapse
Affiliation(s)
- Xiaofang Ma
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, no. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, 2500 Blvd. de l' Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, no. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, 2500 Blvd. de l' Université, Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
22
|
Diao P, Zhang Q, Sun H, Ma W, Cao A, Yu R, Wang J, Niu Y, Wuriyanghan H. miR403a and SA Are Involved in NbAGO2 Mediated Antiviral Defenses Against TMV Infection in Nicotiana benthamiana. Genes (Basel) 2019; 10:E526. [PMID: 31336929 PMCID: PMC6679004 DOI: 10.3390/genes10070526] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 11/18/2022] Open
Abstract
RNAi (RNA interference) is an important defense response against virus infection in plants. The core machinery of the RNAi pathway in plants include DCL (Dicer Like), AGO (Argonaute) and RdRp (RNA dependent RNA polymerase). Although involvement of these RNAi components in virus infection responses was demonstrated in Arabidopsis thaliana, their contribution to antiviral immunity in Nicotiana benthamiana, a model plant for plant-pathogen interaction studies, is not well understood. In this study, we investigated the role of N. benthamiana NbAGO2 gene against TMV (Tomato mosaic virus) infection. Silencing of NbAGO2 by transient expression of an hpRNA construct recovered GFP (Green fluorescent protein) expression in GFP-silenced plant, demonstrating that NbAGO2 participated in RNAi process in N. benthamiana. Expression of NbAGO2 was transcriptionally induced by both MeSA (Methylsalicylate acid) treatment and TMV infection. Down-regulation of NbAGO2 gene by amiR-NbAGO2 transient expression compromised plant resistance against TMV infection. Inhibition of endogenous miR403a, a predicted regulatory microRNA of NbAGO2, reduced TMV infection. Our study provides evidence for the antiviral role of NbAGO2 against a Tobamovirus family virus TMV in N. benthamiana, and SA (Salicylic acid) mediates this by induction of NbAGO2 expression upon TMV infection. Our data also highlighted that miR403a was involved in TMV defense by regulation of target NbAGO2 gene in N. Benthamiana.
Collapse
Affiliation(s)
- Pengfei Diao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qimeng Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hongyu Sun
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Wenjie Ma
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Aiping Cao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jiaojiao Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
23
|
RNA Interference: A Natural Immune System of Plants to Counteract Biotic Stressors. Cells 2019; 8:cells8010038. [PMID: 30634662 PMCID: PMC6356646 DOI: 10.3390/cells8010038] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/01/2019] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
During plant-pathogen interactions, plants have to defend the living transposable elements from pathogens. In response to such elements, plants activate a variety of defense mechanisms to counteract the aggressiveness of biotic stressors. RNA interference (RNAi) is a key biological process in plants to inhibit gene expression both transcriptionally and post-transcriptionally, using three different groups of proteins to resist the virulence of pathogens. However, pathogens trigger an anti-silencing mechanism through the expression of suppressors to block host RNAi. The disruption of the silencing mechanism is a virulence strategy of pathogens to promote infection in the invaded hosts. In this review, we summarize the RNA silencing pathway, anti-silencing suppressors, and counter-defenses of plants to viral, fungal, and bacterial pathogens.
Collapse
|
24
|
Paudel DB, Ghoshal B, Jossey S, Ludman M, Fatyol K, Sanfaçon H. Expression and antiviral function of ARGONAUTE 2 in Nicotiana benthamiana plants infected with two isolates of tomato ringspot virus with varying degrees of virulence. Virology 2018; 524:127-139. [PMID: 30195250 DOI: 10.1016/j.virol.2018.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 11/23/2022]
Abstract
ARGONAUTEs (notably AGO1 and AGO2) are effectors of plant antiviral RNA silencing. AGO1 was shown to be required for the temperature-dependent symptom recovery of Nicotiana benthamiana plants infected with tomato ringspot virus (isolate ToRSV-Rasp1) at 27 °C. In this study, we show that symptom recovery from isolate ToRSV-GYV shares similar hallmarks of antiviral RNA silencing but occurs at a wider range of temperatures (21-27 °C). At 21 °C, an early spike in AGO2 mRNAs accumulation was observed in plants infected with either ToRSV-Rasp1 or ToRSV-GYV but the AGO2 protein was only consistently detected in ToRSV-GYV infected plants. Symptom recovery from ToRSV-GYV at 21 °C was not prevented in an ago2 mutant or by silencing of AGO1 or AGO2. We conclude that other factors (possibly other AGOs) contribute to symptom recovery under these conditions. The results also highlight distinct expression patterns of AGO2 in response to ToRSV isolates and environmental conditions.
Collapse
Affiliation(s)
- Dinesh Babu Paudel
- Dept of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, Canada V6T 1Z4
| | - Basudev Ghoshal
- Dept of Botany, University of British Columbia, 3529-6270 University Blvd, Vancouver, BC, Canada V6T 1Z4
| | - Sushma Jossey
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 5000, 4200 Highway 97, Summerland, BC, Canada V0H 1Z0
| | - Marta Ludman
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Center, Szent-Györgyi Albert u. 4, Gödöllő 2100, Hungary
| | - Karoly Fatyol
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Center, Szent-Györgyi Albert u. 4, Gödöllő 2100, Hungary
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 5000, 4200 Highway 97, Summerland, BC, Canada V0H 1Z0.
| |
Collapse
|
25
|
Ma Z, Zhang X. Actions of plant Argonautes: predictable or unpredictable? CURRENT OPINION IN PLANT BIOLOGY 2018; 45:59-67. [PMID: 29857309 DOI: 10.1016/j.pbi.2018.05.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/25/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
Argonaute (AGO) proteins are the key effector of RNA-induced silencing complex (RISC). Land plants typically encode numerous AGO proteins, and they can be typically divided into two major functional groups based on the species of their housed small RNAs (sRNAs). One group of AGOs, guided by 24-nucleotide (nt) sRNAs, canonically function in nuclei to implement transcriptional gene silencing (TGS), whereas the other group of AGOs, guided by 21-nt sRNAs, act in the cytoplasm to fulfill posttranscriptional gene silencing (PTGS). Many new discoveries have been recently made on functions and mechanisms of AGO proteins in plants, and some of the findings change our views on the conventional classification and roles of AGO proteins. In this review, we summarize our current knowledge of AGO proteins in plants.
Collapse
Affiliation(s)
- Zeyang Ma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA; Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
26
|
Yang Z, Li Y. Dissection of RNAi-based antiviral immunity in plants. Curr Opin Virol 2018; 32:88-99. [PMID: 30388659 DOI: 10.1016/j.coviro.2018.08.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 10/28/2022]
Abstract
RNA interference (RNAi)-based antiviral defense is a small RNA-dependent repression mechanism of plants to against viruses. Although the core components of antiviral RNAi are well known, it is unclear whether additional factors exist that regulate RNAi. Recently, a forward genetic screen identified two novel components of antiviral RNAi, providing important insights into the antiviral RNAi mechanism. Meanwhile, it was discovered that microRNAs make important contributions to host antiviral RNAi. On the other hand, to counteract host antiviral RNAi, most viruses encode viral suppressors of RNA silencing (VSRs). Recent studies have revealed the multiple functions of VSRs and the intricate interactions between plant hosts and viruses. These findings add to our knowledge of the sophisticated host antiviral defense mechanism in plants. Ongoing molecular functional studies will improve our understanding of the co-evolutionary arms race between viruses and plants, and thereby provide key information for the development of plant antiviral strategies.
Collapse
Affiliation(s)
- Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
27
|
Odokonyero D, Mendoza MR, Moffett P, Scholthof HB. Tobacco rattle virus (TRV)-Mediated Silencing of Nicotiana benthamiana ARGONAUTES (NbAGOs) Reveals New Antiviral Candidates and Dominant Effects of TRV-NbAGO1. PHYTOPATHOLOGY 2017; 107:977-987. [PMID: 28636437 DOI: 10.1094/phyto-02-17-0049-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The objective of this study was to determine the contribution of different ARGONAUTE proteins in Nicotiana benthamiana (NbAGOs) to the defense against silencing sensitive GFP-expressing viral constructs based on Tomato bushy stunt virus (TBSV) (Tombusvirus), Sunn-hemp mosaic virus (Tobamovirus), and Foxtail mosaic virus (Potexvirus). Upon Tobacco rattle virus (TRV)-mediated down-regulation of NbAGO1, 4, 5, or 6, no effects were noted on susceptibility to any virus construct, whereas knockdown of NbAGO2 specifically prevented silencing of P19-defective TBSV (TGdP19). Down-regulation of a new gene referred to as NbAGO5L showed some reduced silencing for TGdP19 but not for the other two virus constructs, whereas silencing of NbAGO7 gave rise to a subtle increase in susceptibility to all three viruses. Co-infiltrating different TRV-NbAGO constructs simultaneously did not enhance virus susceptibility. However, an unexpected finding was that whenever the TRV-NbAGO1 construct was present, this compromised silencing of genes targeted by co-infiltrated constructs, as shown upon co-infiltration of TRV-NbAGO1 with either TRV-NbAGO2 or TRV-Sul (targeting Magnesium chelatase I). Only after a prolonged period (approximately 2 months) did TRV-Sul-mediated systemic bleaching occur in these co-infected plants, suggesting that TRV-NbAGO1 hinders the silencing ability of other TRV-NbAGO constructs. In conclusion, this study revealed new antiviral NbAGOs and dominant effects of silencing NbAGO1.
Collapse
Affiliation(s)
- Denis Odokonyero
- First, second, and fourth authors: Department of Plant Pathology and Microbiology, Texas A&M University, College Station; and third author: Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Maria R Mendoza
- First, second, and fourth authors: Department of Plant Pathology and Microbiology, Texas A&M University, College Station; and third author: Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Peter Moffett
- First, second, and fourth authors: Department of Plant Pathology and Microbiology, Texas A&M University, College Station; and third author: Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Herman B Scholthof
- First, second, and fourth authors: Department of Plant Pathology and Microbiology, Texas A&M University, College Station; and third author: Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
28
|
Abstract
ARGONAUTEs (AGOs) are the effector proteins in eukaryotic small RNA (sRNA)-based gene silencing pathways controlling gene expression and transposon activity. In plants, AGOs regulate key biological processes such as development, response to stress, genome structure and integrity, and pathogen defense. Canonical functions of plant AGO-sRNA complexes include the endonucleolytic cleavage or translational inhibition of target RNAs and the methylation of target DNAs. Here, I provide a brief update on the major features, molecular functions, and biological roles of plant AGOs. A special focus is given to the more recent discoveries related to emerging molecular or biological functions of plant AGOs, as well as to the major unknowns in the plant AGO field.
Collapse
Affiliation(s)
- Alberto Carbonell
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Valencia, 46022, Spain.
| |
Collapse
|
29
|
Alazem M, Lin NS. Antiviral Roles of Abscisic Acid in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1760. [PMID: 29075279 PMCID: PMC5641568 DOI: 10.3389/fpls.2017.01760] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/26/2017] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is a key hormone involved in tuning responses to several abiotic stresses and also has remarkable impacts on plant defense against various pathogens. The roles of ABA in plant defense against bacteria and fungi are multifaceted, inducing or reducing defense responses depending on its time of action. However, ABA induces different resistance mechanisms to viruses regardless of the induction time. Recent studies have linked ABA to the antiviral silencing pathway, which interferes with virus accumulation, and the micro RNA (miRNA) pathway through which ABA affects the maturation and stability of miRNAs. ABA also induces callose deposition at plasmodesmata, a mechanism that limits viral cell-to-cell movement. Bamboo mosaic virus (BaMV) is a member of the potexvirus group and is one of the most studied viruses in terms of the effects of ABA on its accumulation and resistance. In this review, we summarize how ABA interferes with the accumulation and movement of BaMV and other viruses. We also highlight aspects of ABA that may have an effect on other types of resistance and that require further investigation.
Collapse
|