1
|
Sun M, Shen Y. Integrating the multiple functions of CHLH into chloroplast-derived signaling fundamental to plant development and adaptation as well as fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111892. [PMID: 37821024 DOI: 10.1016/j.plantsci.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Chlorophyll (Chl)-mediated oxygenic photosynthesis sustains life on Earth. Greening leaves play fundamental roles in plant growth and crop yield, correlating with the idea that more Chls lead to better adaptation. However, they face significant challenges from various unfavorable environments. Chl biosynthesis hinges on the first committed step, which involves inserting Mg2+ into protoporphyrin. This step is facilitated by the H subunit of magnesium chelatase (CHLH) and features a conserved mechanism from cyanobacteria to plants. For better adaptation to fluctuating land environments, especially drought, CHLH evolves multiple biological functions, including Chl biosynthesis, retrograde signaling, and abscisic acid (ABA) responses. Additionally, it integrates into various chloroplast-derived signaling pathways, encompassing both retrograde signaling and hormonal signaling. The former comprises ROS (reactive oxygen species), heme, GUN (genomes uncoupled), MEcPP (methylerythritol cyclodiphosphate), β-CC (β-cyclocitral), and PAP (3'-phosphoadenosine-5'-phosphate). The latter involves phytohormones like ABA, ethylene, auxin, cytokinin, gibberellin, strigolactone, brassinolide, salicylic acid, and jasmonic acid. Together, these elements create a coordinated regulatory network tailored to plant development and adaptation. An intriguing example is how drought-mediated improvement of fruit quality provides insights into chloroplast-derived signaling, aiding the shift from vegetative to reproductive growth. In this context, we explore the integration of CHLH's multifaceted roles into chloroplast-derived signaling, which lays the foundation for plant development and adaptation, as well as fruit ripening and quality. In the future, manipulating chloroplast-derived signaling may offer a promising avenue to enhance crop yield and quality through the homeostasis, function, and regulation of Chls.
Collapse
Affiliation(s)
- Mimi Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China.
| |
Collapse
|
2
|
Robson JK, Ferguson JN, McAusland L, Atkinson JA, Tranchant-Dubreuil C, Cubry P, Sabot F, Wells DM, Price AH, Wilson ZA, Murchie EH. Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza sativa) rice. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5181-5197. [PMID: 37347829 PMCID: PMC10498015 DOI: 10.1093/jxb/erad239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
Rising temperatures and extreme heat events threaten rice production. Half of the global population relies on rice for basic nutrition, and therefore developing heat-tolerant rice is essential. During vegetative development, reduced photosynthetic rates can limit growth and the capacity to store soluble carbohydrates. The photosystem II (PSII) complex is a particularly heat-labile component of photosynthesis. We have developed a high-throughput chlorophyll fluorescence-based screen for photosynthetic heat tolerance capable of screening hundreds of plants daily. Through measuring the response of maximum PSII efficiency to increasing temperature, this platform generates data for modelling the PSII-temperature relationship in large populations in a small amount of time. Coefficients from these models (photosynthetic heat tolerance traits) demonstrated high heritabilities across African (Oryza glaberrima) and Asian (Oryza sativa, Bengal Assam Aus Panel) rice diversity sets, highlighting valuable genetic variation accessible for breeding. Genome-wide association studies were performed across both species for these traits, representing the first documented attempt to characterize the genetic basis of photosynthetic heat tolerance in any species to date. A total of 133 candidate genes were highlighted. These were significantly enriched with genes whose predicted roles suggested influence on PSII activity and the response to stress. We discuss the most promising candidates for improving photosynthetic heat tolerance in rice.
Collapse
Affiliation(s)
- Jordan K Robson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - John N Ferguson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
- School of Life Sciences, University of Essex, Colchester, UK
| | - Lorna McAusland
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Jonathan A Atkinson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | | - Phillipe Cubry
- Institut de Recherche pour le Developpement, 911 Av. Agropolis, 34394 Montpellier, France
| | - François Sabot
- Institut de Recherche pour le Developpement, 911 Av. Agropolis, 34394 Montpellier, France
| | - Darren M Wells
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Adam H Price
- Institut de Recherche pour le Developpement, 911 Av. Agropolis, 34394 Montpellier, France
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Erik H Murchie
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
3
|
Li Y, Liu J, Lv P, Mi J, Zhao B. Silicon improves the photosynthetic performance of oat leaves infected with Puccinia graminis f. sp. avenae. FRONTIERS IN PLANT SCIENCE 2022; 13:1037136. [PMID: 36507416 PMCID: PMC9727285 DOI: 10.3389/fpls.2022.1037136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Stem rust, caused by Puccinia graminis f. sp. avenae (Pga) is a key disease affecting oat production worldwide. Silicon (Si) plays an essential role in enhancing plant resistance against pathogens. However, the scientific evidence of Si-mediated stem rust resistance of oat from the photosynthetic perspective has not been reported. The specific objective of this research was to investigate the effects of Si application on disease inhibition, photosynthetic gas exchange parameters, light response parameters, photosynthetic pigments and chlorophyll fluorescence parameters under Pga infection. Our results illustrated that Si application significantly reduced rust severity while the other parameters like net photosynthetic rate (P n), stomatal conductance (Gs), intercellular CO2 concentration (C i) and transpiration rate (T r) were significantly increased. Si application increased maximum photosynthetic rate (P nmax) and light saturation point (LSP), while reduced the dark respiration rate (Rd) and light compensation point (LCP). The results also indicated that Si application significantly increased the activities of maximum fluorescence (F m), variable fluorescence (F v), maximum quantum yield of photosystem II (F v/F m), photochemical quenching (qP), photosynthetic performance index (PI ABS), actual PSII quantum yield (ΦPSII), electron transfer rate (ETR), the absorbed light energy per unit reaction center (ABS/RC) and the dissipated energy per unit reaction center (DIo/RC), whereas it decreased the minimal fluorescence (F o), non-photochemical quenching (NPQ), the absorbed light energy used for electron transfer per unit reaction center (ETo/RC) and the absorbed light energy used for reduction of QA per unit reaction center (TRo/RC). The contents of chlorophyll a, b and carotenoids were also increased due to the change in the activity of parameters due to Si application as mentioned above. In conclusion, the results of the current study suggests that Si imparts tolerance to the stem rust possibly by the underlying mechanisms of improving gas exchange performance, and efficiency of the photochemical compounds in oat leaves.
Collapse
|
4
|
Cao W, Zhang H, Zhou Y, Zhao J, Lu S, Wang X, Chen X, Yuan L, Guan H, Wang G, Shen W, De Vleesschauwer D, Li Z, Shi X, Gu J, Guo M, Feng Z, Chen Z, Zhang Y, Pan X, Liu W, Liang G, Yan C, Hu K, Liu Q, Zuo S. Suppressing chlorophyll degradation by silencing OsNYC3 improves rice resistance to Rhizoctonia solani, the causal agent of sheath blight. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:335-349. [PMID: 34582620 PMCID: PMC8753359 DOI: 10.1111/pbi.13715] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/21/2021] [Accepted: 09/10/2021] [Indexed: 05/20/2023]
Abstract
Necrotrophic fungus Rhizoctonia solani Kühn (R. solani) causes serious diseases in many crops worldwide, including rice and maize sheath blight (ShB). Crop resistance to the fungus is a quantitative trait and resistance mechanism remains largely unknown, severely hindering the progress on developing resistant varieties. In this study, we found that resistant variety YSBR1 has apparently stronger ability to suppress the expansion of R. solani than susceptible Lemont in both field and growth chamber conditions. Comparison of transcriptomic profiles shows that the photosynthetic system including chlorophyll biosynthesis is highly suppressed by R. solani in Lemont but weakly in YSBR1. YSBR1 shows higher chlorophyll content than that of Lemont, and inducing chlorophyll degradation by dark treatment significantly reduces its resistance. Furthermore, three rice mutants and one maize mutant that carry impaired chlorophyll biosynthesis all display enhanced susceptibility to R. solani. Overexpression of OsNYC3, a chlorophyll degradation gene apparently induced expression by R. solani infection, significantly enhanced ShB susceptibility in a high-yield ShB-susceptible variety '9522'. However, silencing its transcription apparently improves ShB resistance without compromising agronomic traits or yield in field tests. Interestingly, altering chlorophyll content does not affect rice resistance to blight and blast diseases, caused by biotrophic and hemi-biotrophic pathogens, respectively. Our study reveals that chlorophyll plays an important role in ShB resistance and suppressing chlorophyll degradation induced by R. solani infection apparently improves rice ShB resistance. This discovery provides a novel target for developing resistant crop to necrotrophic fungus R. solani.
Collapse
|
5
|
Battache M, Lebrun MH, Sakai K, Soudière O, Cambon F, Langin T, Saintenac C. Blocked at the Stomatal Gate, a Key Step of Wheat Stb16q-Mediated Resistance to Zymoseptoria tritici. FRONTIERS IN PLANT SCIENCE 2022; 13:921074. [PMID: 35832231 PMCID: PMC9271956 DOI: 10.3389/fpls.2022.921074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/03/2022] [Indexed: 05/11/2023]
Abstract
Septoria tritici blotch (STB), caused by the fungus Zymoseptoria tritici, is among the most threatening wheat diseases in Europe. Genetic resistance remains one of the main environmentally sustainable strategies to efficiently control STB. However, the molecular and physiological mechanisms underlying resistance are still unknown, limiting the implementation of knowledge-driven management strategies. Among the 22 known major resistance genes (Stb), the recently cloned Stb16q gene encodes a cysteine-rich receptor-like kinase conferring a full broad-spectrum resistance against Z. tritici. Here, we showed that an avirulent Z. tritici inoculated on Stb16q quasi near isogenic lines (NILs) either by infiltration into leaf tissues or by brush inoculation of wounded tissues partially bypasses Stb16q-mediated resistance. To understand this bypass, we monitored the infection of GFP-labeled avirulent and virulent isolates on Stb16q NILs, from germination to pycnidia formation. This quantitative cytological analysis revealed that 95% of the penetration attempts were unsuccessful in the Stb16q incompatible interaction, while almost all succeeded in compatible interactions. Infectious hyphae resulting from the few successful penetration events in the Stb16q incompatible interaction were arrested in the sub-stomatal cavity of the primary-infected stomata. These results indicate that Stb16q-mediated resistance mainly blocks the avirulent isolate during its stomatal penetration into wheat tissue. Analyses of stomatal aperture of the Stb16q NILs during infection revealed that Stb16q triggers a temporary stomatal closure in response to an avirulent isolate. Finally, we showed that infiltrating avirulent isolates into leaves of the Stb6 and Stb9 NILs also partially bypasses resistances, suggesting that arrest during stomatal penetration might be a common major mechanism for Stb-mediated resistances.
Collapse
Affiliation(s)
- Mélissa Battache
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, France
| | - Marc-Henri Lebrun
- Université Paris-Saclay, INRAE, UR BIOGER, Thiverval-Grignon, France
| | - Kaori Sakai
- Université Paris-Saclay, INRAE, UR BIOGER, Thiverval-Grignon, France
| | - Olivier Soudière
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, France
| | - Florence Cambon
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, France
| | - Thierry Langin
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, France
| | - Cyrille Saintenac
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, France
- *Correspondence: Cyrille Saintenac,
| |
Collapse
|
6
|
Jin C, Liao R, Zheng J, Fang X, Wang W, Fan J, Yuan S, Du J, Yang H. Mitogen-Activated Protein Kinase MAPKKK7 from Plasmodiophora brassicae Regulates Low-Light-Dependent Nicotiana benthamiana Immunity. PHYTOPATHOLOGY 2021; 111:1017-1028. [PMID: 33258412 DOI: 10.1094/phyto-08-20-0323-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
MAPKKK is the largest family of mitogen-activated protein kinase (MAPK) cascades and is known to play important roles in plant pathogen interaction by regulating fungal cell proliferation, growth, and pathogenicity. Thus far, only a few have been characterized because of the functional redundancy of MAPKKKs. In this study, it is interesting that Plasmodiophora brassicae (Pb)MAPKKK7 was clustered into the A3 subgroup of plant MAPKKKs by a phylogenetic analysis and also with the BCK1 and STE groups of fungal MAPKKKs. PbMAPKKK7 function in reactive oxygen species accumulation and cell death in Nicotiana benthamiana was characterized. Agroinfiltration with the PbMAPKKK7 mutated protein kinase domain relieved these changes. Interestingly, the induction of cell death was dependent on light intensity. Transcriptional profiling analysis demonstrated that PbMAPKKK7 was highly expressed during cortex infection stages, indicating its important role in P. brassicae infection. These functional analyses of PbMAPKKK7 build knowledge of new roles of the MAPK cascade pathway in N. benthamiana and P. brassicae interactions.
Collapse
Affiliation(s)
- Chuang Jin
- College of Agronomy, Sichuan Agricultural University Chengdu Campus, Chengdu 611130, China
| | - Rong Liao
- College of Agronomy, Sichuan Agricultural University Chengdu Campus, Chengdu 611130, China
| | - Jing Zheng
- College of Agronomy, Sichuan Agricultural University Chengdu Campus, Chengdu 611130, China
- The Agricultural Technology Popularization Station of Chengdu, Chengdu Agricultural and Rural Bureau, Chengdu 610041, China
| | - Xingyan Fang
- College of Agronomy, Sichuan Agricultural University Chengdu Campus, Chengdu 611130, China
| | - Wenming Wang
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University Chengdu Campus, Chengdu 611130, China
| | - Jing Fan
- Rice Research Institute and Research Center for Major Crop Diseases, Sichuan Agricultural University Chengdu Campus, Chengdu 611130, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University Chengdu Campus, Chengdu 611130, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University Chengdu Campus, Chengdu 611130, China
| | - Hui Yang
- College of Agronomy, Sichuan Agricultural University Chengdu Campus, Chengdu 611130, China
| |
Collapse
|
7
|
Reilly A, Karki SJ, Twamley A, Tiley AMM, Kildea S, Feechan A. Isolate-Specific Responses of the Nonhost Grass Brachypodium distachyon to the Fungal Pathogen Zymoseptoria tritici Compared with Wheat. PHYTOPATHOLOGY 2021; 111:356-368. [PMID: 32720875 DOI: 10.1094/phyto-02-20-0041-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Septoria tritici blotch (STB) is an important foliar disease of wheat that is caused by the fungal pathogen Zymoseptoria tritici. The grass Brachypodium distachyon has been used previously as a model system for cereal-pathogen interactions. In this study, we examined the nonhost resistance (NHR) response of B. distachyon to two different Z. tritici isolates in comparison with wheat. These isolates vary in aggressiveness on wheat cultivar Remus, displaying significant differences in disease and pycnidia coverage. Using microscopy, we found that similar isolate-specific responses were observed for hydrogen peroxide accumulation and cell death in both wheat and B. distachyon. Despite this, induction of isolate-specific patterns of defense gene expression by Z. tritici did differ between B. distachyon and wheat. Our results suggest that expression of the phenylalanine ammonia lyase PAL gene may be important for NHR in B. distachyon, while pathogenesis-related PR genes and expression of genes regulating reactive oxygen species may be important to limit disease in wheat. Future studies of the B. distachyon-Z. tritici interaction may allow identification of conserved plant immunity targets that are responsible for the isolate-specific responses observed in both plant species.
Collapse
Affiliation(s)
- Aisling Reilly
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sujit Jung Karki
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anthony Twamley
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anna M M Tiley
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven Kildea
- Department of Crop Science, Teagasc Crops Environment and Land Use Programme, Teagasc, Oak Park, County Carlow, Ireland
| | - Angela Feechan
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
8
|
Lukan T, Pompe‐Novak M, Baebler Š, Tušek‐Žnidarič M, Kladnik A, Križnik M, Blejec A, Zagorščak M, Stare K, Dušak B, Coll A, Pollmann S, Morgiewicz K, Hennig J, Gruden K. Precision transcriptomics of viral foci reveals the spatial regulation of immune-signaling genes and identifies RBOHD as an important player in the incompatible interaction between potato virus Y and potato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:645-661. [PMID: 32772469 PMCID: PMC7692943 DOI: 10.1111/tpj.14953] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/21/2020] [Indexed: 05/18/2023]
Abstract
Whereas the activation of resistance (R) proteins has been intensively studied, the downstream signaling mechanisms leading to the restriction of the pathogen remain mostly unknown. We studied the immunity network response conditioned by the potato Ny-1 gene against potato virus Y. We analyzed the processes in the cell death zone and surrounding tissue on the biochemical and gene expression levels in order to reveal the spatiotemporal regulation of the immune response. We show that the transcriptional response in the cell death zone and surrounding tissue is dependent on salicylic acid (SA). For some genes the spatiotemporal regulation is completely lost in the SA-deficient line, whereas other genes show a different response, indicating multiple connections between hormonal signaling modules. The induction of NADPH oxidase RBOHD expression occurs specifically on the lesion border during the resistance response. In plants with silenced RBOHD, the functionality of the resistance response is perturbed and the spread of the virus is not arrested at the site of infection. RBOHD is required for the spatial accumulation of SA, and conversely RBOHD is under the transcriptional regulation of SA. Using spatially resolved RNA-seq, we also identified spatial regulation of an UDP-glucosyltransferase, another component in feedback activation of SA biosynthesis, thus deciphering a novel aspect of resistance signaling.
Collapse
Affiliation(s)
- Tjaša Lukan
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | | | - Špela Baebler
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | | | - Aleš Kladnik
- Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Maja Križnik
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | - Andrej Blejec
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | - Maja Zagorščak
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | - Katja Stare
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | - Barbara Dušak
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | - Anna Coll
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| | - Stephan Pollmann
- Centre for Plant Biotechnology and GenomicsCampus de Montegancedo Crta M‐40, Km 38Pozuelo de Alarcón, Madrid28223UPM–INIA Spain
| | - Karolina Morgiewicz
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
| | - Jacek Hennig
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5aWarsaw02‐106Poland
| | - Kristina Gruden
- National Institute of BiologyVečna pot 111Ljubljana1000Slovenia
| |
Collapse
|
9
|
Kabashnikova L, Abramchik L, Domanskaya I, Savchenko G, Shpileuski S. β-1,3-glucan effect on the photosynthetic apparatus and oxidative stress parameters of tomato leaves under fusarium wilt. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:988-997. [PMID: 32579879 DOI: 10.1071/fp19338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
The effect of β-1,3-glucan on the photosynthetic apparatus and oxidative stress parameters of tomato (Lycopersicon esculentum Mill., cv. Tamara) leaves under fusarium wilt caused artificially by the fungal pathogen Fusarium oxysporum sp. was studied in 2-month-old tomato plants. Infection of tomato plants with a pathogen causes activation of lipid peroxidation (LPO) processes in leaves and significant changes in the photosynthetic apparatus, which is reflected in a decrease in the chlorophyll (Chl) a and Chl a/Chl b ratio and carotenoid content, disturbances in the absorption and utilisation of light energy in PSII. Pretreatment of plants with β-1,3-glucan contributes to the stabilisation of LPO and normalises the level of a photosynthetic pigments and a course of photochemical processes in the chloroplasts of infected leaves, which indicates the protective activity of a drug.
Collapse
Affiliation(s)
- Liudmila Kabashnikova
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus 27, Akademicheskaya Street, 220072 Minsk, Belarus; and Corresponding author.
| | - Larisa Abramchik
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus 27, Akademicheskaya Street, 220072 Minsk, Belarus
| | - Irina Domanskaya
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus 27, Akademicheskaya Street, 220072 Minsk, Belarus
| | - Galina Savchenko
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus 27, Akademicheskaya Street, 220072 Minsk, Belarus
| | - Sviatoslav Shpileuski
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus 27, Akademicheskaya Street, 220072 Minsk, Belarus
| |
Collapse
|
10
|
Kretschmer M, Damoo D, Djamei A, Kronstad J. Chloroplasts and Plant Immunity: Where Are the Fungal Effectors? Pathogens 2019; 9:E19. [PMID: 31878153 PMCID: PMC7168614 DOI: 10.3390/pathogens9010019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Chloroplasts play a central role in plant immunity through the synthesis of secondary metabolites and defense compounds, as well as phytohormones, such as jasmonic acid and salicylic acid. Additionally, chloroplast metabolism results in the production of reactive oxygen species and nitric oxide as defense molecules. The impact of viral and bacterial infections on plastids and chloroplasts has been well documented. In particular, bacterial pathogens are known to introduce effectors specifically into chloroplasts, and many viral proteins interact with chloroplast proteins to influence viral replication and movement, and plant defense. By contrast, clear examples are just now emerging for chloroplast-targeted effectors from fungal and oomycete pathogens. In this review, we first present a brief overview of chloroplast contributions to plant defense and then discuss examples of connections between fungal interactions with plants and chloroplast function. We then briefly consider well-characterized bacterial effectors that target chloroplasts as a prelude to discussing the evidence for fungal effectors that impact chloroplast activities.
Collapse
Affiliation(s)
- Matthias Kretschmer
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.K.); (D.D.)
| | - Djihane Damoo
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.K.); (D.D.)
| | - Armin Djamei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben Corrensstrasse 3, D-06466 Stadt Seeland, Germany;
| | - James Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.K.); (D.D.)
| |
Collapse
|
11
|
Kettles GJ, Hofinger BJ, Hu P, Bayon C, Rudd JJ, Balmer D, Courbot M, Hammond-Kosack KE, Scalliet G, Kanyuka K. sRNA Profiling Combined With Gene Function Analysis Reveals a Lack of Evidence for Cross-Kingdom RNAi in the Wheat - Zymoseptoria tritici Pathosystem. FRONTIERS IN PLANT SCIENCE 2019; 10:892. [PMID: 31333714 PMCID: PMC6620828 DOI: 10.3389/fpls.2019.00892] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/21/2019] [Indexed: 05/19/2023]
Abstract
Cross-kingdom small RNA (sRNA) silencing has recently emerged as a mechanism facilitating fungal colonization and disease development. Here we characterized RNAi pathways in Zymoseptoria tritici, a major fungal pathogen of wheat, and assessed their contribution to pathogenesis. Computational analysis of fungal sRNA and host mRNA sequencing datasets was used to define the global sRNA populations in Z. tritici and predict their mRNA targets in wheat. 389 in planta-induced sRNA loci were identified. sRNAs generated from some of these loci were predicted to target wheat mRNAs including those potentially involved in pathogen defense. However, molecular approaches failed to validate targeting of selected wheat mRNAs by fungal sRNAs. Mutant strains of Z. tritici carrying deletions of genes encoding key components of RNAi such as Dicer-like (DCL) and Argonaute (AGO) proteins were generated, and virulence bioassays suggested that these are dispensable for full infection of wheat. Nonetheless, our results did suggest the existence of non-canonical DCL-independent pathway(s) for sRNA biogenesis in Z. tritici. dsRNA targeting essential fungal genes applied in vitro or generated from an RNA virus vector in planta in a procedure known as HIGS (Host-Induced Gene Silencing) was ineffective in preventing Z. tritici growth or disease. We also demonstrated that Z. tritici is incapable of dsRNA uptake. Collectively, our data suggest that RNAi approaches for gene function analyses in this fungal species and potentially also as a control measure may not be as effective as has been demonstrated for some other plant pathogenic fungi.
Collapse
Affiliation(s)
- Graeme J. Kettles
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Bernhard J. Hofinger
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Pingsha Hu
- Syngenta Biotechnology, Inc., Research Triangle Park, NC, United States
| | - Carlos Bayon
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Jason J. Rudd
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Dirk Balmer
- Syngenta Crop Protection AG, Stein, Switzerland
| | | | | | | | - Kostya Kanyuka
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
12
|
Hou H, Hu Y, Wang Q, Xu X, Qian Y, Zhou X. Gene Expression Profiling Shows That NbFDN1 Is Involved in Modulating the Hypersensitive Response-Like Cell Death Induced by the Oat dwarf virus RepA Protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1006-1020. [PMID: 29649964 DOI: 10.1094/mpmi-12-17-0291-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we used high-throughput deep nucleotide sequencing to characterize the global transcriptional response of Nicotiana benthamiana plants to transient expression of the RepA protein from Oat dwarf virus (ODV). We identified 7,878 significantly differentially expressed genes (DEG) that mapped to 125 pathways, suggesting that comprehensive networks are involved in regulation of RepA-induced cell death. Of the 202 DEG associated with photosynthesis, expression of 195 was found to be downregulated, indicating a significant inhibition of photosynthesis in response to RepA expression, which is associated with chloroplast disruption and physiological changes. We focused our analysis on NbFDN1, a member of the ferredoxin protein family that participates in the chloroplast electron transport chain performing oxygenic photosynthesis, which was identified to directly interact with NbTsip1. We separately knocked down the expression of NbFDN1 and NbTsip1 using virus-induced gene silencing, and found that NbFDN1 silencing speeded up the development of RepA-induced cell death, unlike NbTsip1 silencing, which showed an opposite effect on RepA-induced response. Further study showed increased H2O2 accumulation and a negative correlation between the transcripts of NbFDN1 and NbTsip1 in NbFDN1-silenced plants. Hence, we speculate that NbFDN1 has an effect on RepA-induced hypersensitive response-like response by modulating NbTsip1 transcription as well as H2O2 production.
Collapse
Affiliation(s)
- Huwei Hou
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Ya Hu
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Qian Wang
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Xiongbiao Xu
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Yajuan Qian
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China; and
| | - Xueping Zhou
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China; and
- 2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| |
Collapse
|
13
|
DeBlasio SL, Rebelo AR, Parks K, Gray SM, Heck MC. Disruption of Chloroplast Function Through Downregulation of Phytoene Desaturase Enhances the Systemic Accumulation of an Aphid-Borne, Phloem-Restricted Virus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1095-1110. [PMID: 29767548 DOI: 10.1094/mpmi-03-18-0057-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Chloroplasts play a central role in pathogen defense in plants. However, most studies explaining the relationship between pathogens and chloroplasts have focused on pathogens that infect mesophyll cells. In contrast, the family Luteoviridae includes RNA viruses that replicate and traffic exclusively in the phloem. Recently, our lab has shown that Potato leafroll virus (PLRV), the type species in the genus Polerovirus, forms an extensive interaction network with chloroplast-localized proteins that is partially dependent on the PLRV capsid readthrough domain (RTD). In this study, we used virus-induced gene silencing to disrupt chloroplast function and assess the effects on PLRV accumulation in two host species. Silencing of phytoene desaturase (PDS), a key enzyme in carotenoid, chlorophyll, and gibberellic acid (GA) biosynthesis, resulted in a substantial increase in the systemic accumulation of PLRV. This increased accumulation was attenuated when plants were infected with a viral mutant that does not express the RTD. Application of GA partially suppressed the increase in virus accumulation in PDS-silenced plants, suggesting that GA signaling also plays a role in limiting PLRV infection. In addition, the fecundity of the aphid vector of PLRV was increased when fed on PDS-silenced plants relative to PLRV-infected plants.
Collapse
Affiliation(s)
- Stacy L DeBlasio
- 1 USDA-Agricultural Research Service, Ithaca, NY 14853, U.S.A
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
| | - Ana Rita Rebelo
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
| | - Katherine Parks
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
| | - Stewart M Gray
- 1 USDA-Agricultural Research Service, Ithaca, NY 14853, U.S.A
- 3 Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A
| | - Michelle C Heck
- 1 USDA-Agricultural Research Service, Ithaca, NY 14853, U.S.A
- 2 Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A.; and
- 3 Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
14
|
McGrann GRD, Brown JKM. The role of reactive oxygen in the development of Ramularia leaf spot disease in barley seedlings. ANNALS OF BOTANY 2018; 121:415-430. [PMID: 29309539 PMCID: PMC5838821 DOI: 10.1093/aob/mcx170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/07/2017] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Ramularia collo-cygni is an ascomycete fungus that colonizes barley primarily as a benign endophyte, although this interaction can become pathogenic, causing the disease Ramularia leaf spot (RLS). Factors, particularly reactive oxygen species, that resulted in the transition of the fungus from endophyte to necrotrophic parasite and the development of disease symptoms were investigated. METHODS Disease development in artificially inoculated seedlings of barley varieties varying in partial resistance to RLS was related to exposure to abiotic stress prior to inoculation. Histochemical and molecular analysis determined the effect of R. collo-cygni colonization on accumulation of reactive oxygen species and antioxidant gene expression. Development of RLS on barley lines defective in antioxidant enzymes and with altered redox status or non-functional chloroplasts was compared with the accumulation of fungal biomass to determine how these factors affect disease symptom expression. KEY RESULTS Exposure to abiotic stress increased symptom development in all susceptible and most partially resistant barley varieties, in association with greater hydrogen peroxide (H2O2) levels in leaves. Decreased activity of the antioxidant enzymes superoxide dismutase and catalase in transgenic and mutant plants had no effect on the disease transition, whereas manipulation of H2O2 levels during asymptomatic growth of the fungus increased disease symptoms in most susceptible varieties but not in partially resistant plants. Barley mutants that undergo rapid loss of green leaf area when infected by R. collo-cygni or albino mutants with non-functional chloroplasts showed reduced development of RLS symptoms. CONCLUSIONS These results imply that in seedlings the pathogenic transition of the normally endophytic fungus R. collo-cygni does not result from senescence as such, but rather is promoted by factors that result in changes to host reactive oxygen species. Barley varieties vary in the extent to which these factors promote RLS disease.
Collapse
|
15
|
Kettles GJ, Bayon C, Canning G, Rudd JJ, Kanyuka K. Apoplastic recognition of multiple candidate effectors from the wheat pathogen Zymoseptoria tritici in the nonhost plant Nicotiana benthamiana. THE NEW PHYTOLOGIST 2017; 213:338-350. [PMID: 27696417 PMCID: PMC5132004 DOI: 10.1111/nph.14215] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/19/2016] [Indexed: 05/18/2023]
Abstract
The fungus Zymoseptoria tritici is a strictly apoplastic, host-specific pathogen of wheat leaves and causal agent of septoria tritici blotch (STB) disease. All other plants are considered nonhosts, but the mechanism of nonhost resistance (NHR) to Z. tritici has not been addressed previously. We sought to develop Nicotiana benthamiana as a system to study NHR against Z. tritici. Fluorescence microscopy and quantitative reverse transcription polymerase chain reactions were used to establish the interaction between Z. tritici and N. benthamiana. Agrobacterium-mediated transient expression was used to screen putative Z. tritici effector genes for recognition in N. benthamiana, and virus-induced gene silencing (VIGS) was employed to determine the role of two receptor-like kinases (RLKs), NbBAK1 and NbSOBIR1, in Z. tritici effector recognition. Numerous Z. tritici putative effectors (14 of 63 tested) induced cell death or chlorosis in N. benthamiana. For most, phenotypes were light-dependent and required effector secretion to the leaf apoplastic space. Moreover, effector-induced host cell death was dependent on NbBAK1 and NbSOBIR1. Our results indicate widespread recognition of apoplastic effectors from a wheat-infecting fungal pathogen in a taxonomically distant nonhost plant species presumably by cell surface immune receptors. This suggests that apoplastic recognition of multiple nonadapted pathogen effectors may contribute to NHR.
Collapse
Affiliation(s)
- Graeme J. Kettles
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Carlos Bayon
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Gail Canning
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Jason J. Rudd
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| | - Kostya Kanyuka
- Department of Plant Biology & Crop ScienceRothamsted ResearchHarpendenHertfordshireAL5 2JQUK
| |
Collapse
|
16
|
Pusztahelyi T, Holb IJ, Pócsi I. Secondary metabolites in fungus-plant interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:573. [PMID: 26300892 PMCID: PMC4527079 DOI: 10.3389/fpls.2015.00573] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/13/2015] [Indexed: 05/18/2023]
Abstract
Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.
Collapse
Affiliation(s)
- Tünde Pusztahelyi
- Central Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of DebrecenDebrecen, Hungary
| | - Imre J. Holb
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Horticulture, University of DebrecenDebrecen, Hungary
- Department of Plant Pathology, Centre for Agricultural Research, Plant Protection Institute, Hungarian Academy of SciencesDebrecen, Hungary
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, Hungary
| |
Collapse
|
17
|
Rudd JJ. Previous bottlenecks and future solutions to dissecting the Zymoseptoria tritici-wheat host-pathogen interaction. Fungal Genet Biol 2015; 79:24-8. [PMID: 26092786 PMCID: PMC4502452 DOI: 10.1016/j.fgb.2015.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 11/24/2022]
Abstract
Zymoseptoria tritici (previously Mycosphaerella graminicola, teleomorph, Septoria tritici, anamorph) causes Septoria tritici blotch, one of the most economically important diseases of wheat (Triticum aestivum). The host pathogenic interaction, as currently understood, is intriguing, and may distinguish Z. tritici from many of the current models for plant pathogenic fungi. Many important questions remain which require a deeper understanding including; the nature and biological significance of the characteristic long latent periods of symptomless plant infection; how/why the fungus then effectively transitions from this to cause disease and reproduce? Elements of this transition currently resemble a putative "hijack" on plant defence but how is Z. tritici able to do this without any form of plant cell penetration? This commentary provides a summary of the recent history of research into the host-pathogen interaction, whilst highlighting some of the challenges going forwards, which will be faced by improved technologies and a growing research community.
Collapse
Affiliation(s)
- Jason J Rudd
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK.
| |
Collapse
|