1
|
Verma RK, Gondu P, Saha T, Chatterjee S. The Global Transcription Regulator XooClp Governs Type IV Pili System-Mediated Bacterial Virulence by Directly Binding to TFP-Chp Promoters to Coordinate Virulence Associated Functions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:357-369. [PMID: 38105438 DOI: 10.1094/mpmi-07-23-0100-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Type IV pili (TFP) play a crucial role in the sensing of the external environment for several bacteria. This surface sensing is essential for the lifestyle transitions of several bacteria and involvement in pathogenesis. However, the precise mechanisms underlying TFP's integration of environmental cues, particularly in regulating the TFP-Chp system and its effects on Xanthomonas physiology, social behavior, and virulence, remain poorly understood. In this study, we focused on investigating Clp, a global transcriptional regulator similar to CRP-like proteins, in Xanthomonas oryzae pv. oryzae, a plant pathogen. Our findings reveal that Clp integrates environmental cues detected through diffusible signaling factor (DSF) quorum sensing into the TFP-Chp regulatory system. It accomplishes this by directly binding to TFP-Chp promoters in conjunction with intracellular levels of cyclic-di-GMP, a ubiquitous bacterial second messenger, thereby controlling TFP expression. Moreover, Clp-mediated regulation is involved in regulating several cellular processes, including the production of virulence-associated functions. Collectively, these processes contribute to host colonization and disease initiation. Our study elucidates the intricate regulatory network encompassing Clp, environmental cues, and the TFP-Chp system, providing insights into the molecular mechanisms that drive bacterial virulence in Xanthomonas spp. These findings offer valuable knowledge regarding Xanthomonas pathogenicity and present new avenues for innovative strategies aimed at combating plant diseases caused by these bacteria. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | - Parimala Gondu
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | - Tirthankar Saha
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | | |
Collapse
|
2
|
Li K, Ma C, Xiong C, Zhou X, Mao Y, Wang Y, Liu F. Unveiling the Role of Diffusible Signal Factor-Family Quorum Sensing Signals in Regulating Behavior of Xanthomonas and Lysobacter. PHYTOPATHOLOGY 2024; 114:512-520. [PMID: 37698468 DOI: 10.1094/phyto-07-23-0264-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Diffusible signal factor (DSF) family signals represent a unique group of quorum sensing (QS) chemicals that modulate a wide range of behaviors for bacteria to adapt to different environments. However, whether DSF-mediated QS signaling acts as a public language to regulate the behavior of biocontrol and pathogenic bacteria remains unknown. In this study, we present groundbreaking evidence demonstrating that RpfFXc1 or RpfFOH11 could be a conserved DSF-family signal synthase in Xanthomonas campestris or Lysobacter enzymogenes. Interestingly, we found that both RpfFOH11 and RpfFXc1 have the ability to synthesize DSF and BDSF signaling molecules. DSF and BDSF positively regulate the biosynthesis of an antifungal factor (heat-stable antifungal factor, HSAF) in L. enzymogenes. Finally, we show that RpfFXc1 and RpfFOH11 have similar functions in regulating HSAF production in L. enzymogenes, as well as the virulence, synthesis of virulence factors, biofilm formation, and extracellular polysaccharide production in X. campestris. These findings reveal a previously uncharacterized mechanism of DSF-mediated regulation in both biocontrol and pathogenic bacteria.
Collapse
Affiliation(s)
- Kaihuai Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang 550025, China
| | - Chaoyun Ma
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Chunlan Xiong
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xue Zhou
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yahui Mao
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables/College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, China
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang 550025, China
| | - Fengquan Liu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
3
|
Lami R, Urios L, Molmeret M, Grimaud R. Quorum sensing in biofilms: a key mechanism to target in ecotoxicological studies. Crit Rev Microbiol 2023; 49:786-804. [PMID: 36334083 DOI: 10.1080/1040841x.2022.2142089] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Our environment is heavily contaminated by anthropogenic compounds, and this issue constitutes a significant threat to all life forms, including biofilm-forming microorganisms. Cell-cell interactions shape microbial community structures and functions, and pollutants that affect intercellular communications impact biofilm functions and ecological roles. There is a growing interest in environmental science fields for evaluating how anthropogenic pollutants impact cell-cell interactions. In this review, we synthesize existing literature that evaluates the impacts of quorum sensing (QS), which is a widespread density-dependent communication system occurring within many bacterial groups forming biofilms. First, we examine the perturbating effects of environmental contaminants on QS circuits; and our findings reveal that QS is an essential yet underexplored mechanism affected by pollutants. Second, our work highlights that QS is an unsuspected and key resistance mechanism that assists bacteria in dealing with environmental contamination (caused by metals or organic pollutants) and that favors bacterial growth in unfavourable environments. We emphasize the value of considering QS a critical mechanism for monitoring microbial responses in ecotoxicology. Ultimately, we determine that QS circuits constitute promising targets for innovative biotechnological approaches with major perspectives for applications in the field of environmental science.
Collapse
Affiliation(s)
- Raphaël Lami
- Sorbonne Université, USR3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer, France
- Centre National de la Recherche Scientifique, USR 3579, LBBM, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Laurent Urios
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Maëlle Molmeret
- Université de Toulon, Laboratoire MAPIEM, EA4323, Avenue de l'université, BP 20132, La Garde Cedex, France
| | - Régis Grimaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
4
|
Padhi Y, Chatterjee S. XdfA, a novel membrane-associated DedA family protein of Xanthomonas campestris, is required for optimum virulence, maintenance of magnesium, and membrane homeostasis. mBio 2023; 14:e0136123. [PMID: 37498088 PMCID: PMC10470534 DOI: 10.1128/mbio.01361-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023] Open
Abstract
Xanthomonas campestris is an important member of the Xanthomonas group of phytopathogens that causes diseases in crucifers. In X. campestris, several virulence-associated functions, including some belonging to unknown predicted functions, have been implicated in the colonization and disease processes. However, the role of many of these unknown predicted proteins in Xanthomonas-host interaction and their exact physiological function is not clearly known. In this study, we identified a novel membrane-associated protein belonging to the DedA super family, XdfA, which is required for virulence in X. campestris. The DedA family of proteins are generally ubiquitous in bacteria; however, their function and actual physiological role are largely elusive. Characterization of ∆xdfA by homology modeling, membrane localization, and physiological studies indicated that XdfA is a membrane-associated protein that plays a role in the maintenance of membrane integrity. Furthermore, functional homology modeling analysis revealed that the XdfA exhibits structural similarity to a CorA-like magnesium transporter and is required for optimum growth under low magnesium ion concentration. We report for the first time that a putative DedA family of protein in Xanthomonas is required for optimum virulence and plays a role in the maintenance of membrane-associated functions and magnesium homeostasis. IMPORTANCE Bacterial DedA family proteins are involved in a range of cellular processes such as ion transport, signal transduction, and cell division. Here, we have discussed about a novel DedA family protein XdfA in Xanthomonas campestris pv. campestris that has a role in membrane homeostasis, magnesium transport, and virulence. Understanding membrane and magnesium homeostasis will aid in our comprehension of bacterial physiology and eventually will help us devise effective antimicrobial strategies to safeguard horticulturally and agriculturally important crop plants.
Collapse
Affiliation(s)
- Yasobanta Padhi
- Laboratory of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Udupi, Karnataka, India
| | - Subhadeep Chatterjee
- Laboratory of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Wang H, Chen F, Tang G, Ke W, Wang S, Zheng D, Ruan L. A transcriptional Regulator Gar Regulates the Growth and Virulence of Xanthomonas oryzae pv. oryzae. Curr Microbiol 2023; 80:279. [PMID: 37436661 DOI: 10.1007/s00284-023-03396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is the causal agent of bacterial blight, one of the most devastating diseases of rice. Pathogenic bacteria possess numerous transcriptional regulators to participate in the regulation of cellular processes. Here, we identified a transcriptional regulator Gar (PXO_RS11965) that is involved in regulating the growth and virulence of Xoo. Notably, the knockout of gar in Xoo enhanced bacterial virulence to the host rice. RNA-sequencing analysis and quantitative β-glucuronidase (GUS) assay indicated that Gar positively regulates the expression of a σ54 factor rpoN2. Further experiments confirmed that overexpression of rpoN2 restored the phenotypic changes caused by gar deletion. Our research revealed that Gar influences bacterial growth and virulence by positively regulating the expression of rpoN2.
Collapse
Affiliation(s)
- Huihui Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fan Chen
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guiyu Tang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wenli Ke
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shasha Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dehong Zheng
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Agro-environment and Agro-product Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Lifang Ruan
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.
- College of Resources & Environment, Tibet Agriculture & Animal Husbandry University, Nyingchi, China.
| |
Collapse
|
6
|
Ogunyemi SO, Abdallah Y, Ibrahim E, Zhang Y, Bi J, Wang F, Ahmed T, Alkhalifah DHM, Hozzein WN, Yan C, Li B, Xu L. Bacteriophage-mediated biosynthesis of MnO 2NPs and MgONPs and their role in the protection of plants from bacterial pathogens. Front Microbiol 2023; 14:1193206. [PMID: 37396367 PMCID: PMC10308383 DOI: 10.3389/fmicb.2023.1193206] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/17/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Xanthomonas oryzae pv. oryzae (Xoo) is the plant pathogen of Bacterial Leaf Blight (BLB), which causes yield loss in rice. Methods In this study, the lysate of Xoo bacteriophage X3 was used to mediate the bio-synthesis of MgO and MnO2. The physiochemical features of MgONPs and MnO2NPs were observed via Ultraviolet - Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Transmission/Scanning electron microscopy (TEM/SEM), Energy dispersive spectrum (EDS), and Fourier-transform infrared spectrum (FTIR). The impact of nanoparticles on plant growth and bacterial leaf blight disease were evaluated. Chlorophyll fluorescence was used to determine whether the nanoparticles application were toxic to the plants. Results An absorption peak of 215 and 230 nm for MgO and MnO2, respectively, confirmed nanoparticle formation via UV-Vis. The crystalline nature of the nanoparticles was detected by the analysis of XRD. Bacteriological tests indicated that MgONPs and MnO2NPs sized 12.5 and 9.8 nm, respectively, had strong in vitro antibacterial effects on rice bacterial blight pathogen, Xoo. MnO2NPs were found to have the most significant antagonist effect on nutrient agar plates, while MgONPs had the most significant impact on bacterial growth in nutrient broth and on cellular efflux. Furthermore, no toxicity to plants was observed for MgONPs and MnO2NPs, indeed, MgONPs at 200 μg/mL significantly increased the quantum efficiency of PSII photochemistry on the model plant, Arabidopsis, in light (ΦPSII) compared to other interactions. Additionally, significant suppression of BLB was noted in rice seedlings amended with the synthesized MgONPs and MnO2NPs. MnO2NPs showed promotion of plant growth in the presence of Xoo compared to MgONPs. Conclusion An effective alternative for the biological production of MgONPs and MnO2NPs was reported, which serves as an effective substitute to control plant bacterial disease with no phytotoxic effect.
Collapse
Affiliation(s)
- Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yasmine Abdallah
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Plant Pathology Department, Faculty of Agriculture, Minia University, Elminya, Egypt
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yang Zhang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ji’an Bi
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Fang Wang
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
7
|
Pandey SS, Chatterjee S. Insights into the Cell-to-Cell Signaling and Iron Homeostasis in Xanthomonas Virulence and Lifestyle. PHYTOPATHOLOGY 2022; 112:209-218. [PMID: 34289715 DOI: 10.1094/phyto-11-20-0513-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Xanthomonas group of phytopathogens causes economically important diseases that lead to severe yield loss in major crops. Some Xanthomonas species are known to have an epiphytic and in planta lifestyle that is coordinated by several virulence-associated functions, cell-to-cell signaling (using diffusible signaling factor [DSF]), and environmental conditions, including iron availability. In this review, we described the role of cell-to-cell signaling by the DSF molecule and iron in the regulation of virulence-associated functions. Although DSF and iron are involved in the regulation of several virulence-associated functions, members of the Xanthomonas group of plant pathogens exhibit atypical patterns of regulation. Atypical patterns contribute to the adaptation to different lifestyles. Studies on DSF and iron biology indicate that virulence-associated functions can be regulated in completely contrasting fashions by the same signaling system in closely related xanthomonads.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| | | |
Collapse
|
8
|
Singh P, Verma RK, Chatterjee S. The diffusible signal factor synthase, RpfF, in Xanthomonas oryzae pv. oryzae is required for the maintenance of membrane integrity and virulence. MOLECULAR PLANT PATHOLOGY 2022; 23:118-132. [PMID: 34704368 PMCID: PMC8659556 DOI: 10.1111/mpp.13148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 05/12/2023]
Abstract
The Xanthomonas group of phytopathogens communicate with a fatty acid-like cell-cell signalling molecule, cis-11-2-methyl-dodecenoic acid, also known as diffusible signal factor (DSF). In the pathogen of rice, Xanthomonas oryzae pv. oryzae, DSF is involved in the regulation of several virulence-associated functions, including production and secretion of several cell wall hydrolysing type II secretion effectors. To understand the role of DSF in the secretion of type II effectors, we characterized DSF synthase-deficient (rpfF) and DSF-deficient, type II secretion (xpsE) double mutants. Mutant analysis by expression analysis, secretion assay, fatty acid analysis, and physiological studies indicated that rpfF mutants exhibit hypersecretion of several type II effectors due to a perturbed membrane and DSF is required for maintaining membrane integrity. The rpfF mutants exhibited significantly higher uptake of 1-N-phenylnapthylamine and ethidium bromide, and up-regulation of rpoE (σE ). Increasing the osmolarity of the medium could rescue the hypersecretion phenotype of the rpfF mutant. The rpfF mutant exhibited highly reduced virulence. We report for the first time that in X. oryzae pv. oryzae RpfF is involved in the maintenance of membrane integrity by playing a regulatory role in the fatty acid synthesis pathway.
Collapse
Affiliation(s)
- Prashantee Singh
- Laboratory of Plant Microbe InteractionsCentre for DNA Fingerprinting and DiagnosticsUppalIndia
- Graduate StudiesManipal Academy of Higher EducationMangaluruIndia
| | - Raj Kumar Verma
- Laboratory of Plant Microbe InteractionsCentre for DNA Fingerprinting and DiagnosticsUppalIndia
| | - Subhadeep Chatterjee
- Laboratory of Plant Microbe InteractionsCentre for DNA Fingerprinting and DiagnosticsUppalIndia
| |
Collapse
|
9
|
Samal B, Chatterjee S. Bacterial quorum sensing facilitates Xanthomonas campesteris pv. campestris invasion of host tissue to maximize disease symptoms. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6524-6543. [PMID: 33993246 DOI: 10.1093/jxb/erab211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Quorum sensing (QS) helps the Xanthomonas group of phytopathogens to infect several crop plants. The vascular phytopathogen Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot disease on Brassicaceae leaves, where a typical v-shaped lesion spans both vascular and mesophyll regions with progressive leaf chlorosis. Recently, the role of QS has been elucidated during Xcc early infection stages. However, a detailed insight into the possible role of QS-regulated bacterial invasion in host chlorophagy during late infection stages remains elusive. In this study, using QS-responsive whole-cell bioreporters of Xcc, we present a detailed chronology of QS-facilitated Xcc colonization in the mesophyll region of cabbage (Brassica oleracea) leaves. We report that QS-enabled localization of Xcc to parenchymal chloroplasts triggers leaf chlorosis and promotion of systemic infection. Our results indicate that the QS response in the Xanthomonas group of vascular phytopathogens maximizes their population fitness across host tissues to trigger stage-specific host chlorophagy and establish a systemic infection.
Collapse
Affiliation(s)
- Biswajit Samal
- Lab of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subhadeep Chatterjee
- Lab of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| |
Collapse
|
10
|
Kakkar A, Verma RK, Samal B, Chatterjee S. Interplay between the cyclic di-GMP network and the cell-cell signalling components coordinates virulence-associated functions in Xanthomonas oryzae pv. oryzae. Environ Microbiol 2021; 23:5433-5462. [PMID: 34240791 DOI: 10.1111/1462-2920.15664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) causes a serious disease of rice known as bacterial leaf blight. Several virulence-associated functions have been characterized in Xoo. However, the role of important second messenger c-di-GMP signalling in the regulation of virulence-associated functions still remains elusive in this phytopathogen. In this study we have performed an investigation of 13 c-di-GMP modulating deletion mutants to understand their contribution in Xoo virulence and lifestyle transition. We show that four Xoo proteins, Xoo2331, Xoo2563, Xoo2860 and Xoo2616, are involved in fine-tuning the in vivo c-di-GMP abundance and also play a role in the regulation of virulence-associated functions. We have further established the importance of the GGDEF domain of Xoo2563, a previously characterized c-di-GMP phosphodiesterase, in the virulence-associated functions of Xoo. Interestingly the strain harbouring the GGDEF domain deletion (ΔXoo2563GGDEF ) exhibited EPS deficiency and hypersensitivity to streptonigrin, indicative of altered iron metabolism. This is in contrast to the phenotype exhibited by an EAL overexpression strain wherein, the ΔXoo2563GGDEF exhibited other phenotypes, similar to the strain overexpressing the EAL domain. Taken together, our results indicate a complex interplay of c-di-GMP signalling with the cell-cell signalling to coordinate virulence-associated function in Xoo.
Collapse
Affiliation(s)
- Akanksha Kakkar
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | - Raj Kumar Verma
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | - Biswajit Samal
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Mangalore, Karnataka, 576104, India
| | | |
Collapse
|
11
|
Wang X, Zhang M, Loh B, Leptihn S, Ahmed T, Li B. A novel NRPS cluster, acquired by horizontal gene transfer from algae, regulates siderophore iron metabolism in Burkholderia seminalis R456. Int J Biol Macromol 2021; 182:838-848. [PMID: 33862079 DOI: 10.1016/j.ijbiomac.2021.04.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 11/27/2022]
Abstract
In an environment with limited iron levels, sufficiently high intracellular iron concentrations are critical for bacterial survival. When iron levels are low, many bacteria including those of the Burkholderia cepacia group secrete chemically diverse siderophores to capture Fe3+. The synthesis of the two main siderophores, ornibactin and pyochelin, is regulated in an iron concentration dependent manner via the regulator protein Fur. In this study, we identified a novel Nonribosomal Peptide Synthetase (NRPS) cluster in strain R456 of Burkholderia seminalis, a member of the B. cepacia group. We show that the NRPS cluster not only allows the production of a so-far undescribed siderophore, but is also required for ornibactin and pyochelin production as it is a crucial component in the signaling pathway targeting the global iron regulating effector Fur which regulates siderophore production. Furthermore, the NRPS cluster is also involved in cell motility and biofilm formation, both of which are directly dependent on iron concentration in various bacteria. Interestingly, our data suggests that this newly discovered NRPS cluster which regulates siderophore iron metabolism in bacteria was obtained by horizontal gene transfer from algae.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Muchen Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Belinda Loh
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 314400, China
| | - Sebastian Leptihn
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Hangzhou 314400, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058 Hangzhou, China.
| |
Collapse
|
12
|
Yan W, Wei Y, Fan S, Yu C, Tian F, Wang Q, Yang F, Chen H. Diguanylate Cyclase GdpX6 with c-di-GMP Binding Activity Involved in the Regulation of Virulence Expression in Xanthomonas oryzae pv. oryzae. Microorganisms 2021; 9:microorganisms9030495. [PMID: 33652966 PMCID: PMC7996900 DOI: 10.3390/microorganisms9030495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Cyclic diguanylate monophosphate (c-di-GMP) is a secondary messenger present in bacteria. The GGDEF-domain proteins can participate in the synthesis of c-di-GMP as diguanylate cyclase (DGC) or bind with c-di-GMP to function as a c-di-GMP receptor. In the genome of Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight of rice, there are 11 genes that encode single GGDEF domain proteins. The GGDEF domain protein, PXO_02019 (here GdpX6 [GGDEF-domain protein of Xoo6]) was characterized in the present study. Firstly, the DGC and c-di-GMP binding activity of GdpX6 was confirmed in vitro. Mutation of the crucial residues D403 residue of the I site in GGDEF motif and E411 residue of A site in GGDEF motif of GdpX6 abolished c-di-GMP binding activity and DGC activity of GdpX6, respectively. Additionally, deletion of gdpX6 significantly increased the virulence, swimming motility, and decreased sliding motility and biofilm formation. In contrast, overexpression of GdpX6 in wild-type PXO99A strain decreased the virulence and swimming motility, and increased sliding motility and biofilm formation. Mutation of the E411 residue but not D403 residue of the GGDEF domain in GdpX6 abolished its biological functions, indicating the DGC activity to be imperative for its biological functions. Furthermore, GdpX6 exhibited multiple subcellular localization in bacterial cells, and D403 or E411 did not contribute to the localization of GdpX6. Thus, we concluded that GdpX6 exhibits DGC activity to control the virulence, swimming and sliding motility, and biofilm formation in Xoo.
Collapse
Affiliation(s)
- Weiwei Yan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Y.); (Y.W.); (C.Y.); (F.T.); (H.C.)
- The MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Yiming Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Y.); (Y.W.); (C.Y.); (F.T.); (H.C.)
| | - Susu Fan
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Shandong Academy of Sciences, Jinan 250014, China;
| | - Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Y.); (Y.W.); (C.Y.); (F.T.); (H.C.)
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Y.); (Y.W.); (C.Y.); (F.T.); (H.C.)
| | - Qi Wang
- The MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Y.); (Y.W.); (C.Y.); (F.T.); (H.C.)
- Correspondence: ; Tel.: +86-010-62896063
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.Y.); (Y.W.); (C.Y.); (F.T.); (H.C.)
| |
Collapse
|
13
|
Dwidar M, Jang H, Sangwan N, Mun W, Im H, Yoon S, Choi S, Nam D, Mitchell RJ. Diffusible Signaling Factor, a Quorum-Sensing Molecule, Interferes with and Is Toxic Towards Bdellovibrio bacteriovorus 109J. MICROBIAL ECOLOGY 2021; 81:347-356. [PMID: 32892232 DOI: 10.1007/s00248-020-01585-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Bdellovibrio bacteriovorus 109J is a predatory bacterium which lives by predating on other Gram-negative bacteria to obtain the nutrients it needs for replication and survival. Here, we evaluated the effects two classes of bacterial signaling molecules (acyl homoserine lactones (AHLs) and diffusible signaling factor (DSF)) have on B. bacteriovorus 109J behavior and viability. While AHLs had a non-significant impact on predation rates, DSF considerably delayed predation and bdelloplast lysis. Subsequent experiments showed that 50 μM DSF also reduced the motility of attack-phase B. bacteriovorus 109J cells by 50% (38.2 ± 14.9 vs. 17 ± 8.9 μm/s). Transcriptomic analyses found that DSF caused genome-wide changes in B. bacteriovorus 109J gene expression patterns during both the attack and intraperiplasmic phases, including the significant downregulation of the flagellum assembly genes and numerous serine protease genes. While the former accounts for the reduced speeds observed, the latter was confirmed experimentally with 50 μM DSF completely blocking protease secretion from attack-phase cells. Additional experiments found that 30% of the total cellular ATP was released into the supernatant when B. bacteriovorus 109J was exposed to 200 μM DSF, implying that this QS molecule negatively impacts membrane integrity.
Collapse
Affiliation(s)
- Mohammed Dwidar
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Hyochan Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Naseer Sangwan
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Wonsik Mun
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Hansol Im
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Sora Yoon
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Sooin Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Dougu Nam
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
14
|
The HrpG/HrpX Regulon of Xanthomonads-An Insight to the Complexity of Regulation of Virulence Traits in Phytopathogenic Bacteria. Microorganisms 2021; 9:microorganisms9010187. [PMID: 33467109 PMCID: PMC7831014 DOI: 10.3390/microorganisms9010187] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/05/2022] Open
Abstract
Bacteria of the genus Xanthomonas cause a wide variety of economically important diseases in most crops. The virulence of the majority of Xanthomonas spp. is dependent on secretion and translocation of effectors by the type 3 secretion system (T3SS) that is controlled by two master transcriptional regulators HrpG and HrpX. Since their discovery in the 1990s, the two regulators were the focal point of many studies aiming to decipher the regulatory network that controls pathogenicity in Xanthomonas bacteria. HrpG controls the expression of HrpX, which subsequently controls the expression of T3SS apparatus genes and effectors. The HrpG/HrpX regulon is activated in planta and subjected to tight metabolic and genetic regulation. In this review, we cover the advances made in understanding the regulatory networks that control and are controlled by the HrpG/HrpX regulon and their conservation between different Xanthomonas spp.
Collapse
|
15
|
Antar A, Lee MA, Yoo Y, Cho MH, Lee SW. PXO_RS20535, Encoding a Novel Response Regulator, Is Required for Chemotactic Motility, Biofilm Formation, and Tolerance to Oxidative Stress in Xanthomonas oryzae pv. oryzae. Pathogens 2020; 9:pathogens9110956. [PMID: 33212951 PMCID: PMC7698356 DOI: 10.3390/pathogens9110956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 11/16/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo), a causal agent of bacterial leaf blight of rice, possesses two-component regulatory systems (TCSs) as an intracellular signaling pathway. In this study, we observed changes in virulence, biofilm formation, motility, chemotaxis, and tolerance against oxidative stress of a knockout mutant strain for the PXO_RS20535 gene, encoding an orphan response regulator (RR). The mutant strain lost virulence, produced significantly less biofilm, and showed remarkably reduced motility in swimming, swarming, and twitching. Furthermore, the mutant strain lost glucose-guided movement and showed clear diminution of growth and survival in the presence of H2O2. These results indicate that the RR protein encoded in the PXO_RS20535 gene (or a TCS mediated by the protein) is closely involved in regulation of biofilm formation, all types of motility, chemotaxis, and tolerance against reactive oxygen species (ROS) in Xoo. Moreover we found that the expression of most genes required for a type six secretion system (T6SS) was decreased in the mutant, suggesting that lack of the RR gene most likely leads to defect of T6SS in Xoo.
Collapse
Affiliation(s)
- Abdulwahab Antar
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (A.A.); (M.-A.L.); (Y.Y.); (M.-H.C.)
- Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Mi-Ae Lee
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (A.A.); (M.-A.L.); (Y.Y.); (M.-H.C.)
- Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Youngchul Yoo
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (A.A.); (M.-A.L.); (Y.Y.); (M.-H.C.)
- Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
| | - Man-Ho Cho
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (A.A.); (M.-A.L.); (Y.Y.); (M.-H.C.)
| | - Sang-Won Lee
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (A.A.); (M.-A.L.); (Y.Y.); (M.-H.C.)
- Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea
- Correspondence:
| |
Collapse
|
16
|
Vishakha K, Das S, Banerjee S, Mondal S, Ganguli A. Allelochemical catechol comprehensively impedes bacterial blight of rice caused by Xanthomonas oryzae pv. oryzae. Microb Pathog 2020; 149:104559. [PMID: 33045341 DOI: 10.1016/j.micpath.2020.104559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) induces bacterial leaf blight (BLB), is known to be the most devastating disease of rice. The present investigation for the first time explains the antibacterial, anti-biofilm, and antivirulence potential of the simplest allelochemical catechol. Bacterial viability and growth are significantly reducing in catechol treatment. Further study also reveals that catechol also inhibits primary attachment and preformed biofilm of Xoo even at half MIC concentration. The half MIC concentration of catechol also induce a significant decrease in virulence factors like swimming, swarming, exopolysaccharide, and xanthomonadin production. Next, we investigate the possible antibacterial mode of action of catechol against Xoo. Results show that, the catechol caused oxidative stress and targets cell membrane for its antibacterial activity. Whereas, in silico study reveals that, catechol binds with the catalytic domain of XanA protein and this may be consider as a reason for antibiofilm activity of catechol. Moreover, in virulence assay on rice plants, we observe significant decrement in lesion length in catechol and Xoo co-treated rice leaves as compared with only Xoo treated leaves. All the results clearly show, allelochemical catechol to be a potential compound for the antibacterial, anti-biofilm, and antivirulence agent against Xoo and consequently mitigating the BLB disease advancement in rice.
Collapse
Affiliation(s)
- Kumari Vishakha
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Shatabdi Das
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Satarupa Banerjee
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Sandhimita Mondal
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Arnab Ganguli
- Department of Microbiology, Techno India University, West Bengal EM-4 Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
17
|
Shahbaz MU, Qian S, Yun F, Zhang J, Yu C, Tian F, Yang F, Chen H. Identification of the Regulatory Components Mediated by the Cyclic di-GMP Receptor Filp and Its Interactor PilZX3 and Functioning in Virulence of Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1196-1208. [PMID: 32720873 DOI: 10.1094/mpmi-04-20-0088-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The degenerate GGDEF/EAL domain protein Filp was previously shown to function as a cyclic di-GMP (c-di-GMP) signal receptor through its specific interaction with an atypical PilZ domain protein PilZX3 (formerly PXO_02715) and that this interaction is involved in regulating virulence in Xanthomonas oryzae pv. oryzae. As a step toward understanding the regulatory role of Filp/PilZX3-mediated c-di-GMP signaling in the virulence of X. oryzae pv. oryzae, differentially expressed proteins (DEPs) downstream of Filp/PilZX3 were identified by isobaric tagging for relative and absolute quantitation (iTRAQ). A total of 2,346 proteins were identified, of which 157 displayed significant differential expression in different strains. Western blot and quantitative reverse transcription-PCR analyses showed that the expression of HrrP (histidine kinase-response regulator hybrid protein), PhrP (PhoPQ-regulated protein), ProP (prophage Lp2 protein 6) were increased in the ∆filp, ∆pilZX3, and ∆filp∆pilZX3 mutant strains, while expression of CheW1 (chemotaxis protein CheW1), EdpX2 (the second EAL domain protein identified in X. oryzae pv. oryzae), HGdpX2 (the second HD-GYP domain protein identified in X. oryzae pv. oryzae) was decreased in all mutant strains compared with that in the wild type, which was consistent with the iTRAQ data. Deletion of the hrrP and proP genes resulted in significant increases in virulence, whereas deletion of the cheW1, hGdpX2, or tdrX2 genes resulted in decreased virulence. Enzyme assays indicated that EdpX2 and HGdpX2 were active phosphodiesterases (PDEs). This study provides a proteomic description of putative regulatory pathway of Filp and PilZX3 and characterized novel factors that contributed to the virulence of X. oryzae pv. oryzae regulated by c-di-GMP signaling.
Collapse
Affiliation(s)
- Muhammad Umar Shahbaz
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Plant Pathology Section, Plant Pathology Research Institute, AARI, Faisalabad 38850, Pakistan
| | - Shanshan Qian
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fei Yun
- National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jie Zhang
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chao Yu
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fang Tian
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fenghuan Yang
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huamin Chen
- State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
18
|
An SQ, Potnis N, Dow M, Vorhölter FJ, He YQ, Becker A, Teper D, Li Y, Wang N, Bleris L, Tang JL. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol Rev 2020; 44:1-32. [PMID: 31578554 PMCID: PMC8042644 DOI: 10.1093/femsre/fuz024] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/29/2019] [Indexed: 01/15/2023] Open
Abstract
Xanthomonas is a well-studied genus of bacterial plant pathogens whose members cause a variety of diseases in economically important crops worldwide. Genomic and functional studies of these phytopathogens have provided significant understanding of microbial-host interactions, bacterial virulence and host adaptation mechanisms including microbial ecology and epidemiology. In addition, several strains of Xanthomonas are important as producers of the extracellular polysaccharide, xanthan, used in the food and pharmaceutical industries. This polymer has also been implicated in several phases of the bacterial disease cycle. In this review, we summarise the current knowledge on the infection strategies and regulatory networks controlling virulence and adaptation mechanisms from Xanthomonas species and discuss the novel opportunities that this body of work has provided for disease control and plant health.
Collapse
Affiliation(s)
- Shi-Qi An
- National Biofilms Innovation Centre (NBIC), Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Rouse Life Science Building, Auburn University, Auburn AL36849, USA
| | - Max Dow
- School of Microbiology, Food Science & Technology Building, University College Cork, Cork T12 K8AF, Ireland
| | | | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Anke Becker
- Loewe Center for Synthetic Microbiology and Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, Marburg 35032, Germany
| | - Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Yi Li
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Leonidas Bleris
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA.,Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX75080, USA
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| |
Collapse
|
19
|
Verma RK, Biswas A, Kakkar A, Lomada SK, Pradhan BB, Chatterjee S. A Bacteriophytochrome Mediates Interplay between Light Sensing and the Second Messenger Cyclic Di-GMP to Control Social Behavior and Virulence. Cell Rep 2020; 32:108202. [DOI: 10.1016/j.celrep.2020.108202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
|
20
|
Nie W, Wang S, He R, Xu Q, Wang P, Wu Y, Tian F, Yuan J, Zhu B, Chen G. A-to-I RNA editing in bacteria increases pathogenicity and tolerance to oxidative stress. PLoS Pathog 2020; 16:e1008740. [PMID: 32822429 PMCID: PMC7467310 DOI: 10.1371/journal.ppat.1008740] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/02/2020] [Accepted: 06/24/2020] [Indexed: 01/25/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is an important posttranscriptional event in eukaryotes; however, many features remain largely unexplored in prokaryotes. This study focuses on a serine-to-proline recoding event (S128P) that originated in the mRNA of fliC, which encodes a flagellar filament protein; the editing event was observed in RNA-seq samples exposed to oxidative stress. Using Sanger sequencing, we show that the S128P editing event is induced by H2O2. To investigate the in vivo interaction between RNAs and TadA, which is the principal enzyme for A-to-I editing, genome-wide RNA immunoprecipitation–coupled high-throughput sequencing (iRIP-Seq) analysis was performed using HA-tagged TadA from Xanthomonas oryzae pv. oryzicola. We found that TadA can bind to the mRNA of fliC and the binding motif is identical to that previously reported by Bar-Yaacov and colleagues. This editing event increased motility and enhanced tolerance to oxidative stress due to changes in flagellar filament structure, which was modelled in 3D and measured by TEM. The change in filament structure due to the S128P mutant increased biofilm formation, which was measured by the 3D laser scanning confocal microscopy. RNA-seq revealed that a gene cluster that contributes to siderophore biosynthesis and Fe3+ uptake was upregulated in S128P compared with WT. Based on intracellular levels of reactive oxygen species and an oxidative stress survival assay, we found that this gene cluster can contribute to the reduction of the Fenton reaction and increases biofilm formation and bacterial virulence. This oxidative stress response was also confirmed in Pseudomonas putida. Overall, our work demonstrates that A-to-I RNA editing plays a role in bacterial pathogenicity and adaptation to oxidative stress. Adenosine-to-inosine (A-to-I) RNA editing is an important posttranscriptional event in eukaryotes that has only been recently documented in bacteria. In this study, we use multiple ‘omic’ approaches to show that A-to-I RNA editing can occur in fliC, a flagellar filament protein. We show that TadA, which encodes adenosine deaminase, can directly bind to mRNA of target genes through recognition of a GACG motif. This editing event changes a single amino acid residue from serine to proline in FliC, resulting in a structural change in the flagellar filament. This posttranscriptional editing event contributes to virulence and increases tolerance to oxidative stress by enhancing biofilm formation. Our results provide insight into a new mechanism that bacterial pathogens use to adapt to oxidative stress, which can also increase virulence.
Collapse
Affiliation(s)
- Wenhan Nie
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sai Wang
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui He
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism, and SJTU-Yale Joint Center for Biostatistics and Data Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Peihong Wang
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Wu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| | - Bo Zhu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (BZ); (GC)
| | - Gongyou Chen
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (BZ); (GC)
| |
Collapse
|
21
|
Li K, Wu G, Liao Y, Zeng Q, Wang H, Liu F. RpoN1 and RpoN2 play different regulatory roles in virulence traits, flagellar biosynthesis, and basal metabolism in Xanthomonas campestris. MOLECULAR PLANT PATHOLOGY 2020; 21:907-922. [PMID: 32281725 PMCID: PMC7280030 DOI: 10.1111/mpp.12938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 05/08/2023]
Abstract
Homologous regulatory factors are widely present in bacteria, but whether homologous regulators synergistically or differentially regulate different biological functions remains mostly unknown. Here, we report that the homologous regulators RpoN1 and RpoN2 of the plant pathogen Xanthomonas campestris pv. campestris (Xcc) play different regulatory roles with respect to virulence traits, flagellar biosynthesis, and basal metabolism. RpoN2 directly regulated Xcc fliC and fliQ to modulate flagellar synthesis in X. campestris, thus affecting the swimming motility of X. campestris. Mutation of rpoN2 resulted in reduced production of biofilms and extracellular polysaccharides in Xcc. These defects may together cause reduced virulence of the rpoN2 mutant against the host plant. Moreover, we demonstrated that RpoN1 could regulate branched-chain fatty acid production and modulate the synthesis of diffusible signal factor family quorum sensing signals. Although RpoN1 and RpoN2 are homologues, the regulatory roles and biological functions of these proteins were not interchangeable. Overall, our report provides new insights into the two different molecular roles that form the basis for the transcriptional specialization of RpoN homologues.
Collapse
Affiliation(s)
- Kaihuai Li
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Guichun Wu
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Yuling Liao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural OrganismsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Quan Zeng
- Department of Plant Pathology and EcologyThe Connecticut Agricultural Experiment StationNew HavenCTUSA
| | - Haihong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural OrganismsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Fengquan Liu
- College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| |
Collapse
|
22
|
Koduru L, Kim HY, Lakshmanan M, Mohanty B, Lee YQ, Lee CH, Lee D. Genome-scale metabolic reconstruction and in silico analysis of the rice leaf blight pathogen, Xanthomonas oryzae. MOLECULAR PLANT PATHOLOGY 2020; 21:527-540. [PMID: 32068953 PMCID: PMC7060145 DOI: 10.1111/mpp.12914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/09/2019] [Accepted: 01/13/2020] [Indexed: 05/29/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a vascular pathogen that causes leaf blight in rice, leading to severe yield losses. Since the usage of chemical control methods has not been very promising for the future disease management, it is of high importance to systematically gain new insights about Xoo virulence and pathogenesis, and devise effective strategies to combat the rice disease. To do this, we reconstructed a genome-scale metabolic model of Xoo (iXOO673) and validated the model predictions using culture experiments. Comparison of the metabolic architecture of Xoo and other plant pathogens indicated that the Entner-Doudoroff pathway is a more common feature in these bacteria than previously thought, while suggesting some of the unique virulence mechanisms related to Xoo metabolism. Subsequent constraint-based flux analysis allowed us to show that Xoo modulates fluxes through gluconeogenesis, glycogen biosynthesis, and degradation pathways, thereby exacerbating the leaf blight in rice exposed to nitrogenous fertilizers, which is remarkably consistent with published experimental literature. Moreover, model-based interrogation of transcriptomic data revealed the metabolic components under the diffusible signal factor regulon that are crucial for virulence and survival in Xoo. Finally, we identified promising antibacterial targets for the control of leaf blight in rice by using gene essentiality analysis.
Collapse
Affiliation(s)
- Lokanand Koduru
- Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingapore
| | - Hyang Yeon Kim
- Department of Bioscience and BiotechnologyKonkuk UniversitySeoulRepublic of Korea
| | - Meiyappan Lakshmanan
- Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingapore
| | - Bijayalaxmi Mohanty
- Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingapore
| | - Yi Qing Lee
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| | - Choong Hwan Lee
- Department of Bioscience and BiotechnologyKonkuk UniversitySeoulRepublic of Korea
| | - Dong‐Yup Lee
- Bioprocessing Technology InstituteAgency for Science, Technology and ResearchSingapore
- School of Chemical EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
23
|
Samal B, Chatterjee S. New insight into bacterial social communication in natural host: Evidence for interplay of heterogeneous and unison quorum response. PLoS Genet 2019; 15:e1008395. [PMID: 31527910 PMCID: PMC6764700 DOI: 10.1371/journal.pgen.1008395] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/27/2019] [Accepted: 08/30/2019] [Indexed: 01/31/2023] Open
Abstract
Many microbes exhibit quorum sensing (QS) to cooperate, share and perform a social task in unison. Recent studies have shown the emergence of reversible phenotypic heterogeneity in the QS-responding pathogenic microbial population under laboratory conditions as a possible bet-hedging survival strategy. However, very little is known about the dynamics of QS-response and the nature of phenotypic heterogeneity in an actual host-pathogen interaction environment. Here, we investigated the dynamics of QS-response of a Gram-negative phytopathogen Xanthomonas pv. campestris (Xcc) inside its natural host cabbage, that communicate through a fatty acid signal molecule called DSF (diffusible signal factor) for coordination of several social traits including virulence functions. In this study, we engineered a novel DSF responsive whole-cell QS dual-bioreporter to measure the DSF mediated QS-response in Xcc at the single cell level inside its natural host plant in vivo. Employing the dual-bioreporter strain of Xcc, we show that QS non-responsive cells coexist with responsive cells in microcolonies at the early stage of the disease; whereas in the late stages, the QS-response is more homogeneous as the QS non-responders exhibit reduced fitness and are out competed by the wild-type. Furthermore, using the wild-type Xcc and its QS mutants in single and mixed infection studies, we show that QS mutants get benefit to some extend at the early stage of disease and contribute to localized colonization. However, the QS-responding cells contribute to spread along xylem vessel. These results contrast with the earlier studies describing that expected cross-induction and cooperative sharing at high cell density in vivo may lead to synchronize QS-response. Our findings suggest that the transition from heterogeneity to homogeneity in QS-response within a bacterial population contributes to its overall virulence efficiency to cause disease in the host plant under natural environment. Pathogenic bacteria synchronize and coordinate the production of virulence associated function-components in a density dependent fashion via quorum sensing. In general, QS-response and regulation has been studied under laboratory conditions in vitro, where the QS-responding bacterial population exhibits heterogeneous QS-response with the emergence of both QS responders and non-responders irrespective of their parental kind, as a possible bet hedging strategy. However, very little is known about the dynamics of QS-response inside the host. Using Xanthomonas campestris pv. campestris (Xcc) and cabbage as a model plant pathogen-host, we show that there is stage specific interplay of heterogeneous and homogeneous QS-response in the wild-type Xcc population inside the host plant. We show that at the initial stage of the disease, Xcc maintains a stochastically heterogeneous population wherein, the QS non-responders are localized locally and QS-responders contribute to the migration and spread. However at the later stage of disease, the non-responders are outcompeted by the responders, thus minimizing QS signal benefit and in turn maximizing the utilization and optimizing limited recourses in the host. Our findings suggest that the interplay of heterogeneity and homogeneity in QS-response gives a stage specific adaptive advantage in a host-pathogen natural environment.
Collapse
Affiliation(s)
- Biswajit Samal
- Lab of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telengana, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subhadeep Chatterjee
- Lab of Plant-Microbe Interactions, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telengana, India
- * E-mail:
| |
Collapse
|
24
|
Jiang S, Li H, Ahmed W, Xiang X, Song G, Cui ZN. Discovery of Ethyl 2-Nitro-3-Arylacrylates Molecules as T3SS Inhibitor Reducing the Virulence of Plant Pathogenic Bacteria Xanthomonas. Front Microbiol 2019; 10:1874. [PMID: 31481941 PMCID: PMC6710329 DOI: 10.3389/fmicb.2019.01874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/29/2019] [Indexed: 11/13/2022] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a gram-negative pathogen which causes leaf blight disease. Known traditional bactericides are not much more effective in inhibiting this bacteria than before. Selecting the virulence factor of the bacteria as the target without affecting their growth has been considered as a novel method for developing new anti-microbial drugs. Type III secretion systems (T3SS) are one of the important and highly conserved virulence factors in most gram-negative pathogens, which has been considered as an effective target to develop new anti-microbial drugs. In order to discover potential anti-microbial drugs against Xoo pathogens, a series of ethyl 2-nitro-3-arylacrylates compounds were screened. Among them, the compounds I-9, I-12, and I-13 could highly inhibit the promoter activity of a harpin gene hpa1, which were used to further check for the influence on bacterial growth and on the hypersensitive response (HR) caused by Xoo bacteria on non-host plants. The results showed that above compounds could reduce HR without affecting bacterial growth and survival. Moreover, qRT-PCR analysis indicated that treatment with the three inhibitors (I-9, I-12, and I-13) could suppress the expression of the Xoo T3SS in different extent. The mRNA levels of representative genes in the hrp cluster, including the key regulatory genes hrpG and hrpX, were decreased. Last but not least, in vivo test ensured that the above compounds reduced the disease symptoms of Xoo on the rice and Xcc on the Chinese radish.
Collapse
Affiliation(s)
- Shan Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Hui Li
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Wasim Ahmed
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Xuwen Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Gaopeng Song
- College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Zi-Ning Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Matilla MA, Krell T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev 2018; 42:4563582. [PMID: 29069367 DOI: 10.1093/femsre/fux052] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/19/2017] [Indexed: 12/26/2022] Open
Abstract
Chemotaxis enables microorganisms to move according to chemical gradients. Although this process requires substantial cellular energy, it also affords key physiological benefits, including enhanced access to growth substrates. Another important implication of chemotaxis is that it also plays an important role in infection and disease, as chemotaxis signalling pathways are broadly distributed across a variety of pathogenic bacteria. Furthermore, current research indicates that chemotaxis is essential for the initial stages of infection in different human, animal and plant pathogens. This review focuses on recent findings that have identified specific bacterial chemoreceptors and corresponding chemoeffectors associated with pathogenicity. Pathogenicity-related chemoeffectors are either host and niche-specific signals or intermediates of the host general metabolism. Plant pathogens were found to contain an elevated number of chemotaxis signalling genes and functional studies demonstrate that these genes are critical for their ability to enter the host. The expanding body of knowledge of the mechanisms underlying chemotaxis in pathogens provides a foundation for the development of new therapeutic strategies capable of blocking infection and preventing disease by interfering with chemotactic signalling pathways.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| |
Collapse
|
26
|
Kumar Verma R, Samal B, Chatterjee S. Xanthomonas oryzae pv. oryzae chemotaxis components and chemoreceptor Mcp2 are involved in the sensing of constituents of xylem sap and contribute to the regulation of virulence-associated functions and entry into rice. MOLECULAR PLANT PATHOLOGY 2018; 19:2397-2415. [PMID: 30011125 PMCID: PMC6638100 DOI: 10.1111/mpp.12718] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/08/2018] [Accepted: 06/17/2018] [Indexed: 05/26/2023]
Abstract
The Xanthomonas group of phytopathogens causes several economically important diseases in crops. In the bacterial pathogen of rice, Xanthomonas oryzae pv. oryzae (Xoo), it has been proposed that chemotaxis may play a role in the entry and colonization of the pathogen inside the host. However, components of the chemotaxis system, including the chemoreceptors involved, and their role in entry and virulence, are not well defined. In this study, we show that Xoo displays a positive chemotaxis response to components of rice xylem sap-glutamine, xylose and methionine. In order to understand the role of chemotaxis components involved in the promotion of chemotaxis, entry and virulence, we performed detailed deletion mutant analysis. Analysis of mutants defective in chemotaxis components, flagellar biogenesis, expression analysis and assays of virulence-associated functions indicated that chemotaxis-mediated signalling in Xoo is involved in the regulation of several virulence-associated functions, such as motility, attachment and iron homeostasis. The ∆cheY1 mutant of Xoo exhibited a reduced expression of genes involved in motility, adhesins, and iron uptake and metabolism. We show that the expression of Xoo chemotaxis and motility components is induced under in planta conditions and is required for entry, colonization and virulence. Furthermore, deletion analysis of a putative chemoreceptor mcp2 gene revealed that chemoreceptor Mcp2 is involved in the sensing of xylem sap and constituents of xylem exudate, including methionine, serine and histidine, and plays an important role in epiphytic entry and virulence. This is the first report of the role of chemotaxis in the virulence of this important group of phytopathogens.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Centre for DNA Fingerprinting and DiagnosticsUppal RoadHyderabad500039India
- Graduate StudiesManipal Academy of Higher EducationMangaluruKarnataka576104India
| | - Biswajit Samal
- Centre for DNA Fingerprinting and DiagnosticsUppal RoadHyderabad500039India
- Graduate StudiesManipal Academy of Higher EducationMangaluruKarnataka576104India
| | | |
Collapse
|
27
|
Phosphodiesterase EdpX1 Promotes Xanthomonas oryzae pv. oryzae Virulence, Exopolysaccharide Production, and Biofilm Formation. Appl Environ Microbiol 2018; 84:AEM.01717-18. [PMID: 30217836 DOI: 10.1128/aem.01717-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/06/2018] [Indexed: 12/22/2022] Open
Abstract
In Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, there are over 20 genes encoding GGDEF, EAL, and HD-GYP domains, which are potentially involved in the metabolism of second messenger c-di-GMP. In this study, we focused on the characterization of an EAL domain protein, EdpX1. Deletion of the edpX1 gene resulted in a 2-fold increase in the intracellular c-di-GMP levels, which were restored to the wild-type levels in the complemented ΔedpX1(pB-edpX1) strain, demonstrating that EdpX1 is an active phosphodiesterase (PDE) in X. oryzae pv. oryzae. In addition, colorimetric assays further confirmed the PDE activity of EdpX1 by showing that the E153A mutation at the EAL motif strongly reduced its activity. Virulence assays on the leaves of susceptible rice showed that the ΔedpX1 mutant was severely impaired in causing disease symptoms. In trans expression of wild-type edpX1, but not edpX1 E153A, was able to complement the weakened virulence phenotype. These results indicated that an active EAL domain is required for EdpX1 to regulate the virulence of X. oryzae pv. oryzae. We then demonstrated that the ΔedpX1 mutant was defective in secreting exopolysaccharide (EPS) and forming biofilms. The expression of edpX1 in the ΔedpX1 mutant, but not edpX1 E153A, restored the defective phenotypes to near-wild-type levels. In addition, we observed that EdpX1-green fluorescent protein (EdpX1-GFP) exhibited multiple subcellular localization foci, and this pattern was dependent on its transmembrane (TM) region, which did not seem to directly contribute to the regulatory function of EdpX1. Thus, we concluded that EdpX1 exhibits PDE activity to control c-di-GMP levels, and its EAL domain is necessary and sufficient for its regulation of virulence in X. oryzae pv. oryzae.IMPORTANCE Bacteria utilize c-di-GMP as a second messenger to regulate various biological functions. The synthesis and degradation of c-di-GMP are catalyzed by GGDEF domains and an EAL or HD-GYP domain, respectively. Multiple genes encoding these domains are often found in one bacterial strain. For example, in the genome of X. oryzae pv. oryzae PXO99A, 26 genes encoding proteins containing these domains were identified. Therefore, to fully appreciate the complexity and specificity of c-di-GMP signaling in X. oryzae pv. oryzae, the enzymatic activities and regulatory functions of each GGDEF, EAL, and HD-GYP domain protein need to be elucidated. In this study, we showed that the EAL domain protein EdpX1 is a major PDE to regulate diverse virulence phenotypes through the c-di-GMP signaling pathway.
Collapse
|
28
|
Hennessey T, Andari E, Rainnie DG. RDoC-based categorization of amygdala functions and its implications in autism. Neurosci Biobehav Rev 2018; 90:115-129. [PMID: 29660417 PMCID: PMC6250055 DOI: 10.1016/j.neubiorev.2018.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 03/09/2018] [Accepted: 04/09/2018] [Indexed: 12/28/2022]
Abstract
Confusion endures as to the exact role of the amygdala in relation to autism. To help resolve this we turned to the NIMH's Research Domain Criteria (RDoC) which provides a classification schema that identifies different categories of behaviors that can turn pathologic in mental health disorders, e.g. autism. While RDoC incorporates all the known neurobiological substrates for each domain, this review will focus primarily on the amygdala. We first consider the amygdala from an anatomical, historical, and developmental perspective. Next, we examine the different domains and constructs of RDoC that the amygdala is involved in: Negative Valence Systems, Positive Valence Systems, Cognitive Systems, Social Processes, and Arousal and Regulatory Systems. Then the evidence for a dysfunctional amygdala in autism is presented with a focus on alterations in development, prenatal valproic acid exposure as a model for ASD, and changes in the oxytocin system therein. Finally, a synthesis of RDoC, the amygdala, and autism is offered, emphasizing the task of disambiguation and suggestions for future research.
Collapse
Affiliation(s)
- Thomas Hennessey
- Department of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, United States
| | - Elissar Andari
- Silvio O. Conte Center for Oxytocin and Social Cognition, Department of Psychiatry and Behavioral Sciences, Division of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, Emory University, United States
| | - Donald G Rainnie
- Department of Behavioral Neuroscience and Psychiatric Disorders, Yerkes National Primate Research Center, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30329, United States.
| |
Collapse
|
29
|
Xie S, Zang H, Wu H, Uddin Rajer F, Gao X. Antibacterial effects of volatiles produced by Bacillus strain D13 against Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2018; 19:49-58. [PMID: 27682316 PMCID: PMC6637998 DOI: 10.1111/mpp.12494] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/29/2016] [Accepted: 09/24/2016] [Indexed: 05/26/2023]
Abstract
Recent investigations have demonstrated that bacteria employ the volatile compounds they produce during interactions with other organisms, such as plants, fungi, nematodes and bacteria. However, studies focused on the antibacterial activity of plant growth-promoting rhizobacteria (PGPR) volatiles against bacterial phytopathogens are still rare. In this study, Bacillus strain D13, which is antagonistic to Xanthomonas oryzae pv. oryzae (Xoo), was isolated and screened. Volatile compounds emitted from strain D13 reduced the colony diameter and cell motility of Xoo cultured in divided Petri plates. Transmission electron micrograph analysis showed concentration in cytoplasm and altered surface morphology in the majority of Xanthomonas cells after co-cultivation with strain D13. Transcriptional expression of virulence-associated genes in Xoo was repressed. Based on gas chromatography/mass spectrometry (GC/MS) analysis, 12 volatile compounds specifically produced by strain D13 were identified. Among them, decyl alcohol and 3,5,5-trimethylhexanol inhibited the growth of Xoo at minimum inhibitory amounts of 0.48 and 2.4 mg, respectively. Furthermore, transcriptional expression of virulence-associated genes was also repressed by decyl alcohol and 3,5,5-trimethylhexanol. These results are useful for a better understanding of the biocontrol mechanisms of Bacillus.
Collapse
Affiliation(s)
- Shanshan Xie
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Haoyu Zang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Faheem Uddin Rajer
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of EducationNanjing210095China
| |
Collapse
|
30
|
Liang X, Yu X, Pan X, Wu J, Duan Y, Wang J, Zhou M. A thiadiazole reduces the virulence of Xanthomonas oryzae pv. oryzae by inhibiting the histidine utilization pathway and quorum sensing. MOLECULAR PLANT PATHOLOGY 2018; 19:116-128. [PMID: 27756112 PMCID: PMC6638098 DOI: 10.1111/mpp.12503] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 05/08/2023]
Abstract
Thiazole, isothiazole, thiadiazole and their derivatives are widely thought to induce host defences against plant pathogens. In this article, we report that bismerthiazol, a thiadiazole molecule, reduces disease by inhibiting the histidine utilization (Hut) pathway and quorum sensing (QS). Bismerthiazol provides excellent control of bacterial rice leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo), but does not greatly inhibit Xoo growth in vitro. According to RNA-sequencing analysis, the transcription of the Hut pathway genes of Xoo ZJ173 was inhibited after 4.5 and 9.0 h of bismerthiazol treatment. Functional studies of hutG and hutU indicated that the Hut pathway had little effect on the growth and bismerthiazol sensitivity of Xoo in vitro, but significantly reduced the aggregation of Xoo cells. Deletion mutants of hutG or hutU were more motile, produced less biofilm and were less virulent than the wild-type, indicating that the Hut pathway is involved in QS and contributes to virulence. The overexpression of the hutG-U operons in ZJ173 reduced Xoo control by bismerthiazol. Bismerthiazol did not inhibit the transcription of Hut pathway genes, QS or virulence of the bismerthiazol-resistant strain 2-1-1. The results indicate that bismerthiazol reduces Xoo virulence by inhibiting the Hut pathway and QS.
Collapse
Affiliation(s)
- Xiaoyu Liang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Xiaoyue Yu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Xiayan Pan
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Jian Wu
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Yabing Duan
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Jianxin Wang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of PesticideJiangsu ProvinceNanjing210095China
| |
Collapse
|
31
|
Fan S, Tian F, Li J, Hutchins W, Chen H, Yang F, Yuan X, Cui Z, Yang C, He C. Identification of phenolic compounds that suppress the virulence of Xanthomonas oryzae on rice via the type III secretion system. MOLECULAR PLANT PATHOLOGY 2017; 18:555-568. [PMID: 27084974 PMCID: PMC6638228 DOI: 10.1111/mpp.12415] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The targeting of bacterial type III secretion systems (T3SSs), which are critical virulence factors in most Gram-negative pathogens, is regarded as an alternative strategy for the development of novel anti-microbial drugs. Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc) are two of the most important bacterial pathogens on rice, which cause leaf blight and leaf streak diseases, respectively. To identify potential anti-virulence drugs against these two pathogens, we screened a library of plant phenolic compounds and derivatives for their effects on the Xoo T3SS. Ten of 56 compounds significantly inhibited the promoter activity of a harpin gene, hpa1. These inhibitors were further tested for their impact on the hypersensitive response (HR) caused by Xoo on non-host tobacco plants. The results showed that pretreatment of Xoo with TS006 (o-coumaric acid, OCA), TS010, TS015 and TS018 resulted in significantly attenuated HR without affecting bacterial growth or survival. In addition, Cya translocation assays demonstrated that the translocation of two T3 effectors was suppressed by the four inhibitors. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that mRNA levels of representative genes in the hrp (hypersensitive response and pathogenicity) cluster, as well as the regulatory genes hrpG and hrpX, were reduced by treatment with the four inhibitors, suggesting that expression of the Xoo T3SS was suppressed. The expression of other virulence factors was not suppressed, which indicated possible T3SS-specific inhibition. Finally, we demonstrated that these inhibitors reduced the disease symptoms of Xoo and Xoc on the rice cultivar (Oryza sativa) IR24 to varying extents.
Collapse
Affiliation(s)
- Susu Fan
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - Jianyu Li
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - William Hutchins
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI 53211USA
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - Fenghuan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| | - Xiaochen Yuan
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI 53211USA
| | - Zining Cui
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Ching‐Hong Yang
- Department of Biological SciencesUniversity of Wisconsin‐MilwaukeeMilwaukeeWI 53211USA
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect PestsInstitute of Plant Protection, Chinese Academy of Agricultural SciencesBeijing100193China
| |
Collapse
|
32
|
Pandey SS, Patnana PK, Lomada SK, Tomar A, Chatterjee S. Co-regulation of Iron Metabolism and Virulence Associated Functions by Iron and XibR, a Novel Iron Binding Transcription Factor, in the Plant Pathogen Xanthomonas. PLoS Pathog 2016; 12:e1006019. [PMID: 27902780 PMCID: PMC5130282 DOI: 10.1371/journal.ppat.1006019] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/21/2016] [Indexed: 02/01/2023] Open
Abstract
Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur) functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named Xanthomonas iron binding regulator) of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc). Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon's involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in Xanthomonads in response to iron availability. Our results provide insight of the complex regulatory mechanism of fine-tuning of virulence associated functions with iron availability in this important group of phytopathogen.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Centre for DNA Fingerprinting and Diagnostics, Nampally, India
- Graduate studies, Manipal University, Manipal, India
| | | | | | - Archana Tomar
- Centre for DNA Fingerprinting and Diagnostics, Nampally, India
| | | |
Collapse
|
33
|
Wang XY, Zhou L, Yang J, Ji GH, He YW. The RpfB-Dependent Quorum Sensing Signal Turnover System Is Required for Adaptation and Virulence in Rice Bacterial Blight Pathogen Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:220-30. [PMID: 26667598 DOI: 10.1094/mpmi-09-15-0206-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, produces diffusible signal factor (DSF) family quorum sensing signals to regulate virulence. The biosynthesis and perception of DSF family signals require components of the rpf (regulation of pathogenicity factors) cluster. In this study, we report that RpfB plays an essential role in DSF family signal turnover in X. oryzae pv. oryzae PXO99A. The production of DSF family signals was boosted by deletion of the rpfB gene and was abolished by its overexpression. The RpfC/RpfG-mediated DSF signaling system negatively regulates rpfB expression via the global transcription regulator Clp, whose activity is reversible in the presence of cyclic diguanylate monophosphate. These findings indicate that the DSF family signal turnover system in PXO99A is generally consistent with that in Xanthomonas campestris pv. campestris. Moreover, this study has revealed several specific roles of RpfB in PXO99A. First, the rpfB deletion mutant produced high levels of DSF family signals but reduced extracellular polysaccharide production, extracellular amylase activity, and attenuated pathogenicity. Second, the rpfB/rpfC double-deletion mutant was partially deficient in xanthomonadin production. Taken together, the RpfB-dependent DSF family signal turnover system is a conserved and naturally presenting signal turnover system in Xanthomonas spp., which plays unique roles in X. oryzae pv. oryzae adaptation and pathogenesis.
Collapse
Affiliation(s)
- Xing-Yu Wang
- 1 State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lian Zhou
- 1 State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Yang
- 2 College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Guang-Hai Ji
- 2 College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Ya-Wen He
- 1 State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
34
|
Gordon JL, Lefeuvre P, Escalon A, Barbe V, Cruveiller S, Gagnevin L, Pruvost O. Comparative genomics of 43 strains of Xanthomonas citri pv. citri reveals the evolutionary events giving rise to pathotypes with different host ranges. BMC Genomics 2015; 16:1098. [PMID: 26699528 PMCID: PMC4690215 DOI: 10.1186/s12864-015-2310-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/15/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The identification of factors involved in the host range definition and evolution is a pivotal challenge in the goal to predict and prevent the emergence of plant bacterial disease. To trace the evolution and find molecular differences between three pathotypes of Xanthomonas citri pv. citri that may explain their distinctive host ranges, 42 strains of X. citri pv. citri and one outgroup strain, Xanthomonas citri pv. bilvae were sequenced and compared. RESULTS The strains from each pathotype form monophyletic clades, with a short branch shared by the A(w) and A pathotypes. Pathotype-specific recombination was detected in seven regions of the alignment. Using Ancestral Character Estimation, 426 SNPs were mapped to the four branches at the base of the A, A*, A(w) and A/A(w) clades. Several genes containing pathotype-specific nonsynonymous mutations have functions related to pathogenicity. The A pathotype is enriched for SNP-containing genes involved in defense mechanisms, while A* is significantly depleted for genes that are involved in transcription. The pathotypes differ by four gene islands that largely coincide with regions of recombination and include genes with a role in virulence. Both A* and A(w) are missing genes involved in defense mechanisms. In contrast to a recent study, we find that there are an extremely small number of pathotype-specific gene presences and absences. CONCLUSIONS The three pathotypes of X. citri pv. citri that differ in their host ranges largely show genomic differences related to recombination, horizontal gene transfer and single nucleotide polymorphism. We detail the phylogenetic relationship of the pathotypes and provide a set of candidate genes involved in pathotype-specific evolutionary events that could explain to the differences in host range and pathogenicity between them.
Collapse
Affiliation(s)
- Jonathan L Gordon
- Université de la Réunion, UMR PVBMT, 97410, Saint-Pierre, La Réunion, France.
- Current Address: CIRAD, UMR CMAEE, F-97170, Petit-Bourg, Guadeloupe, France.
| | | | - Aline Escalon
- CIRAD, UMR PVBMT, 97410, Saint-Pierre, La Réunion, France.
| | - Valérie Barbe
- CEA/DSV/IG/Genoscope, 2 rue Gaston Crémieux, BP5706, 91057, Evry, France.
| | | | - Lionel Gagnevin
- CIRAD, UMR PVBMT, 97410, Saint-Pierre, La Réunion, France.
- Current Address: UMR IPME, IRD-CIRAD-Université Montpellier, 34394, Montpellier, France.
| | | |
Collapse
|
35
|
Kakkar A, Nizampatnam NR, Kondreddy A, Pradhan BB, Chatterjee S. Xanthomonas campestris cell-cell signalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6697-714. [PMID: 26248667 PMCID: PMC4623683 DOI: 10.1093/jxb/erv377] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Several secreted and surface-associated conserved microbial molecules are recognized by the host to mount the defence response. One such evolutionarily well-conserved bacterial process is the production of cell-cell signalling molecules which regulate production of multiple virulence functions by a process known as quorum sensing. Here it is shown that a bacterial fatty acid cell-cell signalling molecule, DSF (diffusible signal factor), elicits innate immunity in plants. The DSF family of signalling molecules are highly conserved among many phytopathogenic bacteria belonging to the genus Xanthomonas as well as in opportunistic animal pathogens. Using Arabidopsis, Nicotiana benthamiana, and rice as model systems, it is shown that DSF induces a hypersensitivity reaction (HR)-like response, programmed cell death, the accumulation of autofluorescent compounds, hydrogen peroxide production, and the expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Furthermore, production of the DSF signalling molecule in Pseudomonas syringae, a non-DSF-producing plant pathogen, induces the innate immune response in the N. benthamiana host plant and also affects pathogen growth. By pre- and co-inoculation of DSF, it was demonstrated that the DSF-induced plant defence reduces disease severity and pathogen growth in the host plant. In this study, it was further demonstrated that wild-type Xanthomonas campestris suppresses the DSF-induced innate immunity by secreting xanthan, the main component of extracellular polysaccharide. The results indicate that plants have evolved to recognize a widely conserved bacterial communication system and may have played a role in the co-evolution of host recognition of the pathogen and the communication machinery.
Collapse
Affiliation(s)
- Akanksha Kakkar
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India Graduate studies, Manipal University, Manipal, India
| | | | - Anil Kondreddy
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India
| | - Binod Bihari Pradhan
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India
| | - Subhadeep Chatterjee
- Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad 500001, India
| |
Collapse
|
36
|
Barel V, Chalupowicz L, Barash I, Sharabani G, Reuven M, Dror O, Burdman S, Manulis-Sasson S. Virulence and in planta movement of Xanthomonas hortorum pv. pelargonii are affected by the diffusible signal factor (DSF)-dependent quorum sensing system. MOLECULAR PLANT PATHOLOGY 2015; 16:710-23. [PMID: 25530086 PMCID: PMC6638389 DOI: 10.1111/mpp.12230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Xanthomonas hortorum pv. pelargonii (Xhp), the causal agent of bacterial blight in pelargonium, is the most threatening bacterial disease of this ornamental worldwide. To gain an insight into the regulation of virulence in Xhp, we have disrupted the quorum sensing (QS) genes, which mediate the biosynthesis and sensing of the diffusible signal factor (DSF). Mutations in rpfF (encoding the DSF synthase) and rpfC (encoding the histidine sensor kinase of the two-component system RfpC/RpfG) and overexpression of rpfF showed a significant reduction in incidence and severity of the disease on pelargonium. Confocal laser scanning microscopy images of inoculated plants with a green fluorescent protein (GFP)-labelled wild-type strain showed that the pathogen is homogeneously dispersed in the lumen of xylem vessels, reaching the apex and invading the intercellular spaces of the leaf mesophyll tissue within 21 days. In contrast, the rpfF and rpfC knockout mutants, as well as the rpfF-overexpressing strain, remained confined to the vicinity of the inoculation site. The rpfF and rpfC mutants formed large incoherent aggregates in the xylem vessels that might interfere with upward movement of the bacterium within the plant. Both mutants also formed extended aggregates under in vitro conditions, whereas the wild-type strain formed microcolonies. Expression levels of putative virulence genes in planta were substantially reduced within 48 h after inoculation with the QS mutants when compared with the wild-type. The results presented indicate that an optimal DSF concentration is crucial for successful colonization and virulence of Xhp in pelargonium.
Collapse
Affiliation(s)
- Victoria Barel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Laura Chalupowicz
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - Isaac Barash
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 61390, Israel
| | - Galit Sharabani
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - Michal Reuven
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - Orit Dror
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Shulamit Manulis-Sasson
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Center, Bet Dagan, 50250, Israel
| |
Collapse
|
37
|
Li H, Yu C, Chen H, Tian F, He C. PXO_00987, a putative acetyltransferase, is required for flagellin glycosylation, and regulates flagellar motility, exopolysaccharide production, and biofilm formation in Xanthomonas oryzae pv. oryzae. Microb Pathog 2015; 85:50-7. [PMID: 26065383 DOI: 10.1016/j.micpath.2015.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/27/2015] [Accepted: 06/05/2015] [Indexed: 10/23/2022]
Abstract
Acetyltransferases catalyze an important process for sugar or protein modification. In the genome of Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight of rice, there are 32 acetyltransferase-encoding genes belonging to different families. In this work, we focused on PXO_00987, which encodes a putative acetyltransferase in the flagellar regulon. We found that mutation of PXO_00987 gene abolished the glycosylation of wild-type flagellin protein of Xoo. In addition, the PXO_00987 mutant showed enhanced swimming motility, and decreased exopolysaccharide production and biofilm formation. Virulence assays demonstrated that the PXO_00987 mutant caused shorter disease length on rice leaves, suggesting that the function of PXO_00987 contributes to the pathogenesis of Xoo.
Collapse
Affiliation(s)
- Haiyun Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chao Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fang Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Chenyang He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
38
|
Song Z, Zhao Y, Zhou X, Wu G, Zhang Y, Qian G, Liu F. Identification and Characterization of Two Novel DSF-Controlled Virulence-Associated Genes Within the nodB-rhgB Locus of Xanthomonas oryzae pv. oryzicola Rs105. PHYTOPATHOLOGY 2015; 105:588-596. [PMID: 26020828 DOI: 10.1094/phyto-07-14-0190-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Xanthomonas oryzae pv. oryzicola and X. oryzae pv. oryzae are two pathovars of X. oryzae that cause leaf streak and blight in rice, respectively. These two bacterial pathogens cause different disease symptoms by utilizing different infection sites on rice. Compared with X. oryzae pv. oryzae, the molecular virulence mechanism of X. oryzae pv. oryzicola remains largely unknown. Previously, we identified a unique diffusible signal factor (DSF)-controlled virulence-related gene (hshB) in X. oryzae pv. oryzicola Rs105 located in the nodB-rghB locus, which is absent in X. oryzae pv. oryzae PXO99(A). In the present study, we identified two additional genes within this locus (hshA and hshC) that were unique to X. oryzae pv. oryzicola Rs105 compared with X. oryzae pv. oryzae PXO99(A), and we found that the transcription of these genes was regulated by DSF signaling in X. oryzae pv. oryzicola. The mutation of these genes impaired the virulence of the wild-type Rs105 when using a low inoculation density of X. oryzae pv. oryzicola. In contrast to hshB, the mutation of these genes did not have any visible effect on characterized virulence-related functions, including in vitro growth, extracellular polysaccharide production, extracellular protease activity, and antioxidative ability. However, we found that mutation of hshA or hshC significantly reduced the in planta growth ability and epiphytic survival level of X. oryzae pv. oryzicola cells, which was the probable mechanisms of involvement of these two genes in virulence. Collectively, our studies of X. oryzae pv. oryzicola have identified two novel DSF-controlled virulence-associated genes (hshA and hshC), which will add to our understanding of the regulatory mechanisms of conserved DSF virulence signaling in Xanthomonas species.
Collapse
Affiliation(s)
- Zhiwei Song
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Yancun Zhao
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Xingyang Zhou
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Guichun Wu
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Yuqiang Zhang
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Guoliang Qian
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Fengquan Liu
- First, third, fourth, fifth, sixth, and seventh authors: College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, China; and second and seventh authors: Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| |
Collapse
|
39
|
Rai R, Javvadi S, Chatterjee S. Cell-cell signalling promotes ferric iron uptake inXanthomonas oryzaepv.oryzicolathat contribute to its virulence and growth inside rice. Mol Microbiol 2015; 96:708-27. [DOI: 10.1111/mmi.12965] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2015] [Indexed: 01/25/2023]
Affiliation(s)
- Rikky Rai
- Centre for DNA Fingerprinting and Diagnostics; Nampally Hyderabad 500001 India
- Graduate studies; Manipal University; India
| | | | | |
Collapse
|
40
|
Xu J, Zhou L, Venturi V, He YW, Kojima M, Sakakibari H, Höfte M, De Vleesschauwer D. Phytohormone-mediated interkingdom signaling shapes the outcome of rice-Xanthomonas oryzae pv. oryzae interactions. BMC PLANT BIOLOGY 2015; 15:10. [PMID: 25605284 PMCID: PMC4307914 DOI: 10.1186/s12870-014-0411-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/30/2014] [Indexed: 05/25/2023]
Abstract
BACKGROUND Small-molecule hormones are well known to play key roles in the plant immune signaling network that is activated upon pathogen perception. In contrast, little is known about whether phytohormones also directly influence microbial virulence, similar to what has been reported in animal systems. RESULTS In this paper, we tested the hypothesis that hormones fulfill dual roles in plant-microbe interactions by orchestrating host immune responses, on the one hand, and modulating microbial virulence traits, on the other. Employing the rice-Xanthomonas oryzae pv. oryzae (Xoo) interaction as a model system, we show that Xoo uses the classic immune hormone salicylic acid (SA) as a trigger to activate its virulence-associated quorum sensing (QS) machinery. Despite repressing swimming motility, sodium salicylate (NaSA) induced production of the Diffusible Signal Factor (DSF) and Diffusible Factor (DF) QS signals, with resultant accumulation of xanthomonadin and extracellular polysaccharides. In contrast, abscisic acid (ABA), which favors infection by Xoo, had little impact on DF- and DSF-mediated QS, but promoted bacterial swimming via the LuxR solo protein OryR. Moreover, we found both DF and DSF to influence SA- and ABA-responsive gene expression in planta. CONCLUSIONS Together our findings indicate that the rice SA and ABA signaling pathways cross-communicate with the Xoo DF and DSF QS systems and underscore the importance of bidirectional interkingdom signaling in molding plant-microbe interactions.
Collapse
Affiliation(s)
- Jing Xu
- Lab of Phytopathology, Department of Crop Protection, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Lian Zhou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy.
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| | - Hitoshi Sakakibari
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| | - Monica Höfte
- Lab of Phytopathology, Department of Crop Protection, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - David De Vleesschauwer
- Lab of Phytopathology, Department of Crop Protection, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
41
|
Two different rpf clusters distributed among a population of Stenotrophomonas maltophilia clinical strains display differential diffusible signal factor production and virulence regulation. J Bacteriol 2014; 196:2431-42. [PMID: 24769700 DOI: 10.1128/jb.01540-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The quorum-sensing (QS) system present in the emerging nosocomial pathogen Stenotrophomonas maltophilia is based on the signaling molecule diffusible signal factor (DSF). Production and detection of DSF are governed by the rpf cluster, which encodes the synthase RpfF and the sensor RpfC, among other components. Despite a well-studied system, little is known about its implication in virulence regulation in S. maltophilia. Here, we have analyzed the rpfF gene from 82 S. maltophilia clinical isolates. Although rpfF was found to be present in all of the strains, it showed substantial variation, with two populations (rpfF-1 and rpfF-2) clearly distinguishable by the N-terminal region of the protein. Analysis of rpfC in seven complete genome sequences revealed a corresponding variability in the N-terminal transmembrane domain of its product, suggesting that each RpfF variant has an associated RpfC variant. We show that only RpfC-RpfF-1 variant strains display detectable DSF production. Heterologous rpfF complementation of ΔrpfF mutants of a representative strain of each variant suggests that RpfF-2 is, however, functional and that the observed DSF-deficient phenotype of RpfC-RpfF-2 variant strains is due to permanent repression of RpfF-2 by RpfC-2. This is corroborated by the ΔrpfC mutant of the RpfC-RpfF-2 representative strain. In line with this observations, deletion of rpfF from the RpfC-RpfF-1 strain leads to an increase in biofilm formation, a decrease in swarming motility, and relative attenuation in the Caenorhabditis elegans and zebrafish infection models, whereas deletion of the same gene from the representative RpfC-RpfF-2 strain has no significant effect on these virulence-related phenotypes.
Collapse
|
42
|
Pradhan BB, Chatterjee S. Reversible non-genetic phenotypic heterogeneity in bacterial quorum sensing. Mol Microbiol 2014; 92:557-69. [DOI: 10.1111/mmi.12575] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Binod B. Pradhan
- Centre for DNA Fingerprinting and Diagnostics; Nampally Hyderabad 500001 India
| | | |
Collapse
|
43
|
Qian G, Xu F, Venturi V, Du L, Liu F. Roles of a solo LuxR in the biological control agent Lysobacter enzymogenes strain OH11. PHYTOPATHOLOGY 2014; 104:224-31. [PMID: 24111575 PMCID: PMC4161204 DOI: 10.1094/phyto-07-13-0188-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lysobacter enzymogenes is a ubiquitous plant-associated and environmentally friendly bacterium emerging as a novel biological control agent of plant disease. This bacterium produces diverse antifungal factors, such as lytic enzymes and a secondary metabolite (heat-stable antifungal factor [HSAF]) having antifungal activity with a novel structure and mode of action. The regulatory mechanisms for biosynthesis of antifungal factors is largely unknown in L. enzymogenes. The solo LuxR proteins have been shown to be widespread, playing important roles in plant-associated bacteria. Here, we cloned and studied a solo LuxR protein, LesR, from L. enzymogenes strain OH11. Overexpression but not deletion of lesR significantly impaired HSAF biosynthesis levels and antimicrobial activities but did not show visible effect on production of major lytic enzymes. Overexpression of lesR also led to remarkably accelerated cell aggregation and induced production of a melanin-like pigment in L. enzymogenes; these two phenotypes are mediated by the diffusible factor cell-to-cell signaling system of L. enzymogenes. The C-terminus helix-turn-helix domain was shown to be critical for several lesR-controlled functions. Overall, our study provides the first example of the roles and mechanisms of a solo LuxR protein in a plant-associated L. enzymogenes.
Collapse
Affiliation(s)
- Guoliang Qian
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education
| | - Feifei Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Fengquan Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China/Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education
- To whom correspondence should be addressed. Tel: +86-25-84396726. Fax: +86-25-84395325.
| |
Collapse
|
44
|
Ionescu M, Baccari C, Da Silva AM, Garcia A, Yokota K, Lindow SE. Diffusible signal factor (DSF) synthase RpfF of Xylella fastidiosa is a multifunction protein also required for response to DSF. J Bacteriol 2013; 195:5273-84. [PMID: 24056101 PMCID: PMC3837960 DOI: 10.1128/jb.00713-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/13/2013] [Indexed: 11/20/2022] Open
Abstract
Xylella fastidiosa, like related Xanthomonas species, employs an Rpf cell-cell communication system consisting of a diffusible signal factor (DSF) synthase, RpfF, and a DSF sensor, RpfC, to coordinate expression of virulence genes. While phenotypes of a ΔrpfF strain in Xanthomonas campestris could be complemented by its own DSF, the DSF produced by X. fastidiosa (XfDSF) did not restore expression of the XfDSF-dependent genes hxfA and hxfB to a ΔrpfF strain of X. fastidiosa, suggesting that RpfF is involved in XfDSF sensing or XfDSF-dependent signaling. To test this conjecture, rpfC and rpfF of X. campestris were replaced by those of X. fastidiosa, and the contribution of each gene to the induction of a X. campestris DSF-dependent gene was assessed. As in X. fastidiosa, XfDSF-dependent signaling required both X. fastidiosa proteins RpfF and RpfC. RpfF repressed RpfC signaling activity, which in turn was derepressed by XfDSF. A mutated X. fastidiosa RpfF protein with two substitutions of glutamate to alanine in its active site was incapable of XfDSF production yet enabled a response to XfDSF, indicating that XfDSF production and the response to XfDSF are two separate functions in which RpfF is involved. This mutant was also hypervirulent to grape, demonstrating the antivirulence effects of XfDSF itself in X. fastidiosa. The Rpf system of X. fastidiosa is thus a novel example of a quorum-sensing signal synthase that is also involved in the response to the signal molecule that it synthesizes.
Collapse
Affiliation(s)
- Michael Ionescu
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Clelia Baccari
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Aline Maria Da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Angelica Garcia
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Kenji Yokota
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, Tokyo, Japan
| | - Steven E. Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
45
|
Prediction and characterization of protein-protein interaction network in Xanthomonas oryzae pv. oryzae PXO99 A. Res Microbiol 2013; 164:1035-44. [PMID: 24113387 DOI: 10.1016/j.resmic.2013.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/04/2013] [Indexed: 11/22/2022]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight disease in rice, is one of the most serious plant pathogens worldwide. In the current analysis, we constructed a protein-protein interaction network of Xoo strain PXO99(A) with two computational approaches (interolog method and domain combination method), and verified by K-Nearest Neighbors classification method. The predicted PPI network of Xoo PXO99(A) contains 36,886 interactions among 1988 proteins. KNN verification and GO annotation confirm the reliability of the network. Detailed analysis of flagellar synthesis and chemotaxis system shows that σ factors (especially σ(28), σ(54)) in Xoo PXO99(A) are very important for flagellar synthesis and motility, and transcription factors RpoA, RpoB and RpoC are hubs to connect most σ factors. Furthermore, Xoo PXO99(A) may have both cAMP and c-di-GMP signal transduction system, and the latter is especially important for this plant pathogen. This study therefore provides valuable clues to explore the pathogenicity and metabolic regulation of Xoo PXO99(A).
Collapse
|
46
|
Lysobacter enzymogenes uses two distinct cell-cell signaling systems for differential regulation of secondary-metabolite biosynthesis and colony morphology. Appl Environ Microbiol 2013; 79:6604-16. [PMID: 23974132 DOI: 10.1128/aem.01841-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lysobacter enzymogenes is a ubiquitous environmental bacterium that is emerging as a potentially novel biological control agent and a new source of bioactive secondary metabolites, such as the heat-stable antifungal factor (HSAF) and photoprotective polyene pigments. Thus far, the regulatory mechanism(s) for biosynthesis of these bioactive secondary metabolites remains largely unknown in L. enzymogenes. In the present study, the diffusible signal factor (DSF) and diffusible factor (DF)-mediated cell-cell signaling systems were identified for the first time from L. enzymogenes. The results show that both Rpf/DSF and DF signaling systems played critical roles in modulating HSAF biosynthesis in L. enzymogenes. Rpf/DSF signaling and DF signaling played negative and positive effects in polyene pigment production, respectively, with DF playing a more important role in regulating this phenotype. Interestingly, only Rpf/DSF, but not the DF signaling system, regulated colony morphology of L. enzymgenes. Both Rpf/DSF and DF signaling systems were involved in the modulation of expression of genes with diverse functions in L. enzymogenes, and their own regulons exhibited only a few loci that were regulated by both systems. These findings unveil for the first time new roles of the Rpf/DSF and DF signaling systems in secondary metabolite biosynthesis of L. enzymogenes.
Collapse
|
47
|
Ham JH. Intercellular and intracellular signalling systems that globally control the expression of virulence genes in plant pathogenic bacteria. MOLECULAR PLANT PATHOLOGY 2013; 14. [PMID: 23186372 PMCID: PMC6638695 DOI: 10.1111/mpp.12005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant pathogenic bacteria utilize complex signalling systems to control the expression of virulence genes at the cellular level and within populations. Quorum sensing (QS), an important intercellular communication mechanism, is mediated by different types of small molecules, including N-acyl homoserine lactones (AHLs), fatty acids and small proteins. AHL-mediated signalling systems dependent on the LuxI and LuxR family proteins play critical roles in the virulence of a wide range of Gram-negative plant pathogenic bacteria belonging to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Xanthomonas spp. and Xylella fastidiosa, members of the Gammaproteobacteria, however, possess QS systems that are mediated by fatty acid-type diffusible signal factors (DSFs). Recent studies have demonstrated that Ax21, a 194-amino-acid protein in Xanthomonas oryzae pv. oryzae, plays dual functions in activating a rice innate immune pathway through binding to the rice XA21 pattern recognition receptor and in regulating bacterial virulence and biofilm formation as a QS signal molecule. In xanthomonads, DSF-mediated QS systems are connected with the signalling pathways mediated by cyclic diguanosine monophosphate (c-di-GMP), which functions as a second messenger for the control of virulence gene expression in these bacterial pathogens.
Collapse
Affiliation(s)
- Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
| |
Collapse
|
48
|
The HD-GYP domain protein RpfG of Xanthomonas oryzae pv. oryzicola regulates synthesis of extracellular polysaccharides that contribute to biofilm formation and virulence on rice. PLoS One 2013; 8:e59428. [PMID: 23544067 PMCID: PMC3609779 DOI: 10.1371/journal.pone.0059428] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/14/2013] [Indexed: 11/19/2022] Open
Abstract
Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most important diseases in rice. However, little is known about the pathogenicity mechanisms of Xoc. Here we have investigated the function of three HD-GYP domain regulatory proteins in biofilm formation, the synthesis of virulence factors and virulence of Xoc. Deletion of rpfG resulted in altered production of extracellular polysaccharides (EPS), abolished virulence on rice and enhanced biofilm formation, but had little effect on the secretion of proteases and motility. In contrast, mutational analysis showed that the other two HD-GYP domain proteins had no effect on virulence factor synthesis and tested phenotypes. Mutation of rpfG led to up-regulation of the type III secretion system and altered expression of three putative glycosyltransferase genes gumD, pgaC and xagB, which are part of operons directing the synthesis of different extracellular polysaccharides. The pgaABCD and xagABCD operons were greatly up-regulated in the Xoc ΔrpfG mutant, whereas the expression of the gum genes was unaltered or slightly enhanced. The elevated biofilm formation of the Xoc ΔrpfG mutant was dramatically reduced upon deletion of gumD, xagA and xagB, but not when pgaA and pgaC were deleted. Interestingly, only the ΔgumD mutant, among these single gene mutants, exhibits multiple phenotype alterations including reduced biofilm and EPS production and attenuated virulence on rice. These data indicate that RpfG is a global regulator that controls biofilm formation, EPS production and bacterial virulence in Xoc and that both gumD- and xagB-dependent EPS contribute to biofilm formation under different conditions.
Collapse
|
49
|
Abstract
UNLABELLED Cell-cell signaling in Xylella fastidiosa has been implicated in the coordination of traits enabling colonization in plant hosts as well as insect vectors. This cell density-dependent signaling has been attributed to a diffusible signaling factor (DSF) produced by the DSF synthase RpfF. DSF produced by related bacterial species are unsaturated fatty acids, but that of X. fastidiosa was thought to be different from those of other taxa. We describe here the isolation and characterization of an X. fastidiosa DSF (XfDSF) as 2(Z)-tetradecenoic acid. This compound was isolated both from recombinant Erwinia herbicola expressing X. fastidiosa rpfF and from an X. fastidiosa rpfC deletion mutant that overproduces DSF. Since an rpfF mutant is impaired in biofilm formation and underexpresses the hemagglutinin-like protein-encoding genes hxfA and hxfB, we demonstrate that these traits can be restored by ca. 0.5 µM XfDSF but not by myristic acid, the fully saturated tetradecenoic acid. A phoA-based X. fastidiosa biosensor that assesses DSF-dependent expression of hxfA or hxfB revealed a high level of molecular specificity of DSF signaling. IMPORTANCE X. fastidiosa causes diseases in many important plants, including grape, where it incites Pierce's disease. Virulence of X. fastidiosa for grape is coordinated by cell-cell signaling molecules, designated DSF (Diffusible Signaling Factor). Mutants blocked in DSF production are hypervirulent for grape, suggesting that virulence is suppressed upon DSF accumulation and that disease could be controlled by artificial elevation of the DSF level in plants. In this work, we describe the isolation of the DSF produced by X. fastidiosa and the verification of its biological activity as an antivirulence factor. We also have developed X. fastidiosa DSF biosensors to evaluate the specificity of cell-cell signaling to be investigated.
Collapse
|