1
|
Wen Q, Wang S, Zhang X, Zhou Z. Recent advances of NLR receptors in vegetable disease resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112224. [PMID: 39142606 DOI: 10.1016/j.plantsci.2024.112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Plants mainly depend on both cell-surface and intracellular receptors to defend against various pathogens. The nucleotide-binding leucine-rich repeat (NLR) proteins are intracellular receptors that recognize pathogen effectors. The first NLR was cloned thirty years ago. Genomic sequencing and biotechnologies accelerated NLR gene isolation. NLR genes have been proven useful in breeding disease resistant crops. Here, we summarized the current knowledge of strategies for NLR gene isolation and provided a list of NLRs cloned in vegetables. We also discussed the mechanisms underlying NLR gene function, the challenges of NLRs in vegetable breeding and directions for future studies.
Collapse
Affiliation(s)
- Qing Wen
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Shaoyun Wang
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaoyang Zhou
- Department of Vegetable Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Coomber A, Saville A, Ristaino JB. Evolution of Phytophthora infestans on its potato host since the Irish potato famine. Nat Commun 2024; 15:6488. [PMID: 39103347 DOI: 10.1038/s41467-024-50749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Phytophthora infestans is a major oomycete plant pathogen, responsible for potato late blight, which led to the Irish Potato Famine from 1845-1852. Since then, potatoes resistant to this disease have been bred and deployed worldwide. Their resistance (R) genes recognize pathogen effectors responsible for virulence and then induce a plant response stopping disease progression. However, most deployed R genes are quickly overcome by the pathogen. We use targeted sequencing of effector and R genes on herbarium specimens to examine the joint evolution in both P. infestans and potato from 1845-1954. Currently relevant effectors are historically present in P. infestans, but with alternative alleles compared to modern reference genomes. The historic FAM-1 lineage has the virulent Avr1 allele and the ability to break the R1 resistance gene before breeders deployed it in potato. The FAM-1 lineage is diploid, but later, triploid US-1 lineages appear. We show that pathogen virulence genes and host resistance genes have undergone significant changes since the Famine, from both natural and artificial selection.
Collapse
Affiliation(s)
- Allison Coomber
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, USA
- Functional Genomics Program, NC State University, Raleigh, NC, USA
| | - Amanda Saville
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, USA
| | - Jean Beagle Ristaino
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, USA.
- Emerging Plant Disease and Global Food Security Cluster, NC State University, Raleigh, NC, USA.
| |
Collapse
|
3
|
Gurina AA, Gancheva MS, Alpatieva NV, Rogozina EV. In silico search for and analysis of R gene variation in primitive cultivated potato species. Vavilovskii Zhurnal Genet Selektsii 2024; 28:175-184. [PMID: 38680181 PMCID: PMC11043503 DOI: 10.18699/vjgb-24-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 05/01/2024] Open
Abstract
Pathogen recognition receptors encoded by R genes play a key role in plant protection. Nowadays, R genes are a basis for breeding many crops, including potato. Many potato R genes have been discovered and found suitable for breeding thanks to the studies of a wide variety of wild potato species. The use of primitive cultivated potato species (PCPS) as representatives of the primary gene pool can also be promising in this respect. PCPS are the closest to the early domesticated forms of potato; therefore, their investigation could help understand the evolution of R genes. The present study was aimed at identifying and analyzing R genes in PCPS listed in the open database of NCBI and Solomics DB. In total, the study involved 27 accessions belonging to three species: Solanum phureja Juz. & Bukasov, S. stenotomum Juz. & Bukasov and S. goniocalyx Juz. & Bukasov Materials for the analysis were the sequencing data for the said three species from the PRJNA394943 and PRJCA006011 projects. An in silico search was carried out for sequences homologous to 26 R genes identified in potato species differing in phylogenetic distance from PCPS, namely nightshade (S. americanum), North- (S. bulbocastanum, S. demissum) and South-American (S. venturii, S. berthaultii) wild potato species, as well as the cultivated potato species S. tuberosum and S. andigenum. Homologs of all investigated protein-coding sequences were discovered in PCPS with a relatively high degree of similarity (85-100 %). Homologs of the Rpi-R3b, Rpi-amr3 and Rpi-ber1 genes have been identified in PCPS for the first time. An analysis of polymorphism of nucleotide and amino acid sequences has been carried out for 15 R genes. The differences in frequencies of substitutions in PCPS have been demonstrated by analysis of R genes, the reference sequences of which have been identified in different species. For all the studied NBS-LRR genes, the proportion of substituted amino acids in the LRR domain exceeds this figure for the NBS domain. The potential prospects of using PCPS as sources of resistance to Verticillium wilt have been shown.
Collapse
Affiliation(s)
- A A Gurina
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - M S Gancheva
- St. Petersburg State University, St. Petersburg, Russia
| | - N V Alpatieva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - E V Rogozina
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
4
|
Wang Y, Brown LH, Adams TM, Cheung YW, Li J, Young V, Todd DT, Armstrong MR, Neugebauer K, Kaur A, Harrower B, Oome S, Wang X, Bayer M, Hein I. SMRT-AgRenSeq-d in potato ( Solanum tuberosum) as a method to identify candidates for the nematode resistance Gpa5. HORTICULTURE RESEARCH 2023; 10:uhad211. [PMID: 38023472 PMCID: PMC10681002 DOI: 10.1093/hr/uhad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023]
Abstract
Potato is the third most important food crop in the world. Diverse pathogens threaten sustainable crop production but can be controlled, in many cases, through the deployment of disease resistance genes belonging to the family of nucleotide-binding, leucine-rich-repeat (NLR) genes. To identify effective disease resistance genes in established varieties, we have successfully established SMRT-AgRenSeq in tetraploid potatoes and have further enhanced the methodology by including dRenSeq in an approach that we term SMR-AgRenSeq-d. The inclusion of dRenSeq enables the filtering of candidates after the association analysis by establishing a presence/absence matrix across resistant and susceptible varieties that is translated into an F1 score. Using a SMRT-RenSeq-based sequence representation of the NLRome from the cultivar Innovator, SMRT-AgRenSeq-d analyses reliably identified the late blight resistance benchmark genes Rpi-R1, Rpi-R2-like, Rpi-R3a, and Rpi-R3b in a panel of 117 varieties with variable phenotype penetrations. All benchmark genes were identified with an F1 score of 1, which indicates absolute linkage in the panel. This method also identified nine strong candidates for Gpa5 that controls the potato cyst nematode (PCN) species Globodera pallida (pathotypes Pa2/3). Assuming that NLRs are involved in controlling many types of resistances, SMRT-AgRenSeq-d can readily be applied to diverse crops and pathogen systems.
Collapse
Affiliation(s)
- Yuhan Wang
- Division of Plant Sciences at the Hutton, The University of Dundee, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Lynn H Brown
- Division of Plant Sciences at the Hutton, The University of Dundee, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Thomas M Adams
- The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Yuk Woon Cheung
- Division of Plant Sciences at the Hutton, The University of Dundee, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Jie Li
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100083, China
| | - Vanessa Young
- James Hutton Limited, The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Drummond T Todd
- James Hutton Limited, The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Miles R Armstrong
- Division of Plant Sciences at the Hutton, The University of Dundee, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Konrad Neugebauer
- Biomathematics and Statistics Scotland, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Amanpreet Kaur
- Division of Plant Sciences at the Hutton, The University of Dundee, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
- Crop Research Centre, Teagasc, Oak Park, Carlow R93 XE12, Ireland
| | - Brian Harrower
- The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Stan Oome
- HZPC Research B.V. HZPC, Edisonweg 5, 8501 XG Joure, Netherlands
| | - Xiaodan Wang
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100083, China
| | - Micha Bayer
- The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
| | - Ingo Hein
- Division of Plant Sciences at the Hutton, The University of Dundee, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
- The James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, UK
- College of Plant Protection, China Agricultural University, Haidian District, Beijing, 100083, China
| |
Collapse
|
5
|
Lin X, Jia Y, Heal R, Prokchorchik M, Sindalovskaya M, Olave-Achury A, Makechemu M, Fairhead S, Noureen A, Heo J, Witek K, Smoker M, Taylor J, Shrestha RK, Lee Y, Zhang C, Park SJ, Sohn KH, Huang S, Jones JDG. Solanum americanum genome-assisted discovery of immune receptors that detect potato late blight pathogen effectors. Nat Genet 2023; 55:1579-1588. [PMID: 37640880 PMCID: PMC10484786 DOI: 10.1038/s41588-023-01486-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 07/21/2023] [Indexed: 08/31/2023]
Abstract
Potato (Solanum tuberosum) and tomato (Solanum lycopersicon) crops suffer severe losses to late blight caused by the oomycete pathogen Phytophthora infestans. Solanum americanum, a relative of potato and tomato, is globally distributed and most accessions are highly blight resistant. We generated high-quality reference genomes of four S. americanum accessions, resequenced 52 accessions, and defined a pan-NLRome of S. americanum immune receptor genes. We further screened for variation in recognition of 315P. infestans RXLR effectors in 52 S. americanum accessions. Using these genomic and phenotypic data, we cloned three NLR-encoding genes, Rpi-amr4, R02860 and R04373, that recognize cognate P. infestans RXLR effectors PITG_22825 (AVRamr4), PITG_02860 and PITG_04373. These genomic resources and methodologies will support efforts to engineer potatoes with durable late blight resistance and can be applied to diseases of other crops.
Collapse
Affiliation(s)
- Xiao Lin
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Yuxin Jia
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Key Laboratory for Potato Biology of Yunnan Province, The CAAS-YNNU-YINMORE Joint Academy of Potato Science, Yunnan Normal University, Kunming, China
| | - Robert Heal
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Maxim Prokchorchik
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
- Plant Pathology Group, The Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Maria Sindalovskaya
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Andrea Olave-Achury
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Moffat Makechemu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sebastian Fairhead
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Azka Noureen
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jung Heo
- Department of Biological Science and Institute of Basic Science, Wonkwang University, Iksan, Republic of Korea
| | - Kamil Witek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Matthew Smoker
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jodie Taylor
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Ram-Krishna Shrestha
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yoonyoung Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Chunzhi Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Soon Ju Park
- Department of Biological Science and Institute of Basic Science, Wonkwang University, Iksan, Republic of Korea
- Division of Applied Life Sciences and Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Republic of Korea
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.
- Plant Immunity Research Center, Seoul National University, Seoul, Republic of Korea.
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Area, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
6
|
Adams TM, Smith M, Wang Y, Brown LH, Bayer MM, Hein I. HISS: Snakemake-based workflows for performing SMRT-RenSeq assembly, AgRenSeq and dRenSeq for the discovery of novel plant disease resistance genes. BMC Bioinformatics 2023; 24:204. [PMID: 37198529 DOI: 10.1186/s12859-023-05335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/11/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND In the ten years since the initial publication of the RenSeq protocol, the method has proved to be a powerful tool for studying disease resistance in plants and providing target genes for breeding programmes. Since the initial publication of the methodology, it has continued to be developed as new technologies have become available and the increased availability of computing power has made new bioinformatic approaches possible. Most recently, this has included the development of a k-mer based association genetics approach, the use of PacBio HiFi data, and graphical genotyping with diagnostic RenSeq. However, there is not yet a unified workflow available and researchers must instead configure approaches from various sources themselves. This makes reproducibility and version control a challenge and limits the ability to perform these analyses to those with bioinformatics expertise. RESULTS Here we present HISS, consisting of three workflows which take a user from raw RenSeq reads to the identification of candidates for disease resistance genes. These workflows conduct the assembly of enriched HiFi reads from an accession with the resistance phenotype of interest. A panel of accessions both possessing and lacking the resistance are then used in an association genetics approach (AgRenSeq) to identify contigs positively associated with the resistance phenotype. Candidate genes are then identified on these contigs and assessed for their presence or absence in the panel with a graphical genotyping approach that uses dRenSeq. These workflows are implemented via Snakemake, a python-based workflow manager. Software dependencies are either shipped with the release or handled with conda. All code is freely available and is distributed under the GNU GPL-3.0 license. CONCLUSIONS HISS provides a user-friendly, portable, and easily customised approach for identifying novel disease resistance genes in plants. It is easily installed with all dependencies handled internally or shipped with the release and represents a significant improvement in the ease of use of these bioinformatics analyses.
Collapse
Affiliation(s)
- Thomas M Adams
- Department of Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, DD2 5DA, UK.
| | - Moray Smith
- Department of Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, DD2 5DA, UK
- School of Biology, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Yuhan Wang
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Lynn H Brown
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Micha M Bayer
- Department of Information and Computational Sciences, The James Hutton Institute, Invergowrie, DD2 5DA, UK
| | - Ingo Hein
- Department of Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, DD2 5DA, UK.
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
7
|
Oh S, Kim S, Park HJ, Kim MS, Seo MK, Wu CH, Lee HA, Kim HS, Kamoun S, Choi D. Nucleotide-binding leucine-rich repeat network underlies nonhost resistance of pepper against the Irish potato famine pathogen Phytophthora infestans. PLANT BIOTECHNOLOGY JOURNAL 2023. [PMID: 36912620 DOI: 10.1111/pbi.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Nonhost resistance (NHR) is a robust plant immune response against non-adapted pathogens. A number of nucleotide-binding leucine-rich repeat (NLR) proteins that recognize non-adapted pathogens have been identified, although the underlying molecular mechanisms driving robustness of NHR are still unknown. Here, we screened 57 effectors of the potato late blight pathogen Phytophthora infestans in nonhost pepper (Capsicum annuum) to identify avirulence effector candidates. Selected effectors were tested against 436 genome-wide cloned pepper NLRs, and we identified multiple functional NLRs that recognize P. infestans effectors and confer disease resistance in the Nicotiana benthamiana as a surrogate system. The identified NLRs were homologous to known NLRs derived from wild potatoes that recognize P. infestans effectors such as Avr2, Avrblb1, Avrblb2, and Avrvnt1. The identified CaRpi-blb2 is a homologue of Rpi-blb2, recognizes Avrblb2 family effectors, exhibits feature of lineage-specifically evolved gene in microsynteny and phylogenetic analyses, and requires pepper-specific NRC (NLR required for cell death)-type helper NLR for proper function. Moreover, CaRpi-blb2-mediated hypersensitive response and blight resistance were more tolerant to suppression by the PITG_15 278 than those mediated by Rpi-blb2. Combined results indicate that pepper has stacked multiple NLRs recognizing effectors of non-adapted P. infestans, and these NLRs could be more tolerant to pathogen-mediated immune suppression than NLRs derived from the host plants. Our study suggests that NLRs derived from nonhost plants have potential as untapped resources to develop crops with durable resistance against fast-evolving pathogens by stacking the network of nonhost NLRs into susceptible host plants.
Collapse
Affiliation(s)
- Soohyun Oh
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Sejun Kim
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Hyo-Jeong Park
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Myung-Shin Kim
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Min-Ki Seo
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Hyun-Ah Lee
- Department of Horticulture, Division of Smart Horticulture, Yonam University, Cheonan, South Korea
| | - Hyun-Soon Kim
- Korean Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Doil Choi
- Plant Immunity Research Center, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
8
|
Rogozina EV, Gurina AA, Chalaya NA, Zoteyeva NM, Kuznetsova MA, Beketova MP, Muratova OA, Sokolova EA, Drobyazina PE, Khavkin EE. Diversity of Late Blight Resistance Genes in the VIR Potato Collection. PLANTS (BASEL, SWITZERLAND) 2023; 12:273. [PMID: 36678985 PMCID: PMC9862067 DOI: 10.3390/plants12020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Late blight (LB) caused by the oomycete Phytophthora infestans (Mont.) de Bary is the greatest threat to potato production worldwide. Current potato breeding for LB resistance heavily depends on the introduction of new genes for resistance to P. infestans (Rpi genes). Such genes have been discovered in highly diverse wild, primitive, and cultivated species of tuber-bearing potatoes (Solanum L. section Petota Dumort.) and introgressed into the elite potato cultivars by hybridization and transgenic complementation. Unfortunately, even the most resistant potato varieties have been overcome by LB due to the arrival of new pathogen strains and their rapid evolution. Therefore, novel sources for germplasm enhancement comprising the broad-spectrum Rpi genes are in high demand with breeders who aim to provide durable LB resistance. The Genbank of the N.I. Vavilov Institute of Plant Genetic Resources (VIR) in St. Petersburg harbors one of the world's largest collections of potato and potato relatives. In this study, LB resistance was evaluated in a core selection representing 20 species of seven Petota series according to the Hawkes (1990) classification: Bulbocastana (Rydb.) Hawkes, Demissa Buk., Longipedicellata Buk., Maglia Bitt., Pinnatisecta (Rydb.) Hawkes, Tuberosa (Rydb.) Hawkes (wild and cultivated species), and Yungasensa Corr. LB resistance was assessed in 96 accessions representing 18 species in the laboratory test with detached leaves using a highly virulent and aggressive isolate of P. infestans. The Petota species notably differed in their LB resistance: S. bulbocastanum Dun., S. demissum Lindl., S. cardiophyllum Lindl., and S. berthaultii Hawkes stood out at a high frequency of resistant accessions (7-9 points on a 9-point scale). Well-established specific SCAR markers of ten Rpi genes-Rpi-R1, Rpi-R2/Rpi-blb3, Rpi-R3a, Rpi-R3b, Rpi-R8, Rpi-blb1/Rpi-sto1, Rpi-blb2, and Rpi-vnt1-were used to mine 117 accessions representing 20 species from seven Petota series. In particular, our evidence confirmed the diverse Rpi gene location in two American continents. The structural homologs of the Rpi-R2, Rpi-R3a, Rpi-R3b, and Rpi-R8 genes were found in the North American species other than S. demissum, the species that was the original source of these genes for early potato breeding, and in some cases, in the South American Tuberosa species. The Rpi-blb1/Rpi-sto1 orthologs from S. bulbocastanum and S. stoloniferum Schlechtd et Bché were restricted to genome B in the Mesoamerican series Bulbocastana, Pinnatisecta, and Longipedicellata. The structural homologs of the Rpi-vnt1 gene that were initially identified in the South American species S. venturii Hawkes and Hjert. were reported, for the first time, in the North American series of Petota species.
Collapse
Affiliation(s)
- Elena V. Rogozina
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Alyona A. Gurina
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Nadezhda A. Chalaya
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Nadezhda M. Zoteyeva
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | | | | | | | | | | | - Emil E. Khavkin
- Institute of Agricultural Biotechnology, Moscow 127550, Russia
| |
Collapse
|
9
|
Paluchowska P, Śliwka J, Yin Z. Late blight resistance genes in potato breeding. PLANTA 2022; 255:127. [PMID: 35576021 PMCID: PMC9110483 DOI: 10.1007/s00425-022-03910-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Using late blight resistance genes targeting conservative effectors of Phytophthora infestans and the constructing gene pyramids may lead to durable, broad-spectrum resistance, which could be accelerated through genetic engineering. Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. In 2020, potato production was estimated to be more than 359 million tons according to the Food and Agriculture Organization (FAO). Potato is affected by many pathogens, among which Phytophthora infestans, causing late blight, is of the most economic importance. Crop protection against late blight requires intensive use of fungicides, which has an impact on the environment and humans. Therefore, new potato cultivars have been bred using resistance genes against P. infestans (Rpi genes) that originate from wild relatives of potato. Such programmes were initiated 100 years ago, but the process is complex and long. The development of genetic engineering techniques has enabled the direct transfer of resistance genes from potato wild species to cultivars and easier pyramiding of multiple Rpi genes, which potentially increases the durability and spectrum of potato resistance to rapidly evolving P. infestans strains. In this review, we summarize the current knowledge concerning Rpi genes. We also discuss the use of Rpi genes in breeding as well as their detection in existing potato cultivars. Last, we review new sources of Rpi genes and new methods used to identify them and discuss interactions between P. infestans and host.
Collapse
Affiliation(s)
- Paulina Paluchowska
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland.
| | - Jadwiga Śliwka
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| | - Zhimin Yin
- Plant Breeding and Acclimatization Institute-National Research Institute, Platanowa 19, 05-831, Młochów, Poland
| |
Collapse
|
10
|
Ngou BPM, Ding P, Jones JDG. Thirty years of resistance: Zig-zag through the plant immune system. THE PLANT CELL 2022; 34:1447-1478. [PMID: 35167697 PMCID: PMC9048904 DOI: 10.1093/plcell/koac041] [Citation(s) in RCA: 314] [Impact Index Per Article: 157.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2022] [Indexed: 05/05/2023]
Abstract
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| |
Collapse
|
11
|
Li H, Hu R, Fan Z, Chen Q, Jiang Y, Huang W, Tao X. Dual RNA Sequencing Reveals the Genome-Wide Expression Profiles During the Compatible and Incompatible Interactions Between Solanum tuberosum and Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2022; 13:817199. [PMID: 35401650 PMCID: PMC8993506 DOI: 10.3389/fpls.2022.817199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Late blight, caused by Phytophthora infestans (P. infestans), is a devastating plant disease. P. infestans genome encodes hundreds of effectors, complicating the interaction between the pathogen and its host and making it difficult to understand the interaction mechanisms. In this study, the late blight-resistant potato cultivar Ziyun No.1 and the susceptible potato cultivar Favorita were infected with P. infestans isolate SCPZ16-3-1 to investigate the global expression profiles during the compatible and incompatible interactions using dual RNA sequencing (RNA-seq). Most of the expressed Arg-X-Leu-Arg (RXLR) effector genes were suppressed during the first 24 h of infection, but upregulated after 24 h. Moreover, P. infestans induced more specifically expressed genes (SEGs), including RXLR effectors and cell wall-degrading enzymes (CWDEs)-encoding genes, in the compatible interaction. The resistant potato activated a set of biotic stimulus responses and phenylpropanoid biosynthesis SEGs, including kirola-like protein, nucleotide-binding site-leucine-rich repeat (NBS-LRR), disease resistance, and kinase genes. Conversely, the susceptible potato cultivar upregulated more kinase, pathogenesis-related genes than the resistant cultivar. This study is the first study to characterize the compatible and incompatible interactions between P. infestans and different potato cultivars and provides the genome-wide expression profiles for RXLR effector, CWDEs, NBS-LRR protein, and kinase-encoding genes.
Collapse
Affiliation(s)
- Honghao Li
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Rongping Hu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Zhonghan Fan
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Qinghua Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Yusong Jiang
- Research Institute for Special Plants, Chongqing University of Arts and Sciences, Chongqing, China
| | - Weizao Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiang Tao
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
12
|
Wang H, Trusch F, Turnbull D, Aguilera-Galvez C, Breen S, Naqvi S, Jones JDG, Hein I, Tian Z, Vleeshouwers V, Gilroy E, Birch PRJ. Evolutionarily distinct resistance proteins detect a pathogen effector through its association with different host targets. THE NEW PHYTOLOGIST 2021; 232:1368-1381. [PMID: 34339518 DOI: 10.1111/nph.17660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Knowledge of the evolutionary processes which govern pathogen recognition is critical to understanding durable disease resistance. We determined how Phytophthora infestans effector PiAVR2 is recognised by evolutionarily distinct resistance proteins R2 and Rpi-mcq1. We employed yeast two-hybrid, co-immunoprecipitation, virus-induced gene silencing, transient overexpression, and phosphatase activity assays to investigate the contributions of BSL phosphatases to R2- and Rpi-mcq1-mediated hypersensitive response (R2 HR and Rpi-mcq1 HR, respectively). Silencing PiAVR2 target BSL1 compromises R2 HR. Rpi-mcq1 HR is compromised only when BSL2 and BSL3 are silenced. BSL1 overexpression increases R2 HR and compromises Rpi-mcq1. However, overexpression of BSL2 or BSL3 enhances Rpi-mcq1 and compromises R2 HR. Okadaic acid, which inhibits BSL phosphatase activity, suppresses both recognition events. Moreover, expression of a BSL1 phosphatase-dead (PD) mutant suppresses R2 HR, whereas BSL2-PD and BSL3-PD mutants suppress Rpi-mcq1 HR. R2 interacts with BSL1 in the presence of PiAVR2, but not with BSL2 and BSL3, whereas no interactions were detected between Rpi-mcq1 and BSLs. Thus, BSL1 activity and association with R2 determine recognition of PiAVR2 by R2, whereas BSL2 and BSL3 mediate Rpi-mcq1 perception of PiAVR2. R2 and Rpi-mcq1 utilise distinct mechanisms to detect PiAVR2 based on association with different BSLs, highlighting central roles of these effector targets for both disease and disease resistance.
Collapse
Affiliation(s)
- Haixia Wang
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Franziska Trusch
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
| | - Dionne Turnbull
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
| | - Carolina Aguilera-Galvez
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Susan Breen
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 DA, UK
- School of Life Sciences, The University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Shaista Naqvi
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
| | | | - Ingo Hein
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 DA, UK
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Vivianne Vleeshouwers
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, the Netherlands
| | - Eleanor Gilroy
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 DA, UK
| | - Paul R J Birch
- Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Rd, Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 DA, UK
| |
Collapse
|
13
|
Karki HS, Abdullah S, Chen Y, Halterman DA. Natural Genetic Diversity in the Potato Resistance Gene RB Confers Suppression Avoidance from Phytophthora Effector IPI-O4. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1048-1056. [PMID: 33970667 DOI: 10.1094/mpmi-11-20-0313-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
RB is a potato gene that provides resistance to a broad spectrum of genotypes of the late blight pathogen Phytophthora infestans. RB belongs to the CC-NB-LRR (coiled-coil, nucleotide-binding, leucine-rich repeat) class of resistance (R) genes, a major component of the plant immune system. The RB protein detects the presence of class I and II IPI-O effectors from P. infestans to initiate a hypersensitive resistance response, but this activity is suppressed in the presence of the Class III effector IPI-O4. Using natural genetic variation of RB within potato wild relatives, we identified two amino acids in the CC domain that alter interactions needed for suppression of resistance by IPI-O4. We have found that separate modification of these amino acids in RB can diminish or expand the resistance capability of this protein against P. infestans in both Nicotiana benthamiana and potato. Our results demonstrate that increased knowledge of the molecular mechanisms that determine resistance activation and R protein suppression by effectors can be utilized to tailor-engineer genes with the potential to provide increased durability.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Hari S Karki
- United States Department of Agriculture-Agricultural Research Service, Madison, WI 53706, U.S.A
| | - Sidrat Abdullah
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Yu Chen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - Dennis A Halterman
- United States Department of Agriculture-Agricultural Research Service, Madison, WI 53706, U.S.A
| |
Collapse
|
14
|
Xue D, Liu H, Wang D, Gao Y, Jia Z. Comparative transcriptome analysis of R3a and Avr3a-mediated defense responses in transgenic tomato. PeerJ 2021; 9:e11965. [PMID: 34434667 PMCID: PMC8359799 DOI: 10.7717/peerj.11965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
Late blight caused by Phytophthora infestans is one of the most devastating diseases in potatoes and tomatoes. At present, several late blight resistance genes have been mapped and cloned. To better understand the transcriptome changes during the incompatible interaction process between R3a and Avr3a, in this study, after spraying DEX, the leaves of MM-R3a-Avr3a and MM-Avr3a transgenic plants at different time points were used for comparative transcriptome analysis. A total of 7,324 repeated DEGs were detected in MM-R3a-Avr3a plants at 2-h and 6-h, and 729 genes were differentially expressed at 6-h compared with 2-h. Only 1,319 repeated DEGs were found in MM-Avr3a at 2-h and 6-h, of which 330 genes have the same expression pattern. Based on GO, KEGG and WCGNA analysis of DEGs, the phenylpropanoid biosynthesis, plant-pathogen interaction, and plant hormone signal transduction pathways were significantly up-regulated. Parts of the down-regulated DEGs were enriched in carbon metabolism and the photosynthesis process. Among these DEGs, most of the transcription factors, such as WRKY, MYB, and NAC, related to disease resistance or endogenous hormones SA and ET pathways, as well as PR, CML, SGT1 gene were also significantly induced. Our results provide transcriptome-wide insights into R3a and Avr3a-mediated incompatibility interaction.
Collapse
Affiliation(s)
- Dongqi Xue
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Han Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Dong Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yanna Gao
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Zhiqi Jia
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China.,Henan Key Laboratory of Fruit and Cucurbit Biology, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Monino‐Lopez D, Nijenhuis M, Kodde L, Kamoun S, Salehian H, Schentsnyi K, Stam R, Lokossou A, Abd‐El‐Haliem A, Visser RG, Vossen JH. Allelic variants of the NLR protein Rpi-chc1 differentially recognize members of the Phytophthora infestans PexRD12/31 effector superfamily through the leucine-rich repeat domain. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:182-197. [PMID: 33882622 PMCID: PMC8362081 DOI: 10.1111/tpj.15284] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 05/22/2023]
Abstract
Phytophthora infestans is a pathogenic oomycete that causes the infamous potato late blight disease. Resistance (R) genes from diverse Solanum species encode intracellular receptors that trigger effective defense responses upon the recognition of cognate RXLR avirulence (Avr) effector proteins. To deploy these R genes in a durable fashion in agriculture, we need to understand the mechanism of effector recognition and the way the pathogen evades recognition. In this study, we cloned 16 allelic variants of the Rpi-chc1 gene from Solanum chacoense and other Solanum species, and identified the cognate P. infestans RXLR effectors. These tools were used to study effector recognition and co-evolution. Functional and non-functional alleles of Rpi-chc1 encode coiled-coil nucleotide-binding leucine-rich repeat (CNL) proteins, being the first described representatives of the CNL16 family. These alleles have distinct patterns of RXLR effector recognition. While Rpi-chc1.1 recognized multiple PexRD12 (Avrchc1.1) proteins, Rpi-chc1.2 recognized multiple PexRD31 (Avrchc1.2) proteins, both belonging to the PexRD12/31 effector superfamily. Domain swaps between Rpi-chc1.1 and Rpi-chc1.2 revealed that overlapping subdomains in the leucine-rich repeat (LRR) domain are responsible for the difference in effector recognition. This study showed that Rpi-chc1.1 and Rpi-chc1.2 evolved to recognize distinct members of the same PexRD12/31 effector family via the LRR domain. The biased distribution of polymorphisms suggests that exchange of LRRs during host-pathogen co-evolution can lead to novel recognition specificities. These insights will guide future strategies to breed durable resistant varieties.
Collapse
Affiliation(s)
- Daniel Monino‐Lopez
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Maarten Nijenhuis
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Agrico ResearchBurchtweg 17Bant8314PPThe Netherlands
| | - Linda Kodde
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research Park, NorwichUK
| | - Hamed Salehian
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Kyrylo Schentsnyi
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Center for Plant Molecular BiologyAuf der Morgenstelle 32Tübingen2076Germany
| | - Remco Stam
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Technical University MunichMunichGermany
| | - Anoma Lokossou
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Ahmed Abd‐El‐Haliem
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
- Present address:
Rijk Zwaan Breeding B.VBurgemeester Crezéelaan 40De Lier2678KXThe Netherlands
| | - Richard G.F. Visser
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| | - Jack H. Vossen
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBThe Netherlands
| |
Collapse
|
16
|
Sharma S, Sundaresha S, Bhardwaj V. Biotechnological approaches in management of oomycetes diseases. 3 Biotech 2021; 11:274. [PMID: 34040923 DOI: 10.1007/s13205-021-02810-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/24/2021] [Indexed: 11/26/2022] Open
Abstract
Plant pathogenic oomycetes cause significant impact on agriculture and, therefore, their management is utmost important. Though conventional methods to combat these pathogens (resistance breeding and use of fungicides) are available but these are limited by the availability of resistant cultivars due to evolution of new pathogenic races, development of resistance in the pathogens against agrochemicals and their potential hazardous effects on the environment and human health. This has fuelled a continual search for novel and alternate strategies for management of phytopathogens. The recent advances in oomycetes genome (Phytophthora infestans, P. ramorum, P. sojae, Pythium ultimum, Albugo candida etc.) would further help in understanding host-pathogen interactions essentially needed for designing effective management strategies. In the present communication the novel and alternate strategies for the management of oomycetes diseases are discussed.
Collapse
Affiliation(s)
- Sanjeev Sharma
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - S Sundaresha
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh 171001 India
| |
Collapse
|
17
|
Liu X, Ao K, Yao J, Zhang Y, Li X. Engineering plant disease resistance against biotrophic pathogens. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:101987. [PMID: 33434797 DOI: 10.1016/j.pbi.2020.101987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Breeding for disease resistance against microbial pathogens is essential for food security in modern agriculture. Conventional breeding, although widely accepted, is time consuming. An alternative approach is generating crop plants with desirable traits through genetic engineering. The collective efforts of many labs in the past 30 years have led to a comprehensive understanding of how plant immunity is achieved, enabling the application of genetic engineering to enhance disease resistance in crop plants. Here, we briefly review the engineering of disease resistance against biotrophic pathogens using various components of the plant immune system. Recent breakthroughs in immune receptors signaling and systemic acquired resistance (SAR), along with innovations in precise gene editing methods, provide exciting new opportunities for the development of improved environmentally friendly crop varieties that are disease resistant and high-yield.
Collapse
Affiliation(s)
- Xueru Liu
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Rm 3156, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| | - Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Rm 3156, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| | - Jia Yao
- College of Life Science, Chongqing University, 55 University Town South Road, Shapingba District, Chongqing, China
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Rm 3156, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Rm 301, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Department of Botany, University of British Columbia, Rm 3156, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
18
|
Xiang G, Yin X, Niu W, Chen T, Liu R, Shang B, Fu Q, Liu G, Ma H, Xu Y. Characterization of CRN-Like Genes From Plasmopara viticola: Searching for the Most Virulent Ones. Front Microbiol 2021; 12:632047. [PMID: 33868192 PMCID: PMC8044898 DOI: 10.3389/fmicb.2021.632047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Grapevine downy mildew is an insurmountable disease that endangers grapevine production and the wine industry worldwide. The causal agent of the disease is the obligate biotrophic oomycete Plasmopara viticola, for which the pathogenic mechanism remains largely unknown. Crinkling and necrosis proteins (CRN) are an ancient class of effectors utilized by pathogens, including oomycetes, that interfere with host plant defense reactions. In this study, 27 CRN-like genes were cloned from the P. viticola isolate YL genome, hereafter referred to as PvCRN genes, and characterized in silico and in planta. PvCRN genes in ‘YL’ share high sequence identities with their ortholog genes in the other three previously sequenced P. viticola isolates. Sequence divergence among the genes in the PvCRN family indicates that different PvCRN genes have different roles. Phylogenetic analysis of the PvCRN and the CRN proteins encoded by genes in the P. halstedii genome suggests that various functions might have been acquired by the CRN superfamily through independent evolution of Plasmopara species. When transiently expressed in plant cells, the PvCRN protein family shows multiple subcellular localizations. None of the cloned PvCRN proteins induced hypersensitive response (HR)-like cell death on the downy mildew-resistant grapevine Vitis riparia. This was in accordance with the result that most PvCRN proteins, except PvCRN11, failed to induce necrosis in Nicotiana benthamiana. Pattern-triggered immunity (PTI) induced by INF1 was hampered by several PvCRN proteins. In addition, 15 PvCRN proteins prevented Bax-induced plant programmed cell death. Among the cell death-suppressing members, PvCRN17, PvCRN20, and PvCRN23 were found to promote the susceptibility of N. benthamiana to Phytophthora capsici, which is a semi-biotrophic oomycete. Moreover, the nucleus-targeting member, PvCRN19, promoted the susceptibility of N. benthamiana to P. capsici. Therefore, these PvCRN proteins were estimated to be virulent effectors involved in the pathogenicity of P. viticola YL. Collectively, this study provides comprehensive insight into the CRN effector repertoire of P. viticola YL, which will help further elucidate the molecular mechanisms of the pathogenesis of grapevine downy mildew.
Collapse
Affiliation(s)
- Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Weili Niu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Tingting Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Ruiqi Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Boxing Shang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Qingqing Fu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Hui Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.,Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, College of Horticulture, Northwest A&F University, Yangling, China.,College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
19
|
Karki HS, Jansky SH, Halterman DA. Screening of Wild Potatoes Identifies New Sources of Late Blight Resistance. PLANT DISEASE 2021; 105:368-376. [PMID: 32755364 DOI: 10.1094/pdis-06-20-1367-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Late blight (LB) of potato is considered one of the most devastating plant diseases in the world. Most cultivated potatoes are susceptible to this disease. However, wild relatives of potatoes are an excellent source of LB resistance. We screened 384 accessions of 72 different wild potato species available from the U.S. Potato GeneBank against the LB pathogen Phytophthora infestans in a detached leaf assay (DLA). P. infestans isolates US-23 and NL13316 were used in the DLA to screen the accessions. Although all plants in 273 accessions were susceptible, all screened plants in 39 accessions were resistant. Resistant and susceptible plants were found in 33 accessions. All tested plants showed a partial resistance phenotype in two accessions, segregation of resistant and partial resistant plants in nine accessions, segregation of partially resistant and susceptible plants in four accessions, and segregation of resistant, partially resistant, and susceptible individuals in 24 accessions. We found several species that were never before reported to be resistant to LB: Solanum albornozii, S. agrimoniifolium, S. chomatophilum, S. ehrenbergii, S. hypacrarthrum, S. iopetalum, S. palustre, S. piurae, S. morelliforme, S. neocardenasii, S. trifidum, and S. stipuloideum. These new species could provide novel sources of LB resistance. P. infestans clonal lineage-specific screening of selected species was conducted to identify the presence of RB resistance. We found LB resistant accessions in Solanum verrucosum, Solanum stoloniferum, and S. morelliforme that were susceptible to the RB overcoming isolate NL13316, indicating the presence of RB-like resistance in these species.
Collapse
Affiliation(s)
- Hari S Karki
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706
| | - Shelly H Jansky
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706
| | - Dennis A Halterman
- U.S. Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706
| |
Collapse
|
20
|
Oligosaccharides: Defense Inducers, Their Recognition in Plants, Commercial Uses and Perspectives. Molecules 2020; 25:molecules25245972. [PMID: 33339414 PMCID: PMC7766089 DOI: 10.3390/molecules25245972] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 01/18/2023] Open
Abstract
Plants have innate immune systems or defense mechanisms that respond to the attack of pathogenic microorganisms. Unlike mammals, they lack mobile defense cells, so defense processes depend on autonomous cellular events with a broad repertoire of recognition to detect pathogens, which compensates for the lack of an adaptive immune system. These defense mechanisms remain inactive or latent until they are activated after exposure or contact with inducing agents, or after the application of the inductor; they remain inactive only until they are affected by a pathogen or challenged by an elicitor from the same. Resistance induction represents a focus of interest, as it promotes the activation of plant defense mechanisms, reducing the use of chemical synthesis pesticides, an alternative that has even led to the generation of new commercial products with high efficiency, stability and lower environmental impact, which increase productivity by reducing not only losses but also increasing plant growth. Considering the above, the objective of this review is to address the issue of resistance induction with a focus on the potential of the use of oligosaccharides in agriculture, how they are recognized by plants, how they can be used for commercial products and perspectives.
Collapse
|
21
|
Zheng J, Duan S, Armstrong MR, Duan Y, Xu J, Chen X, Hein I, Jin L, Li G. New Findings on the Resistance Mechanism of an Elite Diploid Wild Potato Species JAM1-4 in Response to a Super Race Strain of Phytophthora infestans. PHYTOPATHOLOGY 2020; 110:1375-1387. [PMID: 32248746 DOI: 10.1094/phyto-09-19-0331-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Late blight is a devastating potato disease worldwide, caused by Phytophthora infestans. The P. infestans strain 2013-18-306 from Yunnan is a "supervirulent race" that overcomes all 11 known late blight resistance genes (R1 to R11) from Solanum demissum. In a previous study, we identified a diploid wild-type potato JAM1-4 (S. jamesii) with high resistance to 2013-18-306. dRenSeq analysis indicated the presence of novel R genes in JAM1-4. RNA-Seq was used to analyze the late blight resistance response genes and defense regulatory mechanisms of JAM1-4 against 2013-18-306. Gene ontology enrichment and KEGG pathway analysis showed that many disease-resistant pathways were significantly enriched. Analysis of differentially expressed genes (DEGs) revealed an active disease resistance mechanism of JAM1-4, and the essential role of multiple signal transduction pathways and secondary metabolic pathways comprised of SA-JA-ET in plant immunity. We also found that photosynthesis in JAM1-4 was inhibited to promote the immune response. Our study reveals the pattern of resistance-related gene expression in response to a super race strain of potato late blight and provides a theoretical basis for further exploration of potato disease resistance mechanisms, discovery of new late blight resistance genes, and disease resistance breeding.
Collapse
Affiliation(s)
- Jiayi Zheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shaoguang Duan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Miles R Armstrong
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, DD2 5DA, U.K
| | - Yanfeng Duan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianfei Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xinwei Chen
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, U.K
| | - Ingo Hein
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, DD2 5DA, U.K
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, U.K
| | - Liping Jin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Guangcun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences; Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
22
|
Morales JG, Gaviria AE, Gilchrist E. Allelic Variation and Selection in Effector Genes of Phytophthora infestans (Mont.) de Bary. Pathogens 2020; 9:pathogens9070551. [PMID: 32659973 PMCID: PMC7400436 DOI: 10.3390/pathogens9070551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
Phytophthora infestans is a devastating plant pathogen in several crops such as potato (Solanum tuberosum), tomato (Solanum lycopersicum) and Andean fruits such as tree tomato (Solanum betaceum), lulo (Solanum quitoense), uchuva (Physalis peruviana) and wild species in the genus Solanum sp. Despite intense research performed around the world, P. infestans populations from Colombia, South America, are poorly understood. Of particular importance is knowledge about pathogen effector proteins, which are responsible for virulence. The present work was performed with the objective to analyze gene sequences coding for effector proteins of P. infestans from isolates collected from different hosts and geographical regions. Several genetic parameters, phylogenetic analyses and neutrality tests for non-synonymous and synonymous substitutions were calculated. Non-synonymous substitutions were identified for all genes that exhibited polymorphisms at the DNA level. Significant negative selection values were found for two genes (PITG_08994 and PITG_12737) suggesting active coevolution with the corresponding host resistance proteins. Implications for pathogen virulence mechanisms and disease management are discussed.
Collapse
Affiliation(s)
- Juan G. Morales
- Group and Laboratory of Fitotecnia Tropical, Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia sede Medellín, Medellín, 050034 Antioquia, Colombia; (A.E.G.); (E.G.)
- Correspondence: ; Tel.: +0057-4-4309088
| | - Astrid E. Gaviria
- Group and Laboratory of Fitotecnia Tropical, Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia sede Medellín, Medellín, 050034 Antioquia, Colombia; (A.E.G.); (E.G.)
| | - Elizabeth Gilchrist
- Group and Laboratory of Fitotecnia Tropical, Departamento de Ciencias Agronómicas, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia sede Medellín, Medellín, 050034 Antioquia, Colombia; (A.E.G.); (E.G.)
- Universidad EAFIT, 050034 Medellín, Colombia
| |
Collapse
|
23
|
Meade F, Hutten R, Wagener S, Prigge V, Dalton E, Kirk HG, Griffin D, Milbourne D. Detection of Novel QTLs for Late Blight Resistance Derived from the Wild Potato Species Solanum microdontum and Solanum pampasense. Genes (Basel) 2020; 11:E732. [PMID: 32630103 PMCID: PMC7396981 DOI: 10.3390/genes11070732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 12/30/2022] Open
Abstract
Wild potato species continue to be a rich source of genes for resistance to late blight in potato breeding. Whilst many dominant resistance genes from such sources have been characterised and used in breeding, quantitative resistance also offers potential for breeding when the loci underlying the resistance can be identified and tagged using molecular markers. In this study, F1 populations were created from crosses between blight susceptible parents and lines exhibiting strong partial resistance to late blight derived from the South American wild species Solanum microdontum and Solanum pampasense. Both populations exhibited continuous variation for resistance to late blight over multiple field-testing seasons. High density genetic maps were created using single nucleotide polymorphism (SNP) markers, enabling mapping of quantitative trait loci (QTLs) for late blight resistance that were consistently expressed over multiple years in both populations. In the population created with the S. microdontum source, QTLs for resistance consistently expressed over three years and explaining a large portion (21-47%) of the phenotypic variation were found on chromosomes 5 and 6, and a further resistance QTL on chromosome 10, apparently related to foliar development, was discovered in 2016 only. In the population created with the S. pampasense source, QTLs for resistance were found in over two years on chromosomes 11 and 12. For all loci detected consistently across years, the QTLs span known R gene clusters and so they likely represent novel late blight resistance genes. Simple genetic models following the effect of the presence or absence of SNPs associated with consistently effective loci in both populations demonstrated that marker assisted selection (MAS) strategies to introgress and pyramid these loci have potential in resistance breeding strategies.
Collapse
Affiliation(s)
- Fergus Meade
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (F.M.); (D.G.)
| | - Ronald Hutten
- Wageningen University & Research (WUR), 6708 PB Wageningen, The Netherlands;
| | - Silke Wagener
- SaKa Pflanzenzucht GmbH & Co., 22761 Hamburg, Germany; (S.W.); (V.P.)
| | - Vanessa Prigge
- SaKa Pflanzenzucht GmbH & Co., 22761 Hamburg, Germany; (S.W.); (V.P.)
| | | | | | - Denis Griffin
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (F.M.); (D.G.)
| | - Dan Milbourne
- Teagasc, Crop Science Department, Oak Park, R93 XE12 Carlow, Ireland; (F.M.); (D.G.)
| |
Collapse
|
24
|
The Histological, Effectoromic, and Transcriptomic Analyses of Solanum pinnatisectum Reveal an Upregulation of Multiple NBS-LRR Genes Suppressing Phytophthora infestans Infection. Int J Mol Sci 2020; 21:ijms21093211. [PMID: 32370102 PMCID: PMC7247345 DOI: 10.3390/ijms21093211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Utilization of disease resistance components from wild potatoes is a promising and sustainable approach to control Phytophthora blight. Here, we combined avirulence (Avr) genes screen with RNA-seq analysis to discover the potential mechanism of resistance in Mexican wild potato species, Solanum pinnatisectum. Histological characterization displayed that hyphal expansion was significantly restricted in epidermal cells and mesophyll cell death was predominant, indicating that a typical defense response was initiated in S. pinnatisectum. Inoculation of S. pinnatisectum with diverse Phytophthora infestans isolates showed distinct resistance patterns, suggesting that S. pinnatisectum has complex genetic resistance to most of the prevalent races of P. infestans in northwestern China. Further analysis by Avr gene screens and comparative transcriptomic profiling revealed the presence and upregulation of multiple plant NBS-LRR genes corresponding to biotic stresses. Six NBS-LRR alleles of R1, R2, R3a, R3b, R4, and Rpi-smira2 were detected, and over 60% of the 112 detected NLR proteins were significantly induced in S. pinnatisectum. On the contrary, despite the expression of the Rpi-blb1, Rpi-vnt1, and Rpi-smira1 alleles, fewer NLR proteins were expressed in susceptible Solanum cardophyllum. Thus, the enriched NLR genes in S. pinnatisectum make it an ideal genetic resource for the discovery and deployment of resistance genes for potato breeding.
Collapse
|
25
|
Martynov VV, Chizhik VK. Genetics of Pathogen–Host Interaction by the Example of Potato Late Blight Disease. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420030102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
26
|
Rakosy-Tican E, Thieme R, König J, Nachtigall M, Hammann T, Denes TE, Kruppa K, Molnár-Láng M. Introgression of Two Broad-Spectrum Late Blight Resistance Genes, Rpi-Blb1 and Rpi-Blb3, From Solanum bulbocastanum Dun Plus Race-Specific R Genes Into Potato Pre-breeding Lines. FRONTIERS IN PLANT SCIENCE 2020; 11:699. [PMID: 32670309 PMCID: PMC7326066 DOI: 10.3389/fpls.2020.00699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/04/2020] [Indexed: 05/13/2023]
Abstract
There is a wealth of resistance genes in the Mexican wild relative of cultivated Solanum, but very few of these species are sexually compatible with cultivated Solanum tuberosum. The most devastating disease of potato is late blight caused by the oomycete Phytophthora infestans (Pi). The wild hexaploid species S. demissum, which it is able to cross with potato, was used to transfer eleven race-specific genes by introgressive hybridization that were subsequently widely used in potato breeding. However, there are now more virulent races of Pi that can overcome all of these genes. The most sustainable strategy for protecting potatoes from late blight is to pyramid or stack broad-spectrum resistance genes into the cultivars. Recently four broad-spectrum genes (Rpi) conferring resistance to Pi were identified and cloned from the sexually incompatible species S. bulbocastanum: Rpi-blb1 (RB), Rpi-blb2, Rpi-blb3, and Rpi-bt1. For this research, a resistant S. bulbocastanum accession was selected carrying the genes Rpi-blb1 and Rpi-blb3 together with race-specific R3a and R3b genes. This accession was previously used to produce a large number of somatic hybrids (SHs) with five commercial potato cultivars using protoplast electrofusion. In this study, three SHs with cv. 'Delikat' were selected and backcross generations (i.e., BC1 and BC2) were obtained using cvs. 'Baltica', 'Quarta', 'Romanze', and 'Sarpo Mira'. Their assessment using gene-specific markers demonstrates that these genes are present in the SHs and their BC progenies. We identified plants carrying all four genes that were resistant to foliage blight in greenhouse and field trials. Functionality of the genes was shown by using agro-infiltration with the effectors of corresponding Avr genes. For a number of hybrids and BC clones yield and tuber number were not significantly different from that of the parent cultivar 'Delikat' in field trials. The evaluation of agronomic traits of selected BC2 clones and of their processing qualities revealed valuable material for breeding late blight durable resistant potato. We show that the combination of somatic hybridization with the additional use of gene specific markers and corresponding Avr effectors is an efficient approach for the successful identification and introgression of late blight resistance genes into the potato gene pool.
Collapse
Affiliation(s)
- Elena Rakosy-Tican
- Plant Genetic Engineering Group, Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, Cluj-Napoca, Romania
- *Correspondence: Elena Rakosy-Tican, ;
| | - Ramona Thieme
- Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Julius Kühn-Institut, Quedlinburg, Germany
- Ramona Thieme,
| | - Janine König
- Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Horticultural Crops, Julius Kühn-Institut, Quedlinburg, Germany
| | - Marion Nachtigall
- Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Julius Kühn-Institut, Quedlinburg, Germany
| | - Thilo Hammann
- Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Julius Kühn-Institut, Quedlinburg, Germany
| | - Tunde-Eva Denes
- Plant Genetic Engineering Group, Department of Molecular Biology and Biotechnology, Babeş-Bolyai University, Cluj-Napoca, Romania
- Biological Research Centre, Jibou, Romania
| | - Klaudia Kruppa
- Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Márta Molnár-Láng
- Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
27
|
Naveed ZA, Wei X, Chen J, Mubeen H, Ali GS. The PTI to ETI Continuum in Phytophthora-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2020; 11:593905. [PMID: 33391306 PMCID: PMC7773600 DOI: 10.3389/fpls.2020.593905] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/24/2020] [Indexed: 05/15/2023]
Abstract
Phytophthora species are notorious pathogens of several economically important crop plants. Several general elicitors, commonly referred to as Pathogen-Associated Molecular Patterns (PAMPs), from Phytophthora spp. have been identified that are recognized by the plant receptors to trigger induced defense responses in a process termed PAMP-triggered Immunity (PTI). Adapted Phytophthora pathogens have evolved multiple strategies to evade PTI. They can either modify or suppress their elicitors to avoid recognition by host and modulate host defense responses by deploying hundreds of effectors, which suppress host defense and physiological processes by modulating components involved in calcium and MAPK signaling, alternative splicing, RNA interference, vesicle trafficking, cell-to-cell trafficking, proteolysis and phytohormone signaling pathways. In incompatible interactions, resistant host plants perceive effector-induced modulations through resistance proteins and activate downstream components of defense responses in a quicker and more robust manner called effector-triggered-immunity (ETI). When pathogens overcome PTI-usually through effectors in the absence of R proteins-effectors-triggered susceptibility (ETS) ensues. Qualitatively, many of the downstream defense responses overlap between PTI and ETI. In general, these multiple phases of Phytophthora-plant interactions follow the PTI-ETS-ETI paradigm, initially proposed in the zigzag model of plant immunity. However, based on several examples, in Phytophthora-plant interactions, boundaries between these phases are not distinct but are rather blended pointing to a PTI-ETI continuum.
Collapse
Affiliation(s)
- Zunaira Afzal Naveed
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- Institute of Oceanography, Minjiang University, Fuzhou, China
- Xiangying Wei
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Hira Mubeen
- Departement of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Gul Shad Ali
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- EukaryoTech LLC, Apopka, FL, United States
- *Correspondence: Gul Shad Ali
| |
Collapse
|
28
|
Elnahal ASM, Li J, Wang X, Zhou C, Wen G, Wang J, Lindqvist-Kreuze H, Meng Y, Shan W. Identification of Natural Resistance Mediated by Recognition of Phytophthora infestans Effector Gene Avr3aEM in Potato. FRONTIERS IN PLANT SCIENCE 2020; 11:919. [PMID: 32636869 PMCID: PMC7318898 DOI: 10.3389/fpls.2020.00919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/05/2020] [Indexed: 05/13/2023]
Abstract
Late blight is considered the most renowned devastating potato disease worldwide. Resistance gene (R)-based resistance to late blight is the most effective method to inhibit infection by the causal agent Phytophthora infestans. However, the limited availability of resistant potato varieties and the rapid loss of R resistance, caused by P. infestans virulence variability, make disease control rely on fungicide application. We employed an Agrobacterium tumefaciens-mediated transient gene expression assay and effector biology approach to understand late blight resistance of Chinese varieties that showed years of promising field performance. We are particularly interested in PiAvr3aEM , the most common virulent allele of PiAvr3aKI that triggers a R3a-mediated hypersensitive response (HR) and late blight resistance. Through our significantly improved A. tumefaciens-mediated transient gene expression assay in potato using cultured seedlings, we characterized two dominant potato varieties, Qingshu9 and Longshu7, in China by transient expression of P. infestans effector genes. Transient expression of 10 known avirulence genes showed that PiAvr4 and PiAvr8 (PiAvrsmira2) could induce HR in Qingshu9, and PiAvrvnt1.1 in Longshu7, respectively. Our study also indicated that PiAvr3aEM is recognized by these two potato varieties, and is likely involved in their significant field performance of late blight resistance. The identification of natural resistance mediated by PiAvr3aEM recognition in Qingshu9 and Longshu7 will facilitate breeding for improved potato resistance against P. infestans.
Collapse
Affiliation(s)
- Ahmed S. M. Elnahal
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Jinyang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiaoxia Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chenyao Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Guohong Wen
- Institute of Potato Research, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Jian Wang
- Institute of Biotechnology, Qinghai Academy of Agricultural Sciences, Xining, China
| | | | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- *Correspondence: Weixing Shan,
| |
Collapse
|
29
|
Proteomics of PTI and Two ETI Immune Reactions in Potato Leaves. Int J Mol Sci 2019; 20:ijms20194726. [PMID: 31554174 PMCID: PMC6802228 DOI: 10.3390/ijms20194726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/16/2019] [Accepted: 09/22/2019] [Indexed: 12/29/2022] Open
Abstract
Plants have a variety of ways to defend themselves against pathogens. A commonly used model of the plant immune system is divided into a general response triggered by pathogen-associated molecular patterns (PAMPs), and a specific response triggered by effectors. The first type of response is known as PAMP triggered immunity (PTI), and the second is known as effector-triggered immunity (ETI). To obtain better insight into changes of protein abundance in immunity reactions, we performed a comparative proteomic analysis of a PTI and two different ETI models (relating to Phytophthora infestans) in potato. Several proteins showed higher abundance in all immune reactions, such as a protein annotated as sterol carrier protein 2 that could be interesting since Phytophthora species are sterol auxotrophs. RNA binding proteins also showed altered abundance in the different immune reactions. Furthermore, we identified some PTI-specific changes of protein abundance, such as for example, a glyoxysomal fatty acid beta-oxidation multifunctional protein and a MAR-binding protein. Interestingly, a lysine histone demethylase was decreased in PTI, and that prompted us to also analyze protein methylation in our datasets. The proteins upregulated explicitly in ETI included several catalases. Few proteins were regulated in only one of the ETI interactions. For example, histones were only downregulated in the ETI-Avr2 interaction, and a putative multiprotein bridging factor was only upregulated in the ETI-IpiO interaction. One example of a methylated protein that increased in the ETI interactions was a serine hydroxymethyltransferase.
Collapse
|
30
|
Wang J, Gao C, Li L, Cao W, Dong R, Ding X, Zhu C, Chu Z. Transgenic RXLR Effector PITG_15718.2 Suppresses Immunity and Reduces Vegetative Growth in Potato. Int J Mol Sci 2019; 20:ijms20123031. [PMID: 31234322 PMCID: PMC6627464 DOI: 10.3390/ijms20123031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/25/2023] Open
Abstract
Phytophthora infestans causes the severe late blight disease of potato. During its infection process, P. infestans delivers hundreds of RXLR (Arg-x-Leu-Arg, x behalf of any one amino acid) effectors to manipulate processes in its hosts, creating a suitable environment for invasion and proliferation. Several effectors interact with host proteins to suppress host immunity and inhibit plant growth. However, little is known about how P. infestans regulates the host transcriptome. Here, we identified an RXLR effector, PITG_15718.2, which is upregulated and maintains a high expression level throughout the infection. Stable transgenic potato (Solanum tuberosum) lines expressing PITG_15718.2 show enhanced leaf colonization by P. infestans and reduced vegetative growth. We further investigated the transcriptional changes between three PITG_15718.2 transgenic lines and the wild type Désirée by using RNA sequencing (RNA-Seq). Compared with Désirée, 190 differentially expressed genes (DEGs) were identified, including 158 upregulated genes and 32 downregulated genes in PITG_15718.2 transgenic lines. Eight upregulated and nine downregulated DEGs were validated by real-time RT-PCR, which showed a high correlation with the expression level identified by RNA-Seq. These DEGs will help to explore the mechanism of PITG_15718.2-mediated immunity and growth inhibition in the future.
Collapse
Affiliation(s)
- Jiao Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Cungang Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Long Li
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Weilin Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.
| | - Ran Dong
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
31
|
Strachan SM, Armstrong MR, Kaur A, Wright KM, Lim TY, Baker K, Jones J, Bryan G, Blok V, Hein I. Mapping the H2 resistance effective against Globodera pallida pathotype Pa1 in tetraploid potato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1283-1294. [PMID: 30666393 PMCID: PMC6449323 DOI: 10.1007/s00122-019-03278-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/07/2019] [Indexed: 05/26/2023]
Abstract
The nematode resistance gene H2 was mapped to the distal end of chromosome 5 in tetraploid potato. The H2 resistance gene, introduced into cultivated potatoes from the wild diploid species Solanum multidissectum, confers a high level of resistance to the Pa1 pathotype of the potato cyst nematode Globodera pallida. A cross between tetraploid H2-containing breeding clone P55/7 and susceptible potato variety Picasso yielded an F1 population that segregated approximately 1:1 for the resistance phenotype, which is consistent with a single dominant gene in a simplex configuration. Using genome reduction methodologies RenSeq and GenSeq, the segregating F1 population enabled the genetic characterisation of the resistance through a bulked segregant analysis. A diagnostic RenSeq analysis of the parents confirmed that the resistance in P55/7 cannot be explained by previously characterised resistance genes. Only the variety Picasso contained functionally characterised disease resistance genes Rpi-R1, Rpi-R3a, Rpi-R3b variant, Gpa2 and Rx, which was independently confirmed through effector vacuum infiltration assays. RenSeq and GenSeq independently identified sequence polymorphisms linked to the H2 resistance on the top end of potato chromosome 5. Allele-specific KASP markers further defined the locus containing the H2 gene to a 4.7 Mb interval on the distal short arm of potato chromosome 5 and to positions that correspond to 1.4 MB and 6.1 MB in the potato reference genome.
Collapse
Affiliation(s)
- Shona M Strachan
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
- School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Miles R Armstrong
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
- School of Life Sciences, Division of Plant Sciences at the JHI, University of Dundee, Dundee, DD2 5DA, UK
| | - Amanpreet Kaur
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
- Thapar Institute of Engineering and Technology, Patiala, Punjab, 147001, India
| | - Kathryn M Wright
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
| | - Tze Yin Lim
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
- Columbia University, New York, NY, 10027, USA
| | - Katie Baker
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
- Synpromics, Edinburgh, EH25 9RG, UK
| | - John Jones
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
- School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Glenn Bryan
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Vivian Blok
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
| | - Ingo Hein
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK.
- School of Life Sciences, Division of Plant Sciences at the JHI, University of Dundee, Dundee, DD2 5DA, UK.
| |
Collapse
|
32
|
Armstrong MR, Vossen J, Lim TY, Hutten RCB, Xu J, Strachan SM, Harrower B, Champouret N, Gilroy EM, Hein I. Tracking disease resistance deployment in potato breeding by enrichment sequencing. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:540-549. [PMID: 30107090 DOI: 10.1101/360644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/26/2018] [Accepted: 08/12/2018] [Indexed: 05/26/2023]
Abstract
Following the molecular characterisation of functional disease resistance genes in recent years, methods to track and verify the integrity of multiple genes in varieties are needed for crop improvement through resistance stacking. Diagnostic resistance gene enrichment sequencing (dRenSeq) enables the high-confidence identification and complete sequence validation of known functional resistance genes in crops. As demonstrated for tetraploid potato varieties, the methodology is more robust and cost-effective in monitoring resistances than whole-genome sequencing and can be used to appraise (trans) gene integrity efficiently. All currently known NB-LRRs effective against viruses, nematodes and the late blight pathogen Phytophthora infestans can be tracked with dRenSeq in potato and hitherto unknown polymorphisms have been identified. The methodology provides a means to improve the speed and efficiency of future disease resistance breeding in crops by directing parental and progeny selection towards effective combinations of resistance genes.
Collapse
Affiliation(s)
- Miles R Armstrong
- CMS, The James Hutton Institute, Dundee, UK
- School of Life Sciences, Division of Plant Sciences at the James Hutton Institute, University of Dundee, Dundee, UK
| | - Jack Vossen
- Wageningen University, Wageningen, The Netherlands
| | | | | | - Jianfei Xu
- Chinese Academy of Agricultural Science (CAAS), Beijing, China
| | | | | | | | | | - Ingo Hein
- CMS, The James Hutton Institute, Dundee, UK
- School of Life Sciences, Division of Plant Sciences at the James Hutton Institute, University of Dundee, Dundee, UK
| |
Collapse
|
33
|
Armstrong MR, Vossen J, Lim TY, Hutten RCB, Xu J, Strachan SM, Harrower B, Champouret N, Gilroy EM, Hein I. Tracking disease resistance deployment in potato breeding by enrichment sequencing. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:540-549. [PMID: 30107090 PMCID: PMC6335062 DOI: 10.1111/pbi.12997] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/26/2018] [Accepted: 08/12/2018] [Indexed: 05/09/2023]
Abstract
Following the molecular characterisation of functional disease resistance genes in recent years, methods to track and verify the integrity of multiple genes in varieties are needed for crop improvement through resistance stacking. Diagnostic resistance gene enrichment sequencing (dRenSeq) enables the high-confidence identification and complete sequence validation of known functional resistance genes in crops. As demonstrated for tetraploid potato varieties, the methodology is more robust and cost-effective in monitoring resistances than whole-genome sequencing and can be used to appraise (trans) gene integrity efficiently. All currently known NB-LRRs effective against viruses, nematodes and the late blight pathogen Phytophthora infestans can be tracked with dRenSeq in potato and hitherto unknown polymorphisms have been identified. The methodology provides a means to improve the speed and efficiency of future disease resistance breeding in crops by directing parental and progeny selection towards effective combinations of resistance genes.
Collapse
Affiliation(s)
- Miles R. Armstrong
- CMSThe James Hutton InstituteDundeeUK
- School of Life SciencesDivision of Plant Sciences at the James Hutton InstituteUniversity of DundeeDundeeUK
| | - Jack Vossen
- Wageningen UniversityWageningenThe Netherlands
| | - Tze Yin Lim
- CMSThe James Hutton InstituteDundeeUK
- Present address:
Department of MedicineColumbia UniversityNew YorkNYUSA
| | | | - Jianfei Xu
- Chinese Academy of Agricultural Science (CAAS)BeijingChina
| | | | | | | | | | - Ingo Hein
- CMSThe James Hutton InstituteDundeeUK
- School of Life SciencesDivision of Plant Sciences at the James Hutton InstituteUniversity of DundeeDundeeUK
| |
Collapse
|
34
|
Kapos P, Devendrakumar KT, Li X. Plant NLRs: From discovery to application. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:3-18. [PMID: 30709490 DOI: 10.1016/j.plantsci.2018.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/09/2023]
Abstract
Plants require a complex immune system to defend themselves against a wide range of pathogens which threaten their growth and development. The nucleotide-binding leucine-rich repeat proteins (NLRs) are immune sensors that recognize effectors delivered by pathogens. The first NLR was cloned more than twenty years ago. Since this initial discovery, NLRs have been described as key components of plant immunity responsible for pathogen recognition and triggering defense responses. They have now been described in most of the well-studied mulitcellular plant species, with most having large NLR repertoires. As research has progressed so has the understanding of how NLRs interact with their recognition substrates and how they in turn activate downstream signalling. It has also become apparent that NLR regulation occurs at the transcriptional, post-transcriptional, translational, and post-translational levels. Even before the first NLR was cloned, breeders were utilising such genes to increase crop performance. Increased understanding of the mechanistic details of the plant immune system enable the generation of plants resistant against devastating pathogens. This review aims to give an updated summary of the NLR field.
Collapse
Affiliation(s)
- Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
35
|
Kim N, Kang WH, Lee J, Yeom SI. Development of Clustered Resistance Gene Analogs-Based Markers of Resistance to Phytophthora capsici in Chili Pepper. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1093186. [PMID: 30719438 PMCID: PMC6335758 DOI: 10.1155/2019/1093186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/24/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022]
Abstract
The soil-borne pathogen Phytophthora capsici causes severe destruction of Capsicum spp. Resistance in Capsicum against P. capsici is controlled by numerous minor quantitative trait loci (QTLs) and a consistent major QTL on chromosome 5. Molecular markers on Capsicum chromosome 5 have been developed to identify the predominant genetic contributor to resistance but have achieved little success. In this study, previously reported molecular markers were used to reanalyze the major QTL region on chromosome 5 (6.2 Mbp to 139.2 Mbp). Candidate resistance gene analogs (RGAs) were identified in the extended major QTL region including 14 nucleotide binding site leucine-rich repeats, 3 receptor-like kinases, and 1 receptor-like protein. Sequence comparison of the candidate RGAs was performed between two Capsicum germplasms that are resistant and susceptible, respectively, to P. capsici. 11 novel RGA-based markers were developed through high-resolution melting analysis which were closely linked to the major QTL for P. capsici resistance. Among the markers, CaNB-5480 showed the highest cosegregation rate at 86.9% and can be applied to genotyping of the germplasms that were not amenable by previous markers. With combination of three markers such as CaNB-5480, CaRP-5130 and CaNB-5330 increased genotyping accuracy for 61 Capsicum accessions. These could be useful to facilitate high-throughput germplasm screening and further characterize resistance genes against P. capsici in pepper.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Won-Hee Kang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jundae Lee
- Department of Horticulture, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21 Plus Program), Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
36
|
Ohlson EW, Ashrafi H, Foolad MR. Identification and Mapping of Late Blight Resistance Quantitative Trait Loci in Tomato Accession PI 163245. THE PLANT GENOME 2018; 11:180007. [PMID: 30512045 DOI: 10.3835/plantgenome2018.01.0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Late blight (LB), caused by the oomycete (Mont.) de Bary, is one of the most devastating diseases of tomato ( L.) and potato ( tuberosum L. worldwide. The importance of LB on tomato has increased due to the occurrence of aggressive and fungicide-resistant clonal lineages of . Consequently, identification and characterization of new sources of genetic resistance to LB has become a priority in tomato breeding. Previously, we reported accession PI 163245 as a promising source of highly heritable LB resistance for tomato breeding. The purpose of this study was to identify and map quantitative trait loci (QTLs) associated with LB resistance in this accession using a trait-based marker analysis (a.k.a. selective genotyping). An F mapping population ( = 560) derived from a cross between a LB-susceptible tomato breeding line (Fla. 8059) and PI 163245 was screened for LB resistance, and the most resistant ( = 39) and susceptible ( = 35) individuals were selected for genotyping. Sequencing and comparison of the reduced representation libraries (RRLs) derived from genomic DNA of the two parents resulted in the identification of 33,541 putative single nucleotide polymorphism (SNP) markers, of which, 233 genome-wide markers were used to genotype the 74 selected F individuals. The marker analysis resulted in the identification of four LB resistance QTLs conferred by PI 163245, located on chromosomes 2, 3, 10, and 11. Research is underway to develop near-isogenic lines (NILs) for fine mapping the QTLs and develop tomato breeding lines with LB resistance introduced from PI 163245.
Collapse
|
37
|
Chen X, Lewandowska D, Armstrong MR, Baker K, Lim TY, Bayer M, Harrower B, McLean K, Jupe F, Witek K, Lees AK, Jones JD, Bryan GJ, Hein I. Identification and rapid mapping of a gene conferring broad-spectrum late blight resistance in the diploid potato species Solanum verrucosum through DNA capture technologies. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1287-1297. [PMID: 29560514 PMCID: PMC5945768 DOI: 10.1007/s00122-018-3078-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/24/2018] [Indexed: 05/22/2023]
Abstract
A broad-spectrum late blight disease-resistance gene from Solanum verrucosum has been mapped to potato chromosome 9. The gene is distinct from previously identified-resistance genes. We have identified and characterised a broad-spectrum resistance to Phytophthora infestans from the wild Mexican species Solanum verrucosum. Diagnostic resistance gene enrichment (dRenSeq) revealed that the resistance is not conferred by previously identified nucleotide-binding, leucine-rich repeat genes. Utilising the sequenced potato genome as a reference, two complementary enrichment strategies that target resistance genes (RenSeq) and single/low-copy number genes (Generic-mapping enrichment Sequencing; GenSeq), respectively, were deployed for the rapid, SNP-based mapping of the resistance through bulked-segregant analysis. Both approaches independently positioned the resistance, referred to as Rpi-ver1, to the distal end of potato chromosome 9. Stringent post-enrichment read filtering identified a total of 64 informative SNPs that corresponded to the expected ratio for significant polymorphisms in the parents as well as the bulks. Of these, 61 SNPs are located on potato chromosome 9 and reside within 27 individual genes, which in the sequenced potato clone DM locate to positions 45.9 to 60.9 Mb. RenSeq- and GenSeq-derived SNPs within the target region were converted into allele-specific PCR-based KASP markers and further defined the position of the resistance to a 4.3 Mb interval at the bottom end of chromosome 9 between positions 52.62-56.98 Mb.
Collapse
Affiliation(s)
- Xinwei Chen
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
| | | | | | | | - Tze-Yin Lim
- Columbia University, New York, NY, 10027, USA
| | - Micha Bayer
- The James Hutton Institute, ICS, Dundee, DD2 5DA, UK
| | - Brian Harrower
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
| | - Karen McLean
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
| | | | - Kamil Witek
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7GJ, UK
| | - Alison K Lees
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
| | - Jonathan D Jones
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7GJ, UK
| | - Glenn J Bryan
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK
- Scotland's Rural College (SRUC), Peter Wilson Building, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Ingo Hein
- The James Hutton Institute, CMS, Errol Road, Dundee, DD2 5DA, UK.
- School of Life Sciences, Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee, DD2 5DA, UK.
| |
Collapse
|
38
|
Anh VL, Inoue Y, Asuke S, Vy TTP, Anh NT, Wang S, Chuma I, Tosa Y. Rmg8 and Rmg7, wheat genes for resistance to the wheat blast fungus, recognize the same avirulence gene AVR-Rmg8. MOLECULAR PLANT PATHOLOGY 2018; 19:1252-1256. [PMID: 28846191 PMCID: PMC6638012 DOI: 10.1111/mpp.12609] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 05/11/2023]
Abstract
Rmg8 and Rmg7 are genes for resistance to the wheat blast fungus (Pyricularia oryzae), located on chromosome 2B in hexaploid wheat and chromosome 2A in tetraploid wheat, respectively. AVR-Rmg8, an avirulence gene corresponding to Rmg8, was isolated from a wheat blast isolate through a map-based strategy. The cloned fragment encoded a small protein containing a putative signal peptide. AVR-Rmg8 was recognized not only by Rmg8, but also by Rmg7, suggesting that these two resistance genes are equivalent to a single gene from the viewpoint of resistance breeding.
Collapse
Affiliation(s)
- Vu Lan Anh
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | - Yoshihiro Inoue
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
- Present address:
Graduate School of AgricultureKyoto UniversityKyoto 606‐8224Japan
| | - Soichiro Asuke
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | | | - Nguyen Tuan Anh
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | - Shizhen Wang
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | - Izumi Chuma
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| | - Yukio Tosa
- Graduate School of Agricultural ScienceKobe UniversityKobe 657‐8501Japan
| |
Collapse
|
39
|
Jiang R, Li J, Tian Z, Du J, Armstrong M, Baker K, Tze-Yin Lim J, Vossen JH, He H, Portal L, Zhou J, Bonierbale M, Hein I, Lindqvist-Kreuze H, Xie C. Potato late blight field resistance from QTL dPI09c is conferred by the NB-LRR gene R8. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1545-1555. [PMID: 29385612 PMCID: PMC5889011 DOI: 10.1093/jxb/ery021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/16/2018] [Indexed: 05/24/2023]
Abstract
Following the often short-lived protection that major nucleotide binding, leucine-rich-repeat (NB-LRR) resistance genes offer against the potato pathogen Phytophthora infestans, field resistance was thought to provide a more durable alternative to prevent late blight disease. We previously identified the QTL dPI09c on potato chromosome 9 as a more durable field resistance source against late blight. Here, the resistance QTL was fine-mapped to a 186 kb region. The interval corresponds to a larger, 389 kb, genomic region in the potato reference genome of Solanum tuberosum Group Phureja doubled monoploid clone DM1-3 (DM) and from which functional NB-LRRs R8, R9a, Rpi-moc1, and Rpi_vnt1 have arisen independently in wild species. dRenSeq analysis of parental clones alongside resistant and susceptible bulks of the segregating population B3C1HP showed full sequence representation of R8. This was independently validated using long-range PCR and screening of a bespoke bacterial artificial chromosome library. The latter enabled a comparative analysis of the sequence variation in this locus in diverse Solanaceae. We reveal for the first time that broad spectrum and durable field resistance against P. infestans is conferred by the NB-LRR gene R8, which is thought to provide narrow spectrum race-specific resistance.
Collapse
Affiliation(s)
- Rui Jiang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, P. R. China, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingcai Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, P. R. China, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- School of Life Sciences, Huanggang Normal College, Huanggang, Hubei, China
| | - Zhendong Tian
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province, Wuhan, China
| | - Juan Du
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, China
| | - Miles Armstrong
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, UK
| | - Katie Baker
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, UK
| | - Joanne Tze-Yin Lim
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, UK
| | - Jack H Vossen
- Wageningen UR Plant Breeding, Wageningen University and Research, AJ Wageningen, The Netherlands
| | - Huan He
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Wuhan, China
- Potato Engineering and Technology Research Center of Hubei Province, Wuhan, China
| | | | - Jun Zhou
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, P. R. China, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
| | | | - Ingo Hein
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, Scotland, UK
- The University of Dundee, Division of Plant Sciences at the James Hutton Institute, Dundee, UK
| | | | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, P. R. China, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
- Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
40
|
Aguilera-Galvez C, Champouret N, Rietman H, Lin X, Wouters D, Chu Z, Jones J, Vossen J, Visser R, Wolters P, Vleeshouwers V. Two different R gene loci co-evolved with Avr2 of Phytophthora infestans and confer distinct resistance specificities in potato. Stud Mycol 2018; 89:105-115. [PMID: 29910517 PMCID: PMC6002340 DOI: 10.1016/j.simyco.2018.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Late blight, caused by the oomycete pathogen Phytophthora infestans, is the most devastating disease in potato. For sustainable management of this economically important disease, resistance breeding relies on the availability of resistance (R) genes. Such R genes against P. infestans have evolved in wild tuber-bearing Solanum species from North, Central and South America, upon co-evolution with cognate avirulence (Avr) genes. Here, we report how effectoromics screens with Avr2 of P. infestans revealed defense responses in diverse Solanum species that are native to Mexico and Peru. We found that the response to AVR2 in the Mexican Solanum species is mediated by R genes of the R2 family that resides on a major late blight locus on chromosome IV. In contrast, the response to AVR2 in Peruvian Solanum species is mediated by Rpi-mcq1, which resides on chromosome IX and does not belong to the R2 family. The data indicate that AVR2 recognition has evolved independently on two genetic loci in Mexican and Peruvian Solanum species, respectively. Detached leaf tests on potato cultivar 'Désirée' transformed with R genes from either the R2 or the Rpi-mcq1 locus revealed an overlapping, but distinct resistance profile to a panel of 18 diverse P. infestans isolates. The achieved insights in the molecular R - Avr gene interaction can lead to more educated exploitation of R genes and maximize the potential of generating more broad-spectrum, and potentially more durable control of the late blight disease in potato.
Collapse
Affiliation(s)
- C. Aguilera-Galvez
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - N. Champouret
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - H. Rietman
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - X. Lin
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - D. Wouters
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Z. Chu
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - J.D.G. Jones
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - J.H. Vossen
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - R.G.F. Visser
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - P.J. Wolters
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - V.G.A.A. Vleeshouwers
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| |
Collapse
|
41
|
Burra DD, Lenman M, Levander F, Resjö S, Andreasson E. Comparative Membrane-Associated Proteomics of Three Different Immune Reactions in Potato. Int J Mol Sci 2018; 19:ijms19020538. [PMID: 29439444 PMCID: PMC5855760 DOI: 10.3390/ijms19020538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/02/2018] [Accepted: 02/08/2018] [Indexed: 11/16/2022] Open
Abstract
Plants have evolved different types of immune reactions but large-scale proteomics about these processes are lacking, especially in the case of agriculturally important crop pathosystems. We have established a system for investigating PAMP-triggered immunity (PTI) and two different effector-triggered immunity (ETI; triggered by Avr2 or IpiO) responses in potato. The ETI responses are triggered by molecules from the agriculturally important Phytophthora infestans interaction. To perform large-scale membrane protein-based comparison of these responses, we established a method to extract proteins from subcellular compartments in leaves. In the membrane fractions that were subjected to quantitative proteomics analysis, we found that most proteins regulated during PTI were also regulated in the same way in ETI. Proteins related to photosynthesis had lower abundance, while proteins related to oxidative and biotic stress, as well as those related to general antimicrobial defense and cell wall degradation, were found to be higher in abundance. On the other hand, we identified a few proteins—for instance, an ABC transporter-like protein—that were only found in the PTI reaction. Furthermore, we also identified proteins that were regulated only in ETI interactions. These included proteins related to GTP binding and heterotrimeric G-protein signaling, as well as those related to phospholipase signaling.
Collapse
Affiliation(s)
- Dharani Dhar Burra
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Marit Lenman
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, 221 00 Lund, Sweden.
| | - Svante Resjö
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| | - Erik Andreasson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden.
| |
Collapse
|
42
|
Chen Y, Halterman D. Determination of virulence contribution from Phytophthora infestans effector IPI-O4 in a resistant potato host containing the RB gene. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2017; 100:30-34. [PMID: 0 DOI: 10.1016/j.pmpp.2017.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
43
|
Yang L, Wang D, Xu Y, Zhao H, Wang L, Cao X, Chen Y, Chen Q. A New Resistance Gene against Potato Late Blight Originating from Solanum pinnatisectum Located on Potato Chromosome 7. FRONTIERS IN PLANT SCIENCE 2017; 8:1729. [PMID: 29085380 PMCID: PMC5649132 DOI: 10.3389/fpls.2017.01729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/21/2017] [Indexed: 05/30/2023]
Abstract
Late blight, caused by the pathogen Phytophthora infestans, is one of the most devastating diseases of potato. Here, we describe a new single dominant resistance gene, Rpi2, from the Mexican diploid wild species Solanum pinnatisectum that confers high level and broad spectrum resistance to late blight. The Rpi2 locus confers full resistance to complex isolates of P. infestans, for which race specificity has not yet been demonstrated. This new gene, flanked by the RFLP-derived marker SpT1756 and AFLP-derived marker SpAFLP2 with a minimal genetic distance of 0.8 cM, was mapped to potato chromosome 7. Using the genomic sequence data of potato, we estimated that the physical distance of the nearest marker to the resistance gene was about 27 kb. The map location and other evidence indicated that this resistance locus was different from the previously reported resistance locus Rpi1 on the same chromosome from S. pinnatisectum. The presence of other reported resistance genes in the target region, such as Gro1-4, I-3, and three NBS-LLR like genes, on a homologous tomato genome segment indicates the Rpi2-related region is a hotspot for resistance genes. Comparative sequence analysis showed that the order of nine markers mapped to the Rpi2 genetic map was highly conserved on tomato chromosome 7; however, some rearrangements were observed in the potato genome sequence. Additional markers and potential resistance genes will promote accurate location of the site of Rpi2 and help breeders to introduce this resistance gene into different cultivars by marker-aided selection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Qin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
44
|
Chen Y, Halterman DA. Phytophthora infestans Effectors IPI-O1 and IPI-O4 Each Contribute to Pathogen Virulence. PHYTOPATHOLOGY 2017; 107:600-606. [PMID: 28350531 DOI: 10.1094/phyto-06-16-0240-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Potato late blight, caused by the oomycete pathogen Phytophthora infestans, is one of the most destructive plant diseases. Despite decades of intensive breeding efforts, it remains a threat to potato production worldwide, because newly evolved pathogen strains have overcome major resistance genes quickly. The RB protein, from the diploid wild potato species Solanum bulbocastanum, confers partial resistance to most P. infestans strains through its recognition of members of the corresponding pathogen effector protein family IPI-O. IPI-O comprises a multigene family and while some variants are recognized by RB to elicit host resistance (e.g., IPI-O1 and IPI-O2), others are able to elude detection (e.g., IPI-O4). IPI-O1 is almost ubiquitous in global P. infestans strains while IPI-O4 is more rare. No direct experimental evidence has been shown to demonstrate the effect of IPI-O on pathogen virulence in the P. infestans-potato pathosystem. Here, our work has demonstrated that in planta expression of both IPI-O1 and IPI-O4 increases P. infestans aggressiveness resulting in enlarged lesions in potato leaflets. We have previously shown that IPI-O4 has gained the ability to suppress the hypersensitive response induced by IPI-O1 in the presence of RB. In this study, our work has shown that this gain-of-function of IPI-O4 does not compromise its virulence effect, as IPI-O4 overexpression results in larger lesions than IPI-O1. We have also found that higher expression of IPI-O effectors correlates with enlarged lesions, indicating that IPI-O can contribute to virulence quantitatively. In summary, this study has provided accurate and valuable information on IPI-O's virulence effect on the potato host.
Collapse
Affiliation(s)
- Yu Chen
- First author: Department of Horticulture, University of Wisconsin, Madison 53706; and second author: U.S. Department of Agriculture-Agricultural Research Service, Madison, WI 53726
| | - Dennis A Halterman
- First author: Department of Horticulture, University of Wisconsin, Madison 53706; and second author: U.S. Department of Agriculture-Agricultural Research Service, Madison, WI 53726
| |
Collapse
|
45
|
Kaur A, Reddy MS, Kumar A. Efficient, one step and cultivar independent shoot organogenesis of potato. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:461-469. [PMID: 28461733 PMCID: PMC5391352 DOI: 10.1007/s12298-017-0418-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/26/2016] [Accepted: 01/17/2017] [Indexed: 05/12/2023]
Abstract
An efficient, one step and genotype independent protocol of shoot organogenesis was developed from leaf and internodal explants taken from microshoots of different cultivars of potato (Solanum tuberosum L.). Initially, microshoots were cultured on basal Murashige and Skoog medium additionally supplemented with 10 µM AgNO3 (MS1 medium) to achieve healthy shoot growth required to get the quality explants. Shoot organogenesis was induced from both types of explants (leaf and internodal) on MS1 medium variously supplemented with 6-benzyladenine (BA) and gibberellic acid (GA3). Maximum explants were induced shoot organogenesis on MS1 medium supplemented with 10 µM BA and 15.0 µM GA3 from both the cultivars namely 'Kufri Chipsona 1' and 'Kufri Pukhraj'. Among the types of explants used, better response was observed from internodal segments as compared to leafs. This optimized medium combination was found to be equally effective for all the eight cultivars tested namely 'Kufri Pukhraj', 'Kufri Chipsona 1', 'Kufri Chipsona 2', 'Kufri Jyoti', 'Kufri Surya', 'Kufri Chandramukhi', 'Kufri Khyati' and 'Desiree'. The clonal uniformity of the regenerated shoots was confirmed using random amplified polymorphic DNA and inter-simple sequence repeats markers.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar University, Patiala, 147001 India
| | - M. Sudhakara Reddy
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar University, Patiala, 147001 India
| | - Anil Kumar
- Department of Biotechnology, TIFAC-Centre of Relevance and Excellence in Agro and Industrial Biotechnology (CORE), Thapar University, Patiala, 147001 India
| |
Collapse
|
46
|
Yogendra KN, Kushalappa AC. Integrated transcriptomics and metabolomics reveal induction of hierarchies of resistance genes in potato against late blight. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:766-782. [PMID: 32480502 DOI: 10.1071/fp16028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/15/2016] [Indexed: 05/11/2023]
Abstract
Late blight caused by Phytophthora infestans is a devastating disease affecting potato production worldwide. The quantitative resistance is durable, but the underlying molecular and biochemical mechanisms are poorly understood, limiting its application in breeding. Integrated transcriptomics and metabolomics approach was used for the first time to study the hierarchies of molecular events occurring, following inoculation of resistant and susceptible potato genotypes with P. infestans. RNA sequencing revealed a total of 4216 genes that were differentially expressed in the resistant than in the susceptible genotype. Genes that were highly expressed and associated with their biosynthetic metabolites that were highly accumulated, through metabolic pathway regulation, were selected. Quantitative real-time PCR was performed to confirm the RNA-seq expression levels. The induced leucine-rich repeat receptor-like kinases (LRR-RLKs) are considered to be involved in pathogen recognition. These receptor genes are considered to trigger downstream oxidative burst, phytohormone signalling-related genes, and transcription factors that regulated the resistance genes to produce resistance related metabolites to suppress the pathogen infection. It was noted that several resistance genes in metabolic pathways related to phenylpropanoids, flavonoids, alkaloids and terpenoid biosynthesis were strongly induced in the resistant genotypes. The pathway specific gene induction provided key insights into the metabolic reprogramming of induced defence responses in resistant genotypes.
Collapse
Affiliation(s)
| | - Ajjamada C Kushalappa
- Department of Plant Science, McGill University, Ste. Anne de Bellevue, Québec, Canada
| |
Collapse
|
47
|
Mosquera T, Alvarez MF, Jiménez-Gómez JM, Muktar MS, Paulo MJ, Steinemann S, Li J, Draffehn A, Hofmann A, Lübeck J, Strahwald J, Tacke E, Hofferbert HR, Walkemeier B, Gebhardt C. Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease. PLoS One 2016; 11:e0156254. [PMID: 27281327 PMCID: PMC4900573 DOI: 10.1371/journal.pone.0156254] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/08/2016] [Indexed: 11/18/2022] Open
Abstract
The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array available in potato for genome wide association studies (GWAS). Twenty seven SNPs from all three sources showed robust association with MCR. Some of those were located in genes that are strong candidates for directly controlling quantitative resistance, based on functional annotation. Most important were: a lipoxygenase (jasmonate pathway), a 3-hydroxy-3-methylglutaryl coenzyme A reductase (mevalonate pathway), a P450 protein (terpene biosynthesis), a transcription factor and a homolog of a major gene for resistance to P. infestans from the wild potato species Solanum venturii. The candidate gene approach and GWAS complemented each other as they identified different genes. The results of this study provide new insight in the molecular genetic basis of quantitative resistance in potato and a toolbox of diagnostic SNP markers for breeding applications.
Collapse
Affiliation(s)
- Teresa Mosquera
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Maria Fernanda Alvarez
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - José M. Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Institute Jean-Pierre Bourgin, INRA, AgroParis Tech, CNRS, Université Paris-Saclay, Versailles, France
| | - Meki Shehabu Muktar
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | - Sebastian Steinemann
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jinquan Li
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Astrid Draffehn
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrea Hofmann
- Department of Genomics, Life & Brain Center, Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Jens Lübeck
- SaKa-Pflanzenzucht GmbH & Co. KG, 24340, Windeby, Germany
| | | | | | | | - Birgit Walkemeier
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Christiane Gebhardt
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail:
| |
Collapse
|
48
|
Selin C, de Kievit TR, Belmonte MF, Fernando WGD. Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges. Front Microbiol 2016; 7:600. [PMID: 27199930 PMCID: PMC4846801 DOI: 10.3389/fmicb.2016.00600] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Pathogenic fungi have diverse growth lifestyles that support fungal colonization on plants. Successful colonization and infection for all lifestyles depends upon the ability to modify living host plants to sequester the necessary nutrients required for growth and reproduction. Secretion of virulence determinants referred to as “effectors” is assumed to be the key governing factor that determines host infection and colonization. Effector proteins are capable of suppressing plant defense responses and alter plant physiology to accommodate fungal invaders. This review focuses on effector molecules of biotrophic and hemibiotrophic plant pathogenic fungi, and the mechanism required for the release and uptake of effector molecules by the fungi and plant cells, respectively. We also place emphasis on the discovery of effectors, difficulties associated with predicting the effector repertoire, and fungal genomic features that have helped promote effector diversity leading to fungal evolution. We discuss the role of specific effectors found in biotrophic and hemibiotrophic fungi and examine how CRISPR/Cas9 technology may provide a new avenue for accelerating our ability in the discovery of fungal effector function.
Collapse
Affiliation(s)
- Carrie Selin
- Department of Plant Science, University of Manitoba Winnipeg, MB, Canada
| | | | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba Winnipeg, MB, Canada
| | | |
Collapse
|
49
|
Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nat Biotechnol 2016; 34:656-60. [PMID: 27111721 DOI: 10.1038/nbt.3540] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 03/15/2016] [Indexed: 01/18/2023]
Abstract
Global yields of potato and tomato crops have fallen owing to potato late blight disease, which is caused by Phytophthora infestans. Although most commercial potato varieties are susceptible to blight, many wild potato relatives show variation for resistance and are therefore a potential source of Resistance to P. infestans (Rpi) genes. Resistance breeding has exploited Rpi genes from closely related tuber-bearing potato relatives, but is laborious and slow. Here we report that the wild, diploid non-tuber-bearing Solanum americanum harbors multiple Rpi genes. We combine resistance (R) gene sequence capture (RenSeq) with single-molecule real-time (SMRT) sequencing (SMRT RenSeq) to clone Rpi-amr3i. This technology should enable de novo assembly of complete nucleotide-binding, leucine-rich repeat receptor (NLR) genes, their regulatory elements and complex multi-NLR loci from uncharacterized germplasm. SMRT RenSeq can be applied to rapidly clone multiple R genes for engineering pathogen-resistant crops.
Collapse
|
50
|
Oomycete interactions with plants: infection strategies and resistance principles. Microbiol Mol Biol Rev 2016; 79:263-80. [PMID: 26041933 DOI: 10.1128/mmbr.00010-15] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Oomycota include many economically significant microbial pathogens of crop species. Understanding the mechanisms by which oomycetes infect plants and identifying methods to provide durable resistance are major research goals. Over the last few years, many elicitors that trigger plant immunity have been identified, as well as host genes that mediate susceptibility to oomycete pathogens. The mechanisms behind these processes have subsequently been investigated and many new discoveries made, marking a period of exciting research in the oomycete pathology field. This review provides an introduction to our current knowledge of the pathogenic mechanisms used by oomycetes, including elicitors and effectors, plus an overview of the major principles of host resistance: the established R gene hypothesis and the more recently defined susceptibility (S) gene model. Future directions for development of oomycete-resistant plants are discussed, along with ways that recent discoveries in the field of oomycete-plant interactions are generating novel means of studying how pathogen and symbiont colonizations overlap.
Collapse
|