1
|
Singer K, Lee LY, Yuan J, Gelvin SB. Characterization of T-Circles and Their Formation Reveal Similarities to Agrobacterium T-DNA Integration Patterns. FRONTIERS IN PLANT SCIENCE 2022; 13:849930. [PMID: 35599900 PMCID: PMC9121065 DOI: 10.3389/fpls.2022.849930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Agrobacterium transfers T-DNA to plants where it may integrate into the genome. Non-homologous end-joining (NHEJ) has been invoked as the mechanism of T-DNA integration, but the role of various NHEJ proteins remains controversial. Genetic evidence for the role of NHEJ in T-DNA integration has yielded conflicting results. We propose to investigate the formation of T-circles as a proxy for understanding T-DNA integration. T-circles are circular double-strand T-DNA molecules, joined at their left (LB) and right (RB) border regions, formed in plants. We characterized LB-RB junction regions from hundreds of T-circles formed in Nicotiana benthamiana or Arabidopsis thaliana. These junctions resembled T-DNA/plant DNA junctions found in integrated T-DNA: Among complex T-circles composed of multiple T-DNA molecules, RB-RB/LB-LB junctions predominated over RB-LB junctions; deletions at the LB were more frequent and extensive than those at the RB; microhomology was frequently used at junction sites; and filler DNA, from the plant genome or various Agrobacterium replicons, was often present between the borders. Ku80 was not required for efficient T-circle formation, and a VirD2 ω mutation affected T-circle formation and T-DNA integration similarly. We suggest that investigating the formation of T-circles may serve as a surrogate for understanding T-DNA integration.
Collapse
|
2
|
Plant DNA Repair and Agrobacterium T-DNA Integration. Int J Mol Sci 2021; 22:ijms22168458. [PMID: 34445162 PMCID: PMC8395108 DOI: 10.3390/ijms22168458] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022] Open
Abstract
Agrobacterium species transfer DNA (T-DNA) to plant cells where it may integrate into plant chromosomes. The process of integration is thought to involve invasion and ligation of T-DNA, or its copying, into nicks or breaks in the host genome. Integrated T-DNA often contains, at its junctions with plant DNA, deletions of T-DNA or plant DNA, filler DNA, and/or microhomology between T-DNA and plant DNA pre-integration sites. T-DNA integration is also often associated with major plant genome rearrangements, including inversions and translocations. These characteristics are similar to those often found after repair of DNA breaks, and thus DNA repair mechanisms have frequently been invoked to explain the mechanism of T-DNA integration. However, the involvement of specific plant DNA repair proteins and Agrobacterium proteins in integration remains controversial, with numerous contradictory results reported in the literature. In this review I discuss this literature and comment on many of these studies. I conclude that either multiple known DNA repair pathways can be used for integration, or that some yet unknown pathway must exist to facilitate T-DNA integration into the plant genome.
Collapse
|
3
|
The Mechanism of T-DNA Integration: Some Major Unresolved Questions. Curr Top Microbiol Immunol 2018; 418:287-317. [DOI: 10.1007/82_2018_98] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Hwang HH, Yu M, Lai EM. Agrobacterium-mediated plant transformation: biology and applications. THE ARABIDOPSIS BOOK 2017; 15:e0186. [PMID: 31068763 PMCID: PMC6501860 DOI: 10.1199/tab.0186] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant genetic transformation heavily relies on the bacterial pathogen Agrobacterium tumefaciens as a powerful tool to deliver genes of interest into a host plant. Inside the plant nucleus, the transferred DNA is capable of integrating into the plant genome for inheritance to the next generation (i.e. stable transformation). Alternatively, the foreign DNA can transiently remain in the nucleus without integrating into the genome but still be transcribed to produce desirable gene products (i.e. transient transformation). From the discovery of A. tumefaciens to its wide application in plant biotechnology, numerous aspects of the interaction between A. tumefaciens and plants have been elucidated. This article aims to provide a comprehensive review of the biology and the applications of Agrobacterium-mediated plant transformation, which may be useful for both microbiologists and plant biologists who desire a better understanding of plant transformation, protein expression in plants, and plant-microbe interaction.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, 402
| | - Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
5
|
Rolloos M, Dohmen MHC, Hooykaas PJJ, van der Zaal BJ. Involvement of Rad52 in T-DNA circle formation duringAgrobacterium tumefaciens-mediated transformation ofSaccharomyces cerevisiae. Mol Microbiol 2014; 91:1240-51. [DOI: 10.1111/mmi.12531] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Martijn Rolloos
- Department of Molecular and Developmental Genetics; nstitute of Biology Leiden; Leiden Sylviusweg 72, 2333 BE The Netherlands
| | - Marius H. C. Dohmen
- Department of Molecular and Developmental Genetics; nstitute of Biology Leiden; Leiden Sylviusweg 72, 2333 BE The Netherlands
| | - Paul J. J. Hooykaas
- Department of Molecular and Developmental Genetics; nstitute of Biology Leiden; Leiden Sylviusweg 72, 2333 BE The Netherlands
| | - Bert J. van der Zaal
- Department of Molecular and Developmental Genetics; nstitute of Biology Leiden; Leiden Sylviusweg 72, 2333 BE The Netherlands
| |
Collapse
|
6
|
Gelvin SB. Traversing the Cell: Agrobacterium T-DNA's Journey to the Host Genome. FRONTIERS IN PLANT SCIENCE 2012; 3:52. [PMID: 22645590 PMCID: PMC3355731 DOI: 10.3389/fpls.2012.00052] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/28/2012] [Indexed: 05/05/2023]
Abstract
The genus Agrobacterium is unique in its ability to conduct interkingdom genetic exchange. Virulent Agrobacterium strains transfer single-strand forms of T-DNA (T-strands) and several Virulence effector proteins through a bacterial type IV secretion system into plant host cells. T-strands must traverse the plant wall and plasma membrane, traffic through the cytoplasm, enter the nucleus, and ultimately target host chromatin for stable integration. Because any DNA sequence placed between T-DNA "borders" can be transferred to plants and integrated into the plant genome, the transfer and intracellular trafficking processes must be mediated by bacterial and host proteins that form complexes with T-strands. This review summarizes current knowledge of proteins that interact with T-strands in the plant cell, and discusses several models of T-complex (T-strand and associated proteins) trafficking. A detailed understanding of how these macromolecular complexes enter the host cell and traverse the plant cytoplasm will require development of novel technologies to follow molecules from their bacterial site of synthesis into the plant cell, and how these transferred molecules interact with host proteins and sub-cellular structures within the host cytoplasm and nucleus.
Collapse
Affiliation(s)
- Stanton B. Gelvin
- Department of Biological Sciences, Purdue UniversityWest Lafayette, IN, USA
| |
Collapse
|
7
|
Agrobacterium tumefaciens T-DNA Integration and Gene Targeting in Arabidopsis thaliana Non-Homologous End-Joining Mutants. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/989272] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to study the role of AtKu70 and AtKu80 in Agrobacterium-mediated transformation and gene targeting, plant lines with a T-DNA insertion in AtKu80 or AtKu70 genes were functionally characterized. Such plant lines lacked both subunits, indicating that heterodimer formation between AtKu70 and AtKu80 is needed for the stability of the proteins. Homozygous mutants were phenotypically indistinguishable from wild-type plants and were fertile. However, they were hypersensitive to the genotoxic agent bleomycin, resulting in more DSBs as quantified in comet assays. They had lower end-joining efficiency, suggesting that NHEJ is a critical pathway for DSB repair in plants. Both Atku mutants and a previously isolated Atmre11 mutant were impaired in Agrobacterium T-DNA integration via floral dip transformation, indicating that AtKu70, AtKu80, and AtMre11 play an important role in T-DNA integration in Arabidopsis. The frequency of gene targeting was not significantly increased in the Atku80 and Atku70 mutants, but it was increased at least 10-fold in the Atmre11 mutant compared with the wild type.
Collapse
|
8
|
van Kregten M, Lindhout BI, Hooykaas PJJ, van der Zaal BJ. Agrobacterium-mediated T-DNA transfer and integration by minimal VirD2 consisting of the relaxase domain and a type IV secretion system translocation signal. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1356-1365. [PMID: 19810805 DOI: 10.1094/mpmi-22-11-1356] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The VirD2 protein of Agrobacterium tumefaciens is essential for processing and transport of the T-DNA. It has at least three functional domains: a relaxase domain at the N terminus, a bipartite nuclear localization signal (NLS), and a sequence called omega at the C terminus. We confirm here that deletions of the C-terminal part of VirD2 led to lack of transfer of T-DNA but, for the first time, we report that virulence is restored when these truncations are supplemented at the C terminus by a short translocation signal from the VirF protein. The lack of virulence of C-terminal deletions suggests that the C-terminal part contains all or part of the translocation signal of VirD2. Using a novel series of mutant VirD2 proteins, the C-terminal half of VirD2 was further investigated. We demonstrate that the C-terminal 40 amino acids of VirD2, which include the NLS and omega, contain all or part of the translocation domain necessary for transport of VirD2 into plant cells, while another element is present in the middle of the protein. The finding that a type IV secretion system transport signal at the C terminus of VirD2 is necessary for virulence provides evidence for the role of VirD2 as a pilot protein driving translocation of the T-strand.
Collapse
Affiliation(s)
- Maartje van Kregten
- Clusius Laboratory, Department of Molecular and Developmental Genetics, Institute of Biology Leiden, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | | | |
Collapse
|
9
|
Reavy B, Bagirova S, Chichkova NV, Fedoseeva SV, Kim SH, Vartapetian AB, Taliansky ME. Caspase-resistant VirD2 protein provides enhanced gene delivery and expression in plants. PLANT CELL REPORTS 2007; 26:1215-9. [PMID: 17370074 DOI: 10.1007/s00299-007-0335-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2006] [Revised: 02/07/2007] [Accepted: 02/25/2007] [Indexed: 05/14/2023]
Abstract
Agrobacterium tumefaciens VirD2 protein is one of the key elements of Agrobacterium-mediated plant transformation, a process of transfer of T-DNA sequence from the Agrobacterium tumour inducing plasmid into the nucleus of infected plant cells and its integration into the host genome. The VirD2 protein has been shown to be a substrate for a plant caspase-like protease activity (PCLP) in tobacco. We demonstrate here that mutagenesis of the VirD2 protein to prevent cleavage by PCLP increases the efficiency of reporter gene transfer and expression. These results indicate that PCLP cleavage of the Agrobacterium VirD2 protein acts to limit the effectiveness of T-DNA transfer and is a novel resistance mechanism that plants utilise to combat Agrobacterium infection.
Collapse
Affiliation(s)
- Brian Reavy
- Scottish Crop Research Institute, Invergowrie, Dundee, UK
| | | | | | | | | | | | | |
Collapse
|
10
|
Hwang HH, Mysore KS, Gelvin SB. Transgenic Arabidopsis plants expressing Agrobacterium tumefaciens VirD2 protein are less susceptible to Agrobacterium transformation. MOLECULAR PLANT PATHOLOGY 2006; 7:473-484. [PMID: 20507462 DOI: 10.1111/j.1364-3703.2006.00353.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Agrobacterium tumefaciens causes crown gall disease on many plant species and can result in considerable economic losses. Here we report a new strategy to control crown gall disease by over-expressing Agrobacterium tumefaciens VirD2 protein in plants. Transgenic Arabidopsis plants over-expressing virD2 from constitutive or wound-inducible promoters are less susceptible to Agrobacterium-mediated transformation. Additionally, the transient introduction of an A. tumefaciens virD2 gene in tobacco BY-2 cells reduces subsequent Agrobacterium-mediated transformation.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
11
|
Dube T, Kovalchuk I, Hohn B, Thomson JA. Agrobacterium tumefaciens-mediated transformation of plants by the pTF-FC2 plasmid is efficient and strictly dependent on the MobA protein. PLANT MOLECULAR BIOLOGY 2004; 55:531-539. [PMID: 15604698 DOI: 10.1007/s11103-004-1159-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the transformation of plants by Agrobacterium tumefaciens the VirD2 protein has been shown to pilot T-DNA during its transfer to the plant cell nucleus. Other studies have shown that the MobA protein of plasmid RSF1010 is capable of mediating its transfer from Agrobacterium cells to plant cells by a similar process. We have demonstrated previously that plasmid pTF-FC2, which has some similarity to RSF1010, is also able to transfer DNA efficiently. In this study, we performed a mutational analysis of the roles played by A . tumefaciens VirD2 and pTF-FC2 MobA in DNA transfer-mediated by A. tumefaciens carrying pTF-FC2. We show that MobA+/VirD2+ and MobA+/VirD2- strains were equally proficient in their ability to transfer a pTF-FC2-derived plasmid DNA to plants and to transform them. However, the MobA-/VirD2+ strain showed a DNA transfer efficiency of 0.03% compared with that of the other two strains. This sharply contrasts with our results that VirD2 can rather efficiently cleave the oriT sequence of pFT-FC2 in vitro . We therefore conclude that MobA plays a major VirD2-independent role in plant transformation by pTF-FC2.
Collapse
Affiliation(s)
- Thabani Dube
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag Rondebosch, South Africa
| | | | | | | |
Collapse
|
12
|
Michielse CB, Ram AFJ, Hooykaas PJJ, Hondel CAMJJVD. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori. Fungal Genet Biol 2004; 41:571-8. [PMID: 15050546 DOI: 10.1016/j.fgb.2004.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 01/08/2004] [Indexed: 11/25/2022]
Abstract
The Agrobacterium-mediated transformation of Aspergillus awamori was optimized using defined co-cultivation conditions, which resulted in a reproducible and efficient transformation system. Optimal co-cultivation conditions were used to study the role of Agrobacterium tumefaciens virulence proteins in T-DNA transfer. This study revealed that inactivation of either of the regulatory proteins (VirA, VirG), any of the transport pore proteins (VirB), proteins involved in generation of the T-strand (VirD, VirC) or T-strand protection and targeting (VirE2) abolishes or severely reduces the formation of transformants. The results indicate that the Agrobacterium-mediated transformation of A. awamori requires an intact T-DNA machinery for efficient transformation; however, the plant host range factors, like VirE3, VirH, and VirF, are not important.
Collapse
Affiliation(s)
- C B Michielse
- Institute of Biology, Clusius Laboratory, Leiden University, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Michielse CB, Ram AFJ, Hooykaas PJJ, van den Hondel CAMJJ. Agrobacterium-mediated transformation of Aspergillus awamori in the absence of full-length VirD2, VirC2, or VirE2 leads to insertion of aberrant T-DNA structures. J Bacteriol 2004; 186:2038-45. [PMID: 15028687 PMCID: PMC374399 DOI: 10.1128/jb.186.7.2038-2045.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 12/16/2003] [Indexed: 11/20/2022] Open
Abstract
Reductions to 2, 5, and 42% of the wild-type transformation efficiency were found when Agrobacterium mutants carrying transposon insertions in virD2, virC2, and virE2, respectively, were used to transform Aspergillus awamori. The structures of the T-DNAs integrated into the host genome by these mutants were analyzed by Southern and sequence analyses. The T-DNAs of transformants obtained with the virE2 mutant had left-border truncations, whereas those obtained with the virD2 mutant had truncated right ends. From this analysis, it was concluded that the virulence proteins VirD2 and VirE2 are required for full-length T-DNA integration and that these proteins play a role in protecting the right and left T-DNA borders, respectively. Multicopy and truncated T-DNA structures were detected in the majority of the transformants obtained with the virC2 mutant, indicating that VirC2 plays a role in correct T-DNA processing and is required for single-copy T-DNA integration.
Collapse
Affiliation(s)
- Caroline B Michielse
- Clusius Laboratory, Institute of Biology, Leiden University, 2333 AL, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
14
|
Escudero J, Den Dulk-Ras A, Regensburg-Tuïnk TJG, Hooykaas PJJ. VirD4-independent transformation by CloDF13 evidences an unknown factor required for the genetic colonization of plants via Agrobacterium. Mol Microbiol 2003; 47:891-901. [PMID: 12581347 DOI: 10.1046/j.1365-2958.2003.03328.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Agrobacterium uses a mechanism similar to conjugation for trans-kingdom transfer of its oncogenic T-DNA. A defined VirB/VirD4 Type IV secretion system is responsible for such a genetic transfer. In addition, certain virulence proteins as VirE2 can be mobilized into host cells by the same apparatus. VirE2 is essential to achieve plant but not yeast transformation. We found that the limited host range plasmid CloDF13 can be recruited by the virulence apparatus of Agrobacterium for transfer to eukaryotic hosts. As expected the VirB transport complex was required for such trans-kingdom DNA transfer. However, unexpectedly, the coupling factor VirD4 turned out to be necessary for transfer to plants but not for transport into yeast. The CloDF13 encoded coupling factor (Mob) was essential for transfer to both plants and yeast though. This is interpreted by the different specificities of Mob and VirD4. Hence, Mob being required for the transport of the CloDF13 transferred DNA (to both plants and yeast) and VirD4 being required for transport of virulence proteins such as VirE2. Nevertheless, the presence of the VirE2 protein in the host plant was not sufficient to restore the deficiency for VirD4 in the transforming bacteria. We propose that Mob functions encoded by the plasmid CloDF13 are sufficient for DNA mobilization to eukaryotic cells but that the VirD4-mediated pathway is essential to achieve DNA nuclear establishment specifically in plants. This suggests that other Agrobacterium virulence proteins besides VirE2 are translocated and essential for plant transformation.
Collapse
Affiliation(s)
- Jesús Escudero
- Institute of Molecular Plant Sciences, Clusius Laboratory, Wassenaarseweg 64, 2333 AL Leiden,The Netherlands
| | | | | | | |
Collapse
|
15
|
Abstract
The phytopathogenic bacterium Agrobacterium tumefaciens genetically transforms plants by transferring a portion of the resident Ti-plasmid, the T-DNA, to the plant. Accompanying the T-DNA into the plant cell is a number of virulence (Vir) proteins. These proteins may aid in T-DNA transfer, nuclear targeting, and integration into the plant genome. Other virulence proteins on the bacterial surface form a pilus through which the T-DNA and the transferred proteins may translocate. Although the roles of these virulence proteins within the bacterium are relatively well understood, less is known about their roles in the plant cell. In addition, the role of plant-encoded proteins in the transformation process is virtually unknown. In this article, I review what is currently known about the functions of virulence and plant proteins in several aspects of the Agrobacterium transformation process.
Collapse
Affiliation(s)
- Stanton B. Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392; e-mail:
| |
Collapse
|
16
|
Bravo-Angel AM, Gloeckler V, Hohn B, Tinland B. Bacterial conjugation protein MobA mediates integration of complex DNA structures into plant cells. J Bacteriol 1999; 181:5758-65. [PMID: 10482518 PMCID: PMC94097 DOI: 10.1128/jb.181.18.5758-5765.1999] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens transfers T-DNA to plant cells, where it integrates into the genome, a property that is ensured by bacterial proteins VirD2 and VirE2. Under natural conditions, the protein MobA mobilizes its encoding plasmid, RSF1010, between different bacteria. A detailed analysis of MobA-mediated DNA mobilization by Agrobacterium to plants was performed. We compared the ability of MobA to transfer DNA and integrate it into the plant genome to that of pilot protein VirD2. MobA was found to be about 100-fold less efficient than VirD2 in conducting the DNA from the pTi plasmid to the plant cell nucleus. However, interestingly, DNAs transferred by the two proteins were integrated into the plant cell genome with similar efficiencies. In contrast, most of the integrated DNA copies transferred from a MobA-containing strain were truncated at the 5' end. Isolation and analysis of the most conserved 5' ends revealed patterns which resulted from the illegitimate integration of one transferred DNA within another. These complex integration patterns indicate a specific deficiency in MobA. The data conform to a model according to which efficiency of T-DNA integration is determined by plant enzymes and integrity is determined by bacterial proteins.
Collapse
Affiliation(s)
- A M Bravo-Angel
- Cambridge Biomedical Consultants, NL-2517 XE The Hague, The Netherlands
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- G Hansen
- Novartis Agribusiness Biotechnology Research, Inc., Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
18
|
Mysore KS, Bassuner B, Deng XB, Darbinian NS, Motchoulski A, Ream W, Gelvin SB. Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:668-83. [PMID: 9650299 DOI: 10.1094/mpmi.1998.11.7.668] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
VirD2 is one of the key Agrobacterium tumefaciens proteins involved in T-DNA processing and transfer. In addition to its endonuclease domain, VirD2 contains a bipartite C-terminal nuclear localization sequence (NLS) and a conserved region called omega that is important for virulence. Previous results from our laboratory indicated that the C-terminal, bipartite NLS and the omega region are not essential for nuclear uptake of T-DNA, and further suggested that the omega domain may be required for efficient integration of T-DNA into the plant genome. In this study, we took two approaches to investigate the importance of the omega domain in T-DNA integration. Using the first approach, we constructed a T-DNA binary vector containing a promoterless gusA-intron gene just inside the right T-DNA border. The expression of beta-glucuronidase (GUS) activity in plant cells transformed by this T-DNA would indicate that the T-DNA integrated downstream of a plant promoter. Approximately 0.4% of the tobacco cell clusters infected by a wild-type A. tumefaciens strain harboring this vector stained blue with 5-bromo-4-chloro-3-indolyl beta-D-glucuronic acid (X-gluc). However, using an omega-mutant A. tumefaciens strain harboring the same binary vector, we did not detect any blue staining. Using the second approach, we directly demonstrated that more T-DNA is integrated into high-molecular-weight plant DNA after infection of Arabidopsis thaliana cells with a wild-type A. tumefaciens strain than with a strain containing a VirD2 omega deletion/substitution. Taken together, these data indicate that the VirD2 omega domain is important for efficient T-DNA integration. To determine whether the use of the T-DNA right border is altered in those few tumors generated by A. tumefaciens strains harboring the omega mutation, we analyzed DNA extracted from these tumors. Our data indicate that the right border was used to integrate the T-DNA in a similar manner regardless of whether the VirD2 protein encoded by the inciting A. tumefaciens was wild-type or contained an omega mutation. In addition, a mutant VirD2 protein lacking the omega domain was as least as active in cleaving a T-DNA border in vitro as was the wild-type protein. Finally, we investigated the role of various amino acids of the omega and bipartite NLS domains in the targeting of a GUS-VirD2 fusion protein to the nucleus of electroporated tobacco protoplasts. Deletion of the omega domain, or mutation of the 10-amino-acid region between the two components of the bipartite NLS, had little effect upon the nuclear targeting of the GUS-VirD2 fusion protein. Mutation of both components of the NLS reduced, but did not eliminate, targeting of the fusion protein to the nucleus.
Collapse
Affiliation(s)
- K S Mysore
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | | | | | | | | | | | |
Collapse
|