1
|
Wang Q, Zhang Y, Chen R, Zhang L, Fu M, Zhang L. Comparative genomic analyses provide insight into the pathogenicity of three Pseudomonas syringae pv. actinidiae strains from Anhui Province, China. BMC Genomics 2024; 25:461. [PMID: 38734623 PMCID: PMC11088785 DOI: 10.1186/s12864-024-10384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/07/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Pseudomonas syringae pv. actinidiae (Psa) is an important bacterial plant pathogen that causes severe damage to the kiwifruit industry worldwide. Three Psa strains were recently obtained from different kiwifruit orchards in Anhui Province, China. The present study mainly focused on the variations in virulence and genome characteristics of these strains based on the pathogenicity assays and comparative genomic analyses. RESULTS Three strains were identified as biovar 3 (Psa3), along with strain QSY6 showing higher virulence than JZY2 and YXH1 in pathogenicity assays. The whole genome assembly revealed that each of the three strains had a circular chromosome and a complete plasmid. The chromosome sizes ranged from 6.5 to 6.6 Mb with a GC content of approximately 58.39 to 58.46%, and a predicted number of protein-coding sequences ranging from 5,884 to 6,019. The three strains clustered tightly with 8 Psa3 reference strains in terms of average nucleotide identity (ANI), whole-genome-based phylogenetic analysis, and pangenome analysis, while they were evolutionarily distinct from other biovars (Psa1 and Psa5). Variations were observed in the repertoire of effectors of the type III secretion system among all 15 strains. Moreover, synteny analysis of the three sequenced strains revealed eight genomic regions containing 308 genes exclusively present in the highly virulent strain QSY6. Further investigation of these genes showed that 16 virulence-related genes highlight several key factors, such as effector delivery systems (type III secretion systems) and adherence (type IV pilus), which might be crucial for the virulence of QSY6. CONCLUSION Three Psa strains were identified and showed variant virulence in kiwifruit plant. Complete genome sequences and comparative genomic analyses further provided a theoretical basis for the potential pathogenic factors responsible for kiwifruit bacterial canker.
Collapse
Affiliation(s)
- Qian Wang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yiju Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Rui Chen
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Lei Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Min Fu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Lixin Zhang
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
2
|
Verma RK, Gondu P, Saha T, Chatterjee S. The Global Transcription Regulator XooClp Governs Type IV Pili System-Mediated Bacterial Virulence by Directly Binding to TFP-Chp Promoters to Coordinate Virulence Associated Functions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:357-369. [PMID: 38105438 DOI: 10.1094/mpmi-07-23-0100-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Type IV pili (TFP) play a crucial role in the sensing of the external environment for several bacteria. This surface sensing is essential for the lifestyle transitions of several bacteria and involvement in pathogenesis. However, the precise mechanisms underlying TFP's integration of environmental cues, particularly in regulating the TFP-Chp system and its effects on Xanthomonas physiology, social behavior, and virulence, remain poorly understood. In this study, we focused on investigating Clp, a global transcriptional regulator similar to CRP-like proteins, in Xanthomonas oryzae pv. oryzae, a plant pathogen. Our findings reveal that Clp integrates environmental cues detected through diffusible signaling factor (DSF) quorum sensing into the TFP-Chp regulatory system. It accomplishes this by directly binding to TFP-Chp promoters in conjunction with intracellular levels of cyclic-di-GMP, a ubiquitous bacterial second messenger, thereby controlling TFP expression. Moreover, Clp-mediated regulation is involved in regulating several cellular processes, including the production of virulence-associated functions. Collectively, these processes contribute to host colonization and disease initiation. Our study elucidates the intricate regulatory network encompassing Clp, environmental cues, and the TFP-Chp system, providing insights into the molecular mechanisms that drive bacterial virulence in Xanthomonas spp. These findings offer valuable knowledge regarding Xanthomonas pathogenicity and present new avenues for innovative strategies aimed at combating plant diseases caused by these bacteria. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Raj Kumar Verma
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | - Parimala Gondu
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | - Tirthankar Saha
- Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad 500039, India
| | | |
Collapse
|
3
|
Mäntynen S, Salomaa MM, Poranen MM. Diversity and Current Classification of dsRNA Bacteriophages. Viruses 2023; 15:2154. [PMID: 38005832 PMCID: PMC10674327 DOI: 10.3390/v15112154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Half a century has passed since the discovery of Pseudomonas phage phi6, the first enveloped dsRNA bacteriophage to be isolated. It remained the sole known dsRNA phage for a quarter of a century and the only recognised member of the Cystoviridae family until the year 2018. After the initial discovery of phi6, additional dsRNA phages have been isolated from globally distant locations and identified in metatranscriptomic datasets, suggesting that this virus type is more ubiquitous in nature than previously acknowledged. Most identified dsRNA phages infect Pseudomonas strains and utilise either pilus or lipopolysaccharide components of the host as the primary receptor. In addition to the receptor-mediated strictly lytic lifestyle, an alternative persistent infection strategy has been described for some dsRNA phages. To date, complete genome sequences of fourteen dsRNA phage isolates are available. Despite the high sequence diversity, similar sets of genes can typically be found in the genomes of dsRNA phages, suggesting shared evolutionary trajectories. This review provides a brief overview of the recognised members of the Cystoviridae virus family and related dsRNA phage isolates, outlines the current classification of dsRNA phages, and discusses their relationships with eukaryotic RNA viruses.
Collapse
Affiliation(s)
- Sari Mäntynen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland; (M.M.S.); (M.M.P.)
| | | | | |
Collapse
|
4
|
Sakata N, Ishiga Y. Prevention of Stomatal Entry as a Strategy for Plant Disease Control against Foliar Pathogenic Pseudomonas Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030590. [PMID: 36771673 PMCID: PMC9919041 DOI: 10.3390/plants12030590] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 05/14/2023]
Abstract
The genus Pseudomonas includes some of the most problematic and studied foliar bacterial pathogens. Generally, in a successful disease cycle there is an initial epiphytic lifestyle on the leaf surface and a subsequent aggressive endophytic stage inside the leaf apoplast. Leaf-associated bacterial pathogens enter intercellular spaces and internal leaf tissues by natural surface opening sites, such as stomata. The stomatal crossing is complex and dynamic, and functional genomic studies have revealed several virulence factors required for plant entry. Currently, treatments with copper-containing compounds, where authorized and admitted, and antibiotics are commonly used against bacterial plant pathogens. However, strains resistant to these chemicals occur in the fields. Therefore, the demand for alternative control strategies has been increasing. This review summarizes efficient strategies to prevent bacterial entry. Virulence factors required for entering the leaf in plant-pathogenic Pseudomonas species are also discussed.
Collapse
Affiliation(s)
- Nanami Sakata
- Correspondence: (N.S.); (Y.I.); Tel./Fax: (+81)-029-853-4792 (Y.I.)
| | - Yasuhiro Ishiga
- Correspondence: (N.S.); (Y.I.); Tel./Fax: (+81)-029-853-4792 (Y.I.)
| |
Collapse
|
5
|
Crippen CS, Zhou B, Andresen S, Patry RT, Muszyński A, Parker CT, Cooper KK, Szymanski CM. RNA and Sugars, Unique Properties of Bacteriophages Infecting Multidrug Resistant Acinetobacter radioresistens Strain LH6. Viruses 2021; 13:1652. [PMID: 34452516 PMCID: PMC8402811 DOI: 10.3390/v13081652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Bacteriophages (phages) are predicted to be the most ubiquitous biological entity on earth, and yet, there are still vast knowledge gaps in our understanding of phage diversity and phage-host interactions. Approximately one hundred Acinetobacter-infecting DNA viruses have been identified, and in this report, we describe eight more. We isolated two typical dsDNA lytic podoviruses (CAP1-2), five unique dsRNA lytic cystoviruses (CAP3-7), and one dsDNA lysogenic siphovirus (SLAP1), all capable of infecting the multidrug resistant isolate Acinetobacter radioresistens LH6. Using transmission electron microscopy, bacterial mutagenesis, phage infectivity assays, carbohydrate staining, mass-spectrometry, genomic sequencing, and comparative studies, we further characterized these phages. Mutation of the LH6 initiating glycosyltransferase homolog, PglC, necessary for both O-linked glycoprotein and capsular polysaccharide (CPS) biosynthesis, prevented infection by the lytic podovirus CAP1, while mutation of the pilin protein, PilA, prevented infection by CAP3, representing the lytic cystoviruses. Genome sequencing of the three dsRNA segments of the isolated cystoviruses revealed low levels of homology, but conserved synteny with the only other reported cystoviruses that infect Pseudomonas species. In Pseudomonas, the cystoviruses are known to be enveloped phages surrounding their capsids with the inner membrane from the infected host. To characterize any membrane-associated glycoconjugates in the CAP3 cystovirus, carbohydrate staining was used to identify a low molecular weight lipid-linked glycoconjugate subsequently identified by mutagenesis and mass-spectrometry as bacterial lipooligosaccharide. Together, this study demonstrates the isolation of new Acinetobacter-infecting phages and the determination of their cell receptors. Further, we describe the genomes of a new genus of Cystoviruses and perform an initial characterization of membrane-associated glycoconjugates.
Collapse
Affiliation(s)
- Clay S. Crippen
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (C.S.C.); (B.Z.); (S.A.); (R.T.P.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA;
| | - Bibi Zhou
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (C.S.C.); (B.Z.); (S.A.); (R.T.P.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA;
| | - Silke Andresen
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (C.S.C.); (B.Z.); (S.A.); (R.T.P.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA;
| | - Robert T. Patry
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (C.S.C.); (B.Z.); (S.A.); (R.T.P.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA;
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA;
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA;
| | - Kerry K. Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA;
| | - Christine M. Szymanski
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (C.S.C.); (B.Z.); (S.A.); (R.T.P.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
6
|
Existing Host Range Mutations Constrain Further Emergence of RNA Viruses. J Virol 2019; 93:JVI.01385-18. [PMID: 30463962 DOI: 10.1128/jvi.01385-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
RNA viruses are capable of rapid host shifting, typically due to a point mutation that confers expanded host range. As additional point mutations are necessary for further expansions, epistasis among host range mutations can potentially affect the mutational neighborhood and frequency of niche expansion. We mapped the mutational neighborhood of host range expansion using three genotypes of the double-stranded RNA (dsRNA) bacteriophage φ6 (wild type and two isogenic host range mutants) on the novel host Pseudomonas syringae pv. atrofaciens. Both Sanger sequencing of 50 P. syringae pv. atrofaciens mutant clones for each genotype and population Illumina sequencing revealed the same high-frequency mutations allowing infection of P. syringae pv. atrofaciens. Wild-type φ6 had at least nine different ways of mutating to enter the novel host, eight of which are in p3 (host attachment protein gene), and 13/50 clones had unchanged p3 genes. However, the two isogenic mutants had dramatically restricted neighborhoods: only one or two mutations, all in p3. Deep sequencing revealed that wild-type clones without mutations in p3 likely had changes in p12 (morphogenic protein), a region that was not polymorphic for the two isogenic host range mutants. Sanger sequencing confirmed that 10/13 of the wild-type φ6 clones had nonsynonymous mutations in p12, and 2 others had point mutations in p9 and p5. None of these genes had previously been associated with host range expansion in φ6. We demonstrate, for the first time, epistatic constraint in an RNA virus due to host range mutations themselves, which has implications for models of serial host range expansion.IMPORTANCE RNA viruses mutate rapidly and frequently expand their host ranges to infect novel hosts, leading to serial host shifts. Using an RNA bacteriophage model system (Pseudomonas phage φ6), we studied the impact of preexisting host range mutations on another host range expansion. Results from both clonal Sanger and Illumina sequencing show that extant host range mutations dramatically narrow the neighborhood of potential host range mutations compared to that of wild-type φ6. This research suggests that serial host-shifting viruses may follow a small number of molecular paths to enter additional novel hosts. We also identified new genes involved in φ6 host range expansion, expanding our knowledge of this important model system in experimental evolution.
Collapse
|
7
|
Koskella B, Taylor TB. Multifaceted Impacts of Bacteriophages in the Plant Microbiome. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:361-380. [PMID: 29958076 DOI: 10.1146/annurev-phyto-080417-045858] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant-associated bacteria face multiple selection pressures within their environments and have evolved countless adaptations that both depend on and shape bacterial phenotype and their interaction with plant hosts. Explaining bacterial adaptation and evolution therefore requires considering each of these forces independently as well as their interactions. In this review, we examine how bacteriophage viruses (phages) can alter the ecology and evolution of plant-associated bacterial populations and communities. This includes influencing a bacterial population's response to both abiotic and biotic selection pressures and altering ecological interactions within the microbiome and between the bacteria and host plant. We outline specific ways in which phages can alter bacterial phenotype and discuss when and how this might impact plant-microbe interactions, including for plant pathogens. Finally, we highlight key open questions in phage-bacteria-plant research and offer suggestions for future study.
Collapse
Affiliation(s)
- Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, California 94720, USA;
| | - Tiffany B Taylor
- The Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom;
| |
Collapse
|
8
|
Callanan J, Stockdale SR, Shkoporov A, Draper LA, Ross RP, Hill C. RNA Phage Biology in a Metagenomic Era. Viruses 2018; 10:E386. [PMID: 30037084 PMCID: PMC6071253 DOI: 10.3390/v10070386] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/22/2022] Open
Abstract
The number of novel bacteriophage sequences has expanded significantly as a result of many metagenomic studies of phage populations in diverse environments. Most of these novel sequences bear little or no homology to existing databases (referred to as the "viral dark matter"). Also, these sequences are primarily derived from DNA-encoded bacteriophages (phages) with few RNA phages included. Despite the rapid advancements in high-throughput sequencing, few studies enrich for RNA viruses, i.e., target viral rather than cellular fraction and/or RNA rather than DNA via a reverse transcriptase step, in an attempt to capture the RNA viruses present in a microbial communities. It is timely to compile existing and relevant information about RNA phages to provide an insight into many of their important biological features, which should aid in sequence-based discovery and in their subsequent annotation. Without comprehensive studies, the biological significance of RNA phages has been largely ignored. Future bacteriophage studies should be adapted to ensure they are properly represented in phageomic studies.
Collapse
Affiliation(s)
- Julie Callanan
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| | - Stephen R Stockdale
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Andrey Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland.
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork, T12 YN60, Ireland.
| |
Collapse
|
9
|
McCutcheon JG, Peters DL, Dennis JJ. Identification and Characterization of Type IV Pili as the Cellular Receptor of Broad Host Range Stenotrophomonas maltophilia Bacteriophages DLP1 and DLP2. Viruses 2018; 10:E338. [PMID: 29925793 PMCID: PMC6024842 DOI: 10.3390/v10060338] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/10/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteriophages DLP1 and DLP2 are capable of infecting both Stenotrophomonas maltophilia and Pseudomonas aeruginosa strains, two highly antibiotic resistant bacterial pathogens, which is unusual for phages that typically exhibit extremely limited host range. To explain their unusual cross-order infectivity and differences in host range, we have identified the type IV pilus as the primary receptor for attachment. Screening of a P. aeruginosa PA01 mutant library, a host that is susceptible to DLP1 but not DLP2, identified DLP1-resistant mutants with disruptions in pilus structural and regulatory components. Subsequent complementation of the disrupted pilin subunit genes in PA01 restored DLP1 infection. Clean deletion of the major pilin subunit, pilA, in S. maltophilia strains D1585 and 280 prevented phage binding and lysis by both DLP1 and DLP2, and complementation restored infection by both. Transmission electron microscopy shows a clear interaction between DLP1 and pili of both D1585 and PA01. These results support the identity of the type IV pilus as the receptor for DLP1 and DLP2 infection across their broad host ranges. This research further characterizes DLP1 and DLP2 as potential “anti-virulence” phage therapy candidates for the treatment of multidrug resistant bacteria from multiple genera.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacteriophages/metabolism
- Bacteriophages/ultrastructure
- Drug Resistance, Multiple, Bacterial
- Fimbriae Proteins/deficiency
- Fimbriae Proteins/genetics
- Fimbriae, Bacterial/chemistry
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/metabolism
- Fimbriae, Bacterial/ultrastructure
- Genetic Complementation Test
- Host Specificity
- Humans
- Microscopy, Electron, Transmission
- Mutation
- Phage Therapy
- Pseudomonas Phages/metabolism
- Pseudomonas aeruginosa/genetics
- Pseudomonas aeruginosa/virology
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Stenotrophomonas maltophilia/chemistry
- Stenotrophomonas maltophilia/genetics
- Stenotrophomonas maltophilia/virology
- Virulence
- Virus Attachment
Collapse
Affiliation(s)
- Jaclyn G McCutcheon
- CW405 Biological Sciences Building, 11455 Saskatchewan Dr. NW, Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Danielle L Peters
- CW405 Biological Sciences Building, 11455 Saskatchewan Dr. NW, Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Jonathan J Dennis
- CW405 Biological Sciences Building, 11455 Saskatchewan Dr. NW, Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
10
|
Kim ES, Bae HW, Cho YH. A Pilin Region Affecting Host Range of the Pseudomonas aeruginosa RNA Phage, PP7. Front Microbiol 2018; 9:247. [PMID: 29503640 PMCID: PMC5820433 DOI: 10.3389/fmicb.2018.00247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/31/2018] [Indexed: 01/20/2023] Open
Abstract
The host range of a phage is determined primarily by phage-receptor interaction. Here, we profiled the host range of an RNA leviphage, PP7 that requires functional type IV pilus (TFP) in order to enter into its host bacterium, Pseudomonas aeruginosa. Out of 25 twitching-proficient P. aeruginosa strains, 4 with group I pilin and 7 with group III pilin displayed PP7-resistance. The remaining 14 possessed group II pilin, which included 10 PP7-sensitive and 4 PP7-resistant strains, suggesting that only the strains with TFP consisted of a subset of group II (hence, group IIa) pilin were susceptible to PP7. The co-expression of the PAO1 (group IIa) pilin rendered all the strains susceptible to PP7, with the exception of the 4 strains with group I pilin. Moreover, the expression of PA14 (group III) and PAK (group IIb) pilin in the PAO1 pilA mutant restored the twitching motility but not the PP7-suceptibility. Site-directed and random mutation analyses of PAO1 pilin enabled us to identify a pilin mutant (G96S) that is fully functional but resistant to PP7 infection. This is due to the lack of any phage-receptor interactions, suggesting the structural properties of the β1-β2 loop in the variable region 2 of the group II pilin might be involved in PP7 infection.
Collapse
Affiliation(s)
- Eun Sook Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, South Korea
| | - Hee-Won Bae
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, South Korea
| | - You-Hee Cho
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do, South Korea
| |
Collapse
|
11
|
Mäntynen S, Sundberg LR, Poranen MM. Recognition of six additional cystoviruses: Pseudomonas virus phi6 is no longer the sole species of the family Cystoviridae. Arch Virol 2017; 163:1117-1124. [PMID: 29260329 DOI: 10.1007/s00705-017-3679-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/10/2017] [Indexed: 12/27/2022]
Abstract
Cystoviridae is a family of bacterial viruses (bacteriophages) with a tri-segmented dsRNA genome. It includes a single genus Cystovirus, which has presently only one recognised virus species, Pseudomonas virus phi6. However, a large number of additional dsRNA phages have been isolated from various environmental samples, indicating that such viruses are more widespread and abundant than previously recognised. Six of the additional dsRNA phage isolates (Pseudomonas phages phi8, phi12, phi13, phi2954, phiNN and phiYY) have been fully sequenced. They all infect Pseudomonas species, primarily plant pathogenic Pseudomonas syringae strains. Due to the notable genetic and structural similarities with Pseudomonas phage phi6, we propose that these viruses should be included into the Cystovirus genus (and consequently into the Cystoviridae family). Here, we present an updated taxonomy of the family Cystoviridae and give a short overview of the properties of the type member phi6 as well as the putative new members of the family.
Collapse
Affiliation(s)
- Sari Mäntynen
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Lotta-Riina Sundberg
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Minna M Poranen
- Department of Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| |
Collapse
|
12
|
Patel HK, Ferrante P, Xianfa M, Javvadi SG, Subramoni S, Scortichini M, Venturi V. Identification of Loci of Pseudomonas syringae pv. actinidiae Involved in Lipolytic Activity and Their Role in Colonization of Kiwifruit Leaves. PHYTOPATHOLOGY 2017; 107:645-653. [PMID: 28112597 DOI: 10.1094/phyto-10-16-0360-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacterial canker disease caused by Pseudomonas syringae pv. actinidiae, an emerging pathogen of kiwifruit plants, has recently brought about major economic losses worldwide. Genetic studies on virulence functions of P. syringae pv. actinidiae have not yet been reported and there is little experimental data regarding bacterial genes involved in pathogenesis. In this study, we performed a genetic screen in order to identify transposon mutants altered in the lipolytic activity because it is known that mechanisms of regulation, production, and secretion of enzymes often play crucial roles in virulence of plant pathogens. We aimed to identify the set of secretion and global regulatory loci that control lipolytic activity and also play important roles in in planta fitness. Our screen for altered lipolytic activity phenotype identified a total of 58 Tn5 transposon mutants. Mapping all these Tn5 mutants revealed that the transposons were inserted in genes that play roles in cell division, chemotaxis, metabolism, movement, recombination, regulation, signal transduction, and transport as well as a few unknown functions. Several of these identified P. syringae pv. actinidiae Tn5 mutants, notably the functions affected in phosphomannomutase AlgC, lipid A biosynthesis acyltransferase, glutamate-cysteine ligase, and the type IV pilus protein PilI, were also found affected in in planta survival and/or growth in kiwifruit plants. The results of the genetic screen and identification of novel loci involved in in planta fitness of P. syringae pv. actinidiae are presented and discussed.
Collapse
Affiliation(s)
- Hitendra Kumar Patel
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Patrizia Ferrante
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Meng Xianfa
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Sree Gowrinadh Javvadi
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Sujatha Subramoni
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Marco Scortichini
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| | - Vittorio Venturi
- First, third, fourth, fifth, and seventh authors: International Centre for Genetic Engineering and Biotechnology, Trieste, Italy; second and sixth authors: Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy; and sixth author: Research Unit for Fruit Trees, Council for Agricultural Research and Economics, Caserta, Italy
| |
Collapse
|
13
|
Clarke CR, Hayes BW, Runde BJ, Markel E, Swingle BM, Vinatzer BA. Comparative genomics of Pseudomonas syringae pathovar tomato reveals novel chemotaxis pathways associated with motility and plant pathogenicity. PeerJ 2016; 4:e2570. [PMID: 27812402 PMCID: PMC5088630 DOI: 10.7717/peerj.2570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/15/2016] [Indexed: 11/20/2022] Open
Abstract
The majority of bacterial foliar plant pathogens must invade the apoplast of host plants through points of ingress, such as stomata or wounds, to replicate to high population density and cause disease. How pathogens navigate plant surfaces to locate invasion sites remains poorly understood. Many bacteria use chemical-directed regulation of flagellar rotation, a process known as chemotaxis, to move towards favorable environmental conditions. Chemotactic sensing of the plant surface is a potential mechanism through which foliar plant pathogens home in on wounds or stomata, but chemotactic systems in foliar plant pathogens are not well characterized. Comparative genomics of the plant pathogen Pseudomonas syringae pathovar tomato (Pto) implicated annotated chemotaxis genes in the recent adaptations of one Pto lineage. We therefore characterized the chemosensory system of Pto. The Pto genome contains two primary chemotaxis gene clusters, che1 and che2. The che2 cluster is flanked by flagellar biosynthesis genes and similar to the canonical chemotaxis gene clusters of other bacteria based on sequence and synteny. Disruption of the primary phosphorelay kinase gene of the che2 cluster, cheA2, eliminated all swimming and surface motility at 21 °C but not 28 °C for Pto. The che1 cluster is located next to Type IV pili biosynthesis genes but disruption of cheA1 has no observable effect on twitching motility for Pto. Disruption of cheA2 also alters in planta fitness of the pathogen with strains lacking functional cheA2 being less fit in host plants but more fit in a non-host interaction.
Collapse
Affiliation(s)
| | - Byron W. Hayes
- Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, USA
| | - Brendan J. Runde
- Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, USA
| | - Eric Markel
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Ithaca, NY, USA
| | - Bryan M. Swingle
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture, Ithaca, NY, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell, Ithaca, NY, USA
| | - Boris A. Vinatzer
- Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
14
|
Petrocelli S, Arana MR, Cabrini MN, Casabuono AC, Moyano L, Beltramino M, Moreira LM, Couto AS, Orellano EG. Deletion of pilA, a Minor Pilin-Like Gene, from Xanthomonas citri subsp. citri Influences Bacterial Physiology and Pathogenesis. Curr Microbiol 2016; 73:904-914. [PMID: 27664015 DOI: 10.1007/s00284-016-1138-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
Abstract
Type IV pili (Tfp) are widely distributed adhesins of bacterial surfaces. In plant pathogenic bacteria, Tfp are involved in host colonization and pathogenesis. Xanthomonas citri subsp. citri (Xcc) is the phytopathogen responsible for citrus canker disease. In this work, three Tfp structural genes, fimA, fimA1, and pilA from Xcc were studied. A pilA mutant strain from Xcc (XccΔpilA) was constructed and differences in physiological features, such as motilities, adhesion, and biofilm formation, were observed. A structural study of the purified Tfp fractions from Xcc wild-type and Xcc∆pilA showed that pilins are glycosylated in both strains and that FimA and FimA1 are the main structural components of the pili. Furthermore, smaller lesion symptoms and reduced bacterial growth were produced by Xcc∆pilA in orange plants compared to the wild-type strain. These results indicate that the minor pilin-like gene, pilA, is involved in Tfp performance during the infection process.
Collapse
Affiliation(s)
- Silvana Petrocelli
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Maite R Arana
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Marcela N Cabrini
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Hidratos de Carbono, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
| | - Adriana C Casabuono
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Hidratos de Carbono, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
| | - Laura Moyano
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Matías Beltramino
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Leandro M Moreira
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas, Campus Morro do Cruzeiro, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Alicia S Couto
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Centro de Investigaciones en Hidratos de Carbono, Universidad de Buenos Aires, 1428, Buenos Aires, Argentina
| | - Elena G Orellano
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
15
|
Sun YY, Chi H, Sun L. Pseudomonas fluorescens Filamentous Hemagglutinin, an Iron-Regulated Protein, Is an Important Virulence Factor that Modulates Bacterial Pathogenicity. Front Microbiol 2016; 7:1320. [PMID: 27602029 PMCID: PMC4993755 DOI: 10.3389/fmicb.2016.01320] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/10/2016] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas fluorescens is a common bacterial pathogen to a wide range of aquaculture animals including various species of fish. In this study, we employed proteomic analysis and identified filamentous hemagglutinin (FHA) as an iron-responsive protein secreted by TSS, a pathogenic P. fluorescens isolate. In vitro study showed that compared to the wild type, the fha mutant TSSfha (i) exhibited a largely similar vegetative growth profile but significantly retarded in the ability of biofilm growth and producing extracellular matrix, (ii) displayed no apparent flagella and motility, (iii) was defective in the attachment to host cells and unable to form self-aggregation, (iv) displayed markedly reduced capacity of hemagglutination and surviving in host serum. In vivo infection analysis revealed that TSSfha was significantly attenuated in the ability of dissemination in fish tissues and inducing host mortality, and that antibody blocking of the natural FHA produced by the wild type TSS impaired the infectivity of the pathogen. Furthermore, when introduced into turbot as a subunit vaccine, recombinant FHA elicited a significant protection against lethal TSS challenge. Taken together, these results indicate for the first time that P. fluorescens FHA is a key virulence factor essential to multiple biological processes associated with pathogenicity.
Collapse
Affiliation(s)
- Yuan-Yuan Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology - Chinese Academy of SciencesQingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China; University of Chinese Academy of SciencesBeijing, China
| | - Heng Chi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology - Chinese Academy of SciencesQingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology - Chinese Academy of SciencesQingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and TechnologyQingdao, China
| |
Collapse
|
16
|
Sistrom M, Park D, O’Brien HE, Wang Z, Guttman DS, Townsend JP, Turner PE. Genomic and Gene-Expression Comparisons among Phage-Resistant Type-IV Pilus Mutants of Pseudomonas syringae pathovar phaseolicola. PLoS One 2015; 10:e0144514. [PMID: 26670219 PMCID: PMC4687649 DOI: 10.1371/journal.pone.0144514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/19/2015] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas syringae pv. phaseolicola (Pph) is a significant bacterial pathogen of agricultural crops, and phage Φ6 and other members of the dsRNA virus family Cystoviridae undergo lytic (virulent) infection of Pph, using the type IV pilus as the initial site of cellular attachment. Despite the popularity of Pph/phage Φ6 as a model system in evolutionary biology, Pph resistance to phage Φ6 remains poorly characterized. To investigate differences between phage Φ6 resistant Pph strains, we examined genomic and gene expression variation among three bacterial genotypes that differ in the number of type IV pili expressed per cell: ordinary (wild-type), non-piliated, and super-piliated. Genome sequencing of non-piliated and super-piliated Pph identified few mutations that separate these genotypes from wild type Pph--and none present in genes known to be directly involved in type IV pilus expression. Expression analysis revealed that 81.1% of gene ontology (GO) terms up-regulated in the non-piliated strain were down-regulated in the super-piliated strain. This differential expression is particularly prevalent in genes associated with respiration--specifically genes in the tricarboxylic acid cycle (TCA) cycle, aerobic respiration, and acetyl-CoA metabolism. The expression patterns of the TCA pathway appear to be generally up and down-regulated, in non-piliated and super-piliated Pph respectively. As pilus retraction is mediated by an ATP motor, loss of retraction ability might lead to a lower energy draw on the bacterial cell, leading to a different energy balance than wild type. The lower metabolic rate of the super-piliated strain is potentially a result of its loss of ability to retract.
Collapse
Affiliation(s)
- Mark Sistrom
- School of Natural Sciences, University of California Merced, Merced, 95343, CA, United States of America
- * E-mail:
| | - Derek Park
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, United States of America
| | - Heath E. O’Brien
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
| | - Zheng Wang
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, United States of America
| | - David S. Guttman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2, Canada
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, Ontario, M5S 3B2, Canada
| | - Jeffrey P. Townsend
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, United States of America
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, United States of America
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, United States of America
- Program in Microbiology, Yale University, New Haven, CT 06520, United States of America
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, United States of America
- Program in Microbiology, Yale University, New Haven, CT 06520, United States of America
| |
Collapse
|
17
|
FleQ coordinates flagellum-dependent and -independent motilities in Pseudomonas syringae pv. tomato DC3000. Appl Environ Microbiol 2015; 81:7533-45. [PMID: 26296726 DOI: 10.1128/aem.01798-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/14/2015] [Indexed: 12/29/2022] Open
Abstract
Motility plays an essential role in bacterial fitness and colonization in the plant environment, since it favors nutrient acquisition and avoidance of toxic substances, successful competition with other microorganisms, the ability to locate the preferred hosts, access to optimal sites within them, and dispersal in the environment during the course of transmission. In this work, we have observed that the mutation of the flagellar master regulatory gene, fleQ, alters bacterial surface motility and biosurfactant production, uncovering a new type of motility for Pseudomonas syringae pv. tomato DC3000 on semisolid surfaces. We present evidence that P. syringae pv. tomato DC3000 moves over semisolid surfaces by using at least two different types of motility, namely, swarming, which depends on the presence of flagella and syringafactin, a biosurfactant produced by this strain, and a flagellum-independent surface spreading or sliding, which also requires syringafactin. We also show that FleQ activates flagellum synthesis and negatively regulates syringafactin production in P. syringae pv. tomato DC3000. Finally, it was surprising to observe that mutants lacking flagella or syringafactin were as virulent as the wild type, and only the simultaneous loss of both flagella and syringafactin impairs the ability of P. syringae pv. tomato DC3000 to colonize tomato host plants and cause disease.
Collapse
|
18
|
Atanasova NS, Senčilo A, Pietilä MK, Roine E, Oksanen HM, Bamford DH. Comparison of lipid-containing bacterial and archaeal viruses. Adv Virus Res 2015; 92:1-61. [PMID: 25701885 DOI: 10.1016/bs.aivir.2014.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Lipid-containing bacteriophages were discovered late and considered to be rare. After further phage isolations and the establishment of the domain Archaea, several new prokaryotic viruses with lipids were observed. Consequently, the presence of lipids in prokaryotic viruses is reasonably common. The wealth of information about how prokaryotic viruses use their lipids comes from a few well-studied model viruses (PM2, PRD1, and ϕ6). These bacteriophages derive their lipid membranes selectively from the host during the virion assembly process which, in the case of PM2 and PRD1, culminates in the formation of protein capsid with an inner membrane, and for ϕ6 an outer envelope. Several inner membrane-containing viruses have been described for archaea, and their lipid acquisition models are reminiscent to those of PM2 and PRD1. Unselective acquisition of lipids has been observed for bacterial mycoplasmaviruses and archaeal pleolipoviruses, which resemble each other by size, morphology, and life style. In addition to these shared morphotypes of bacterial and archaeal viruses, archaea are infected by viruses with unique morphotypes, such as lemon-shaped, helical, and globular ones. It appears that structurally related viruses may or may not have a lipid component in the virion, suggesting that the significance of viral lipids might be to provide viruses extended means to interact with the host cell.
Collapse
Affiliation(s)
- Nina S Atanasova
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ana Senčilo
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maija K Pietilä
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Elina Roine
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hanna M Oksanen
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Dennis H Bamford
- Department of Biosciences and Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
19
|
Parker JK, Cruz LF, Evans MR, De La Fuente L. Presence of calcium-binding motifs in PilY1 homologs correlates with Ca-mediated twitching motility and evolutionary history across diverse bacteria. FEMS Microbiol Lett 2014; 362:fnu063. [PMID: 25688068 DOI: 10.1093/femsle/fnu063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Twitching motility, involving type IV pili, is essential for host colonization and virulence of many pathogenic bacteria. Studies of PilY1, a tip-associated type IV pili protein, indicate that PilY1 functions as a switch between pilus extension and retraction, resulting in twitching motility. Recent work detected a calcium-binding motif in PilY1 of some animal bacterial pathogens and demonstrated that binding of calcium to PilY1 with this motif regulates twitching. Though studies of PilY1 in non-animal pathogens are limited, our group demonstrated that twitching motility in the plant pathogen Xylella fastidiosa, which contains three PilY1 homologs, is increased by calcium supplementation. A study was conducted to investigate the phylogenetic relationship between multiple PilY1 homologs, the presence of calcium-binding motifs therein, and calcium-mediated twitching motility across diverse bacteria. Strains analyzed contained one to three PilY1 homologs, but phylogenetic analyses indicated that PilY1 homologs containing the calcium-binding motif Dx[DN]xDGxxD are phylogenetically divergent from other PilY1 homologs. Plant-associated bacteria included in these analyses were then examined for a calcium-mediated twitching response. Results indicate that bacteria must have at least one PilY1 homolog containing the Dx[DN]xDGxxD motif to display a calcium-mediated increase in twitching motility, which likely reflects an adaption to environmental calcium concentrations.
Collapse
Affiliation(s)
- Jennifer K Parker
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Luisa F Cruz
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Michael R Evans
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
20
|
Cruz LF, Parker JK, Cobine PA, De La Fuente L. Calcium-Enhanced Twitching Motility in Xylella fastidiosa Is Linked to a Single PilY1 Homolog. Appl Environ Microbiol 2014; 80:7176-85. [PMID: 25217013 PMCID: PMC4249194 DOI: 10.1128/aem.02153-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/08/2014] [Indexed: 11/20/2022] Open
Abstract
The plant-pathogenic bacterium Xylella fastidiosa is restricted to the xylem vessel environment, where mineral nutrients are transported through the plant host; therefore, changes in the concentrations of these elements likely impact the growth and virulence of this bacterium. Twitching motility, dependent on type IV pili (TFP), is required for movement against the transpiration stream that results in basipetal colonization. We previously demonstrated that calcium (Ca) increases the motility of X. fastidiosa, although the mechanism was unknown. PilY1 is a TFP structural protein recently shown to bind Ca and to regulate twitching and adhesion in bacterial pathogens of humans. Sequence analysis identified three pilY1 homologs in X. fastidiosa (PD0023, PD0502, and PD1611), one of which (PD1611) contains a Ca-binding motif. Separate deletions of PD0023 and PD1611 resulted in mutants that still showed twitching motility and were not impaired in attachment or biofilm formation. However, the response of increased twitching at higher Ca concentrations was lost in the pilY1-1611 mutant. Ca does not modulate the expression of any of the X. fastidiosa PilY1 homologs, although it increases the expression of the retraction ATPase pilT during active movement. The evidence presented here suggests functional differences between the PilY1 homologs, which may provide X. fastidiosa with an adaptive advantage in environments with high Ca concentrations, such as xylem sap.
Collapse
Affiliation(s)
- Luisa F Cruz
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Jennifer K Parker
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | - Paul A Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama, USA
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
21
|
Patel HK, Matiuzzo M, Bertani I, Bigirimana VDP, Ash GJ, Höfte M, Venturi V. Identification of virulence associated loci in the emerging broad host range plant pathogen Pseudomonas fuscovaginae. BMC Microbiol 2014; 14:274. [PMID: 25394860 PMCID: PMC4237756 DOI: 10.1186/s12866-014-0274-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/23/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Pseudomonas fuscovaginae (Pfv) is an emerging plant pathogen of rice and also of other gramineae plants. It causes sheath brown rot disease in rice with symptoms that are characterized by brown lesions on the flag leaf sheath, grain discoloration and sterility. It was first isolated as a high altitude pathogen in Japan and has since been reported in several countries throughout the world. Pfv is a broad host range pathogen and very little is known about its virulence mechanisms. RESULTS An in planta screen of 1000 random independent Tn5 genomic mutants resulted in the isolation of nine mutants which showed altered virulence. Some of these isolates are mutated for functions which are known to be virulence associated factors in other phytopathogenic bacteria (eg. pil gene, phytotoxins and T6SS) and others might represent novel virulence loci. CONCLUSIONS Being an emerging pathogen worldwide, the broad host range pathogen Pfv has not yet been studied for its virulence functions. The roles of the nine loci identified in the in planta screen are discussed in relation to pathogenicity of Pfv. In summary, this article reports a first study on the virulence of this pathogen involving in planta screening studies and suggests the presence of several virulence features with known and novel functions in the Pseudomonas group of bacteria.
Collapse
Affiliation(s)
| | - Maura Matiuzzo
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.
| | - Iris Bertani
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.
| | | | - Gavin J Ash
- Graham Centre for Agricultural Innovation, School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia.
| | - Monica Höfte
- Department of Crop Protection, Laboratory of Phytopathology, Ghent University, Coupure, Links 653, 9000, Ghent, Belgium.
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.
| |
Collapse
|
22
|
Dunger G, Guzzo CR, Andrade MO, Jones JB, Farah CS. Xanthomonas citri subsp. citri type IV Pilus is required for twitching motility, biofilm development, and adherence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1132-47. [PMID: 25180689 DOI: 10.1094/mpmi-06-14-0184-r] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bacterial type IV pili (T4P) are long, flexible surface filaments that consist of helical polymers of mostly pilin subunits. Cycles of polymerization, attachment, and depolymerization mediate several pilus-dependent bacterial behaviors, including twitching motility, surface adhesion, pathogenicity, natural transformation, escape from immune system defense mechanisms, and biofilm formation. The Xanthomonas citri subsp. citri strain 306 genome codes for a large set of genes involved in T4P biogenesis and regulation and includes several pilin homologs. We show that X. citri subsp. citri can exhibit twitching motility in a manner similar to that observed in other bacteria such as Pseudomonas aeruginosa and Xylella fastidiosa and that this motility is abolished in Xanthomonas citri subsp. citri knockout strains in the genes coding for the major pilin subunit PilAXAC3241, the ATPases PilBXAC3239 and PilTXAC2924, and the T4P biogenesis regulators PilZXAC1133 and FimXXAC2398. Microscopy analyses were performed to compare patterns of bacterial migration in the wild-type and knockout strains and we observed that the formation of mushroom-like structures in X. citri subsp. citri biofilm requires a functional T4P. Finally, infection of X. citri subsp. citri cells by the bacteriophage (ΦXacm4-11 is T4P dependent. The results of this study improve our understanding of how T4P influence Xanthomonas motility, biofilm formation, and susceptibility to phage infection.
Collapse
|
23
|
Wasukira A, Coulter M, Al-Sowayeh N, Thwaites R, Paszkiewicz K, Kubiriba J, Smith J, Grant M, Studholme DJ. Genome Sequencing of Xanthomonas vasicola Pathovar vasculorum Reveals Variation in Plasmids and Genes Encoding Lipopolysaccharide Synthesis, Type-IV Pilus and Type-III Secretion Effectors. Pathogens 2014; 3:211-37. [PMID: 25437615 PMCID: PMC4235730 DOI: 10.3390/pathogens3010211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/10/2014] [Accepted: 03/03/2014] [Indexed: 01/01/2023] Open
Abstract
Xanthomonas vasicola pathovar vasculorum (Xvv) is the bacterial agent causing gumming disease in sugarcane. Here, we compare complete genome sequences for five isolates of Xvv originating from sugarcane and one from maize. This identified two distinct types of lipopolysaccharide synthesis gene clusters among Xvv isolates: one is similar to that of Xanthomonas axonopodis pathovar citri (Xac) and is probably the ancestral type, while the other is similar to those of the sugarcane-inhabiting species, Xanthomonas sacchari. Four of six Xvv isolates harboured sequences similar to the Xac plasmid, pXAC47, and showed a distinct Type-IV pilus (T4P) sequence type, whereas the T4P locus of the other two isolates resembled that of the closely related banana pathogen, Xanthomonas campestris pathovar musacearum (Xcm). The Xvv isolate from maize has lost a gene encoding a homologue of the virulence effector, xopAF, which was present in all five of the sugarcane isolates, while xopL contained a premature stop codon in four out of six isolates. These findings shed new light on evolutionary events since the divergence of Xvv and Xcm, as well as further elucidating the relationships between the two closely related pathogens.
Collapse
Affiliation(s)
- Arthur Wasukira
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - Max Coulter
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - Noorah Al-Sowayeh
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - Richard Thwaites
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK.
| | - Konrad Paszkiewicz
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - Jerome Kubiriba
- National Crops Resources Research Institute (NaCRRI), Kampala 7084, Uganda.
| | - Julian Smith
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK.
| | - Murray Grant
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - David J Studholme
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
24
|
Scheublin TR, Deusch S, Moreno-Forero SK, Müller JA, van der Meer JR, Leveau JHJ. Transcriptional profiling of Gram-positive Arthrobacter in the phyllosphere: induction of pollutant degradation genes by natural plant phenolic compounds. Environ Microbiol 2014; 16:2212-25. [PMID: 24373130 DOI: 10.1111/1462-2920.12375] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/12/2013] [Indexed: 11/28/2022]
Abstract
Arthrobacter chlorophenolicus A6 is a Gram-positive, 4-chlorophenol-degrading soil bacterium that was recently shown to be an effective colonizer of plant leaf surfaces. The genetic basis for this phyllosphere competency is unknown. In this paper, we describe the genome-wide expression profile of A.chlorophenolicus on leaves of common bean (Phaseolus vulgaris) compared with growth on agar surfaces. In phyllosphere-grown cells, we found elevated expression of several genes known to contribute to epiphytic fitness, for example those involved in nutrient acquisition, attachment, stress response and horizontal gene transfer. A surprising result was the leaf-induced expression of a subset of the so-called cph genes for the degradation of 4-chlorophenol. This subset encodes the conversion of the phenolic compound hydroquinone to 3-oxoadipate, and was shown to be induced not only by 4-chlorophenol but also hydroquinone, its glycosylated derivative arbutin, and phenol. Small amounts of hydroquinone, but not arbutin or phenol, were detected in leaf surface washes of P.vulgaris by gas chromatography-mass spectrometry. Our findings illustrate the utility of genomics approaches for exploration and improved understanding of a microbial habitat. Also, they highlight the potential for phyllosphere-based priming of bacteria to stimulate pollutant degradation, which holds promise for the application of phylloremediation.
Collapse
Affiliation(s)
- Tanja R Scheublin
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Nguyen LC, Taguchi F, Tran QM, Naito K, Yamamoto M, Ohnishi-Kameyama M, Ono H, Yoshida M, Chiku K, Ishii T, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y. Type IV pilin is glycosylated in Pseudomonas syringae pv. tabaci 6605 and is required for surface motility and virulence. MOLECULAR PLANT PATHOLOGY 2012; 13:764-74. [PMID: 22353307 PMCID: PMC6638785 DOI: 10.1111/j.1364-3703.2012.00789.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Type IV pilin (PilA) is a major constituent of pilus and is required for bacterial biofilm formation, surface motility and virulence. It is known that mature PilA is produced by cleavage of the short leader sequence of the pilin precursor, followed by methylation of N-terminal phenylalanine. The molecular mass of the PilA mature protein from the tobacco bacterial pathogen Pseudomonas syringae pv. tabaci 6605 (Pta 6605) has been predicted to be 12 329 Da from its deduced amino acid sequence. Previously, we have detected PilA as an approximately 13-kDa protein by immunoblot analysis with anti-PilA-specific antibody. In addition, we found the putative oligosaccharide-transferase gene tfpO downstream of pilA. These findings suggest that PilA in Pta 6605 is glycosylated. The defective mutant of tfpO (ΔtfpO) shows reductions in pilin molecular mass, surface motility and virulence towards host tobacco plants. Thus, pilin glycan plays important roles in bacterial motility and virulence. The genetic region around pilA was compared among P. syringae pathovars. The tfpO gene exists in some strains of pathovars tabaci, syringae, lachrymans, mori, actinidiae, maculicola and P. savastanoi pv. savastanoi. However, some strains of pathovars tabaci, syringae, glycinea, tomato, aesculi and oryzae do not possess tfpO, and the existence of tfpO is independent of the classification of pathovars/strains in P. syringae. Interestingly, the PilA amino acid sequences in tfpO-possessing strains show higher homology with each other than with tfpO-nonpossessing strains. These results suggest that tfpO and pilA might co-evolve in certain specific bacterial strains.
Collapse
Affiliation(s)
- Linh Chi Nguyen
- Graduate School of Natural Science and Technology, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee J, Teitzel GM, Munkvold K, del Pozo O, Martin GB, Michelmore RW, Greenberg JT. Type III secretion and effectors shape the survival and growth pattern of Pseudomonas syringae on leaf surfaces. PLANT PHYSIOLOGY 2012; 158:1803-18. [PMID: 22319072 PMCID: PMC3320187 DOI: 10.1104/pp.111.190686] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/07/2012] [Indexed: 05/19/2023]
Abstract
The bacterium Pseudomonas syringae pv syringae B728a (PsyB728a) uses a type III secretion system (T3SS) to inject effector proteins into plant cells, a process that modulates the susceptibility of different plants to infection. Analysis of GREEN FLUORESCENT PROTEIN-expressing PsyB728a after spray inoculation without additives under moderate relative humidity conditions permitted (1) a detailed analysis of this strain's survival and growth pattern on host (Nicotiana benthamiana) and nonhost (tomato [Solanum lycopersicum]) leaf surfaces, (2) an assessment of the role of plant defenses in affecting PsyB728a leaf surface (epiphytic) growth, and (3) the contribution of the T3SS and specific effectors to PsyB728a epiphytic survival and growth. On host leaf surfaces, PsyB728a cells initially persist without growing, and show an increased population only after 48 h, unless plants are pretreated with the defense-inducing chemical benzothiazole. During the persistence period, some PsyB728a cells induce a T3SS reporter, whereas a T3SS-deficient mutant shows reduced survival. By 72 h, rare invasion by PsyB728a to the mesophyll region of host leaves occurs, but endophytic and epiphytic bacterial growths are not correlated. The effectors HopZ3 and HopAA1 delay the onset of epiphytic growth of PsyB728a on N. benthamiana, whereas they promote epiphytic survival/growth on tomato. These effectors localize to distinct sites in plant cells and likely have different mechanisms of action. HopZ3 may enzymatically modify host targets, as it requires residues important for the catalytic activity of other proteins in its family of proteases. Thus, the T3SS, HopAA1, HopZ3, and plant defenses strongly influence epiphytic survival and/or growth of PsyB728a.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jean T. Greenberg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637 (J.L., G.M.T., J.T.G.); Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (K.M., O.d.P., G.B.M.); Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York 14853 (G.B.M.); The Genome Center, University of California, Davis, California 95616 (R.W.M.)
| |
Collapse
|
27
|
Burdman S, Bahar O, Parker JK, De La Fuente L. Involvement of Type IV Pili in Pathogenicity of Plant Pathogenic Bacteria. Genes (Basel) 2011; 2:706-35. [PMID: 24710288 PMCID: PMC3927602 DOI: 10.3390/genes2040706] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 01/03/2023] Open
Abstract
Type IV pili (T4P) are hair-like appendages found on the surface of a wide range of bacteria belonging to the β-, γ-, and δ-Proteobacteria, Cyanobacteria and Firmicutes. They constitute an efficient device for a particular type of bacterial surface motility, named twitching, and are involved in several other bacterial activities and functions, including surface adherence, colonization, biofilm formation, genetic material uptake and virulence. Tens of genes are involved in T4P synthesis and regulation, with the majority of them being generally named pil/fim genes. Despite the multiple functionality of T4P and their well-established role in pathogenicity of animal pathogenic bacteria, relatively little attention has been given to the role of T4P in plant pathogenic bacteria. Only in recent years studies have begun to examine with more attention the relevance of these surface appendages for virulence of plant bacterial pathogens. The aim of this review is to summarize the current knowledge about T4P genetic machinery and its role in the interactions between phytopathogenic bacteria and their plant hosts.
Collapse
Affiliation(s)
- Saul Burdman
- Department of Plant Pathology and Microbiology and the Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Ofir Bahar
- Department of Plant Pathology and Microbiology and the Otto Warburg Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | - Jennifer K Parker
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA.
| | - Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
28
|
Misas-Villamil JC, Kolodziejek I, van der Hoorn RAL. Pseudomonas syringae colonizes distant tissues in Nicotiana benthamiana through xylem vessels. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:774-82. [PMID: 21554458 DOI: 10.1111/j.1365-313x.2011.04632.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ability to move from the primary infection site and colonize distant tissue in the leaf is an important property of bacterial plant pathogens, yet this aspect has hardly been investigated for model pathogens. Here we show that GFP-expressing Pseudomonas syringae pv. syringae DC3000 that lacks the HopQ1-1 effector (PtoDC3000ΔhQ) has a strong capacity to colonize distant leaf tissue from wound-inoculated sites in N. benthamiana. Distant colonization occurs within 1 week after toothpick inoculation and is characterized by distant colonies in the apoplast along the vasculature. Distant colonization is blocked by the non-host resistance response triggered by HopQ1-1 in an SGT1-dependent manner and is associated with an explosive growth of the bacterial population, and displays robust growth differences between compatible and incompatible interactions. Scanning electron microscopy revealed that PtoDC3000ΔhQ bacteria are present in xylem vessels, indicating that they use the xylem to move through the leaf blade. Distant colonization does not require flagellin-mediated motility, and is common for P. syringae pathovars that represent different phylogroups.
Collapse
Affiliation(s)
- Johana C Misas-Villamil
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné weg 10, 50829 Cologne, Germany
| | | | | |
Collapse
|
29
|
Taguchi F, Ichinose Y. Role of type IV pili in virulence of Pseudomonas syringae pv. tabaci 6605: correlation of motility, multidrug resistance, and HR-inducing activity on a nonhost plant. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:1001-11. [PMID: 21615203 DOI: 10.1094/mpmi-02-11-0026] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To investigate the role of type IV pili in the virulence of phytopathogenic bacteria, four mutant strains for pilus biogenesis-related genes were generated in Pseudomonas syringae pv. tabaci 6605. PilA encodes the pilin protein as a major subunit of type IV pili, and the pilO product is reported to be required for pilus assembly. The fimU and fimT genes are predicted to produce minor pilins. Western blot analysis revealed that pilA, pilO, and fimU mutants but not the fimT mutant failed to construct type IV pili. Although the swimming motility of all mutant strains was not impaired in liquid medium, they showed remarkably reduced motilities on semisolid agar medium, suggesting that type IV pili are required for surface motilities. Virulence toward host tobacco plants and hypersensitive response-inducing ability in nonhost Arabidopsis leaves of pilA, pilO, and fimU mutant strains were reduced. These results might be a consequence of reduced expression of type III secretion system-related genes in the mutant strains. Further, all mutant strains showed enhanced expression of resistance-nodulation-division family members mexA, mexB, and oprM, and higher tolerance to antimicrobial compounds. These results indicate that type IV pili are an important virulence factor of this pathogen.
Collapse
|
30
|
O'Brien HE, Desveaux D, Guttman DS. Next-generation genomics of Pseudomonas syringae. Curr Opin Microbiol 2011; 14:24-30. [PMID: 21233007 DOI: 10.1016/j.mib.2010.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 11/19/2022]
Abstract
The first wave of Pseudomonas syringae next-generation genomic studies has revealed insights into host-specific virulence and immunity, genome dynamics and evolution, and genetic and metabolic specialization. These studies have further enhanced our understanding of type III effector diversity, identified an atypical type III secretion system (T3SS) in a new clade of nonpathogenic P. syringae, identified metabolic pathways common to pathogens of woody hosts and revealed extensive genomic diversity among strains that infect common hosts. In general, these discoveries have illustrated the utility of draft genome sequencing for quickly and economically identifying candidate loci for more refined genetic and functional analyses.
Collapse
Affiliation(s)
- Heath E O'Brien
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | | | | |
Collapse
|
31
|
O'Brien HE, Thakur S, Guttman DS. Evolution of plant pathogenesis in Pseudomonas syringae: a genomics perspective. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:269-89. [PMID: 21568703 DOI: 10.1146/annurev-phyto-072910-095242] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The phytopathogenic bacterium Pseudomonas syringae causes serious diseases in a wide range of important crop plants, with recent severe outbreaks on the New Zealand kiwifruit crop and among British horse chestnut trees. Next-generation genome sequencing of over 25 new strains has greatly broadened our understanding of how this species adapts to a diverse range of plant hosts. Not unexpectedly, the genomes were found to be highly dynamic, and extensive polymorphism was found in the distribution of type III secreted effectors (T3SEs) and other virulence-associated genes, even among strains within the same pathovar. An underexplored area brought to light by these data is the specific metabolic adaptations required for growth on woody hosts. These studies provide a tremendous wealth of candidates for more refined functional characterization, which is greatly enhancing our ability to disentangle the web of host-pathogen interactions that determine disease outcomes.
Collapse
Affiliation(s)
- Heath E O'Brien
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3B2 Canada
| | | | | |
Collapse
|
32
|
Mhedbi-Hajri N, Jacques MA, Koebnik R. Adhesion mechanisms of plant-pathogenic Xanthomonadaceae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 715:71-89. [PMID: 21557058 DOI: 10.1007/978-94-007-0940-9_5] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The family Xanthomonadaceae is a wide-spread family of bacteria belonging to the gamma subdivision of the Gram-negative proteobacteria, including the two plant-pathogenic genera Xanthomonas and Xylella, and the related genus Stenotrophomonas. Adhesion is a widely conserved virulence mechanism among Gram-negative bacteria, no matter whether they are human, animal or plant pathogens, since attachment to the host tissue is one of the key early steps of the bacterial infection process. Bacterial attachment to surfaces is mediated by surface structures that are anchored in the bacterial outer membrane and cover a broad group of fimbrial and non-fimbrial structures, commonly known as adhesins. In this chapter, we discuss recent findings on candidate adhesins of plant-pathogenic Xanthomonadaceae, including polysaccharidic (lipopolysaccharides, exopolysaccharides) and proteineous structures (chaperone/usher pili, type IV pili, autotransporters, two-partner-secreted and other outer membrane adhesins), their involvement in the formation of biofilms and their mode of regulation via quorum sensing. We then compare the arsenals of adhesins among different Xanthomonas strains and evaluate their mode of selection. Finally, we summarize the sparse knowledge on specific adhesin receptors in plants and the possible role of RGD motifs in binding to integrin-like plant molecules.
Collapse
Affiliation(s)
- Nadia Mhedbi-Hajri
- Pathologie Végétale (UMR077 INRA-Agrocampus Ouest-Université d'Angers), Beaucouzé, France.
| | | | | |
Collapse
|
33
|
Beattie GA. Water relations in the interaction of foliar bacterial pathogens with plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:533-55. [PMID: 21438680 DOI: 10.1146/annurev-phyto-073009-114436] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This review examines the many ways in which water influences the relations between foliar bacterial pathogens and plants. As a limited resource in aerial plant tissues, water is subject to manipulation by both plants and pathogens. A model is emerging that suggests that plants actively promote localized desiccation at the infection site and thus restrict pathogen growth as one component of defense. Similarly, many foliar pathogens manipulate water relations as one component of pathogenesis. Nonvascular pathogens do this using effectors and other molecules to alter hormonal responses and enhance intercellular watersoaking, whereas vascular pathogens use many mechanisms to cause wilt. Because of water limitations on phyllosphere surfaces, bacterial colonists, including pathogens, benefit from the protective effects of cellular aggregation, synthesis of hygroscopic polymers, and uptake and production of osmoprotective compounds. Moreover, these bacteria employ tactics for scavenging and distributing water to overcome water-driven barriers to nutrient acquisition, movement, and signal exchange on plant surfaces.
Collapse
Affiliation(s)
- Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011-3211, USA.
| |
Collapse
|
34
|
Studholme DJ, Kemen E, MacLean D, Schornack S, Aritua V, Thwaites R, Grant M, Smith J, Jones JDG. Genome-wide sequencing data reveals virulence factors implicated in banana Xanthomonas wilt. FEMS Microbiol Lett 2010; 310:182-92. [PMID: 20695894 DOI: 10.1111/j.1574-6968.2010.02065.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Banana Xanthomonas wilt is a newly emerging disease that is currently threatening the livelihoods of millions of farmers in East Africa. The causative agent is Xanthomonas campestris pathovar musacearum (Xcm), but previous work suggests that this pathogen is much more closely related to species Xanthomonas vasicola than to X. campestris. We have generated draft genome sequences for a banana-pathogenic strain of Xcm isolated in Uganda and for a very closely related strain of X. vasicola pathovar vasculorum, originally isolated from sugarcane, that is nonpathogenic on banana. The draft sequences revealed overlapping but distinct repertoires of candidate virulence effectors in the two strains. Both strains encode homologues of the Pseudomonas syringae effectors HopW, HopAF1 and RipT from Ralstonia solanacearum. The banana-pathogenic and non-banana-pathogenic strains also differed with respect to lipopolysaccharide synthesis and type-IV pili, and in at least several thousand single-nucleotide polymorphisms in the core conserved genome. We found evidence of horizontal transfer between X. vasicola and very distantly related bacteria, including members of other divisions of the Proteobacteria. The availability of these draft genomes will be an invaluable tool for further studies aimed at understanding and combating this important disease.
Collapse
|
35
|
Bahar O, Goffer T, Burdman S. Type IV Pili are required for virulence, twitching motility, and biofilm formation of acidovorax avenae subsp. Citrulli. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:909-20. [PMID: 19589067 DOI: 10.1094/mpmi-22-8-0909] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Acidovorax avenae subsp. citrulli is the causal agent of bacterial fruit blotch (BFB), a threatening disease of watermelon, melon, and other cucurbits. Despite the economic importance of BFB, relatively little is known about basic aspects of the pathogen's biology and the molecular basis of its interaction with host plants. To identify A. avenae subsp. citrulli genes associated with pathogenicity, we generated a transposon (Tn5) mutant library on the background of strain M6, a group I strain of A. avenae subsp. citrulli, and screened it for reduced virulence by seed-transmission assays with melon. Here, we report the identification of a Tn5 mutant with reduced virulence that is impaired in pilM, which encodes a protein involved in assembly of type IV pili (TFP). Further characterization of this mutant revealed that A. avenae subsp. citrulli requires TFP for twitching motility and wild-type levels of biofilm formation. Significant reductions in virulence and biofilm formation as well as abolishment of twitching were also observed in insertional mutants affected in other TFP genes. We also provide the first evidence that group I strains of A. avenae subsp. citrulli can colonize and move through host xylem vessels.
Collapse
Affiliation(s)
- Ofir Bahar
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | | | | |
Collapse
|
36
|
Darsonval A, Darrasse A, Durand K, Bureau C, Cesbron S, Jacques MA. Adhesion and fitness in the bean phyllosphere and transmission to seed of Xanthomonas fuscans subsp. fuscans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:747-57. [PMID: 19445599 DOI: 10.1094/mpmi-22-6-0747] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Deciphering the mechanisms enabling plant-pathogenic bacteria to disperse, colonize, and survive on their hosts provides the necessary basis to set up new control methods. We evaluated the role of bacterial attachment and biofilm formation in host colonization processes for Xanthomonas fuscans subsp. fuscans on its host. This bacterium is responsible for the common bacterial blight of bean (Phaseolus vulgaris), a seedborne disease. The five adhesin genes (pilA, fhab, xadA1, xadA2, and yapH) identified in X. fuscans subsp. fuscans CFBP4834-R strain were mutated. All mutants were altered in their abilities to adhere to polypropylene or seed. PilA was involved in adhesion and transmission to seed, and mutation of pilA led to lower pathogenicity on bean. YapH was required for adhesion to seed, leaves, and abiotic surfaces but not for in planta transmission to seed or aggressiveness on leaves. Transmission to seed through floral structures did not require any of the known adhesins. Conversely, all mutants tested, except in yapH, were altered in their vascular transmission to seed. In conclusion, we showed that adhesins are implicated in the various processes leading to host phyllosphere colonization and transmission to seed by plant-pathogenic bacteria.
Collapse
Affiliation(s)
- A Darsonval
- UMR077 PaVé, INRA, 42, F-49071 Beaucouzé, France
| | | | | | | | | | | |
Collapse
|
37
|
Lindeberg M, Biehl BS, Glasner JD, Perna NT, Collmer A, Collmer CW. Gene Ontology annotation highlights shared and divergent pathogenic strategies of type III effector proteins deployed by the plant pathogen Pseudomonas syringae pv tomato DC3000 and animal pathogenic Escherichia coli strains. BMC Microbiol 2009; 9 Suppl 1:S4. [PMID: 19278552 PMCID: PMC2654664 DOI: 10.1186/1471-2180-9-s1-s4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Genome-informed identification and characterization of Type III effector repertoires in various bacterial strains and species is revealing important insights into the critical roles that these proteins play in the pathogenic strategies of diverse bacteria. However, non-systematic discipline-specific approaches to their annotation impede analysis of the accumulating wealth of data and inhibit easy communication of findings among researchers working on different experimental systems. The development of Gene Ontology (GO) terms to capture biological processes occurring during the interaction between organisms creates a common language that facilitates cross-genome analyses. The application of these terms to annotate type III effector genes in different bacterial species – the plant pathogen Pseudomonas syringae pv tomato DC3000 and animal pathogenic strains of Escherichia coli – illustrates how GO can effectively describe fundamental similarities and differences among different gene products deployed as part of diverse pathogenic strategies. In depth descriptions of the GO annotations for P. syringae pv tomato DC3000 effector AvrPtoB and the E. coli effector Tir are described, with special emphasis given to GO capability for capturing information about interacting proteins and taxa. GO-highlighted similarities in biological process and molecular function for effectors from additional pathosystems are also discussed.
Collapse
Affiliation(s)
- Magdalen Lindeberg
- Department of Plant Pathology, Cornell University, Ithaca, NY 14850, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Das A, Rangaraj N, Sonti RV. Multiple adhesin-like functions of Xanthomonas oryzae pv. oryzae are involved in promoting leaf attachment, entry, and virulence on rice. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:73-85. [PMID: 19061404 DOI: 10.1094/mpmi-22-1-0073] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Xanthomonas oryzae pv. oryzae is the causal agent of bacterial blight of rice. We have used enhanced green fluorescent protein-tagged X. oryzae pv. oryzae cells in conjunction with confocal microscopy to monitor the role of several adhesin-like functions in bacterial adhesion to leaf surface and early stages of leaf entry. Mutations in genes encoding either the Xanthomonas adhesin-like protein A (XadA) or its paralog, Xanthomonas adhesin-like protein B (XadB), as well as the X. oryzae pv. oryzae homolog of Yersinia autotransporter-like protein H (YapH), exhibit deficiencies in leaf attachment or entry. A mutation in the X. oryzae pv. oryzae pilQ gene, which is predicted to encode the type IV pilus secretin, appears to have no effect on leaf attachment or entry. The xadA- mutant is deficient in the ability to cause disease following surface inoculation while the XadB, YapH, and PilQ functions are less important than XadA for this process. The xadA- and xadB- mutants have no effect on virulence following wound inoculation whereas the yapH- and pilQ- mutants are always virulence deficient following wound inoculation. Overall, these results indicate that multiple adhesin-like functions are involved in promoting virulence of X. oryzae pv. oryzae, with preferential involvement of individual functions at different stages of the disease process.
Collapse
Affiliation(s)
- Amit Das
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad-500 007, India
| | | | | |
Collapse
|
39
|
Fröls S, Ajon M, Wagner M, Teichmann D, Zolghadr B, Folea M, Boekema EJ, Driessen AJM, Schleper C, Albers SV. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation. Mol Microbiol 2008; 70:938-52. [DOI: 10.1111/j.1365-2958.2008.06459.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Zogaj X, Chakraborty S, Liu J, Thanassi DG, Klose KE. Characterization of the Francisella tularensis subsp. novicida type IV pilus. Microbiology (Reading) 2008; 154:2139-2150. [DOI: 10.1099/mic.0.2008/018077-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Xhavit Zogaj
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - Subhra Chakraborty
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jirong Liu
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas San Antonio, San Antonio, TX 78249, USA
| | - David G. Thanassi
- Center for Infectious Diseases, Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Karl E. Klose
- South Texas Center for Emerging Infectious Diseases and Department of Biology, University of Texas San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
41
|
Lindeberg M, Myers CR, Collmer A, Schneider DJ. Roadmap to new virulence determinants in Pseudomonas syringae: insights from comparative genomics and genome organization. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:685-700. [PMID: 18624633 DOI: 10.1094/mpmi-21-6-0685] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Systematic comparison of the current repertoire of virulence-associated genes for three Pseudomonas syringae strains with complete genome sequences, P. syringae pv. tomato DC3,000, P. syringae pv. phaseolicola 1448A, and P. syringae pv. syringae B728a, is prompted by recent advances in virulence factor identification in P. syringae and other bacteria. Among these are genes linked to epiphytic fitness, plant- and insect-active toxins, secretion pathways, and virulence regulators, all reflected in the recently updated DC3,000 genome annotation. Distribution of virulence genes in relation to P. syringae genome organization was analyzed to distinguish patterns of conservation among genomes and association between genes and mobile genetic elements. Variable regions were identified on the basis of deviation in sequence composition and gaps in syntenic alignment among the three genomes. Mapping gene location relative to the genome structure revealed strong segregation of the HrpL regulon with variable genome regions (VR), divergent distribution patterns for toxin genes depending on association with plant or insect pathogenesis, and patterns of distribution for other virulence genes that highlight potential sources of strain-to-strain differences in host interaction. Distribution of VR among other sequenced bacterial genomes was analyzed and future plans for characterization of this potential reservoir of virulence genes are discussed.
Collapse
Affiliation(s)
- Magdalen Lindeberg
- Department of Plant Pathology, Cornell University, Ithaca, NY 14853, U.S.A
| | | | | | | |
Collapse
|
42
|
Winther-Larsen HC, Wolfgang MC, van Putten JPM, Roos N, Aas FE, Egge-Jacobsen WM, Maier B, Koomey M. Pseudomonas aeruginosa Type IV pilus expression in Neisseria gonorrhoeae: effects of pilin subunit composition on function and organelle dynamics. J Bacteriol 2007; 189:6676-85. [PMID: 17573479 PMCID: PMC2045180 DOI: 10.1128/jb.00407-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type IV pili (TFP) play central roles in the expression of many phenotypes including motility, multicellular behavior, sensitivity to bacteriophages, natural genetic transformation, and adherence. In Neisseria gonorrhoeae, these properties require ancillary proteins that act in conjunction with TFP expression and influence organelle dynamics. Here, the intrinsic contributions of the pilin protein itself to TFP dynamics and associated phenotypes were examined by expressing the Pseudomonas aeruginosa PilA(PAK) pilin subunit in N. gonorrhoeae. We show here that, although PilA(PAK) pilin can be readily assembled into TFP in this background, steady-state levels of purifiable fibers are dramatically reduced relative those of endogenous pili. This defect is due to aberrant TFP dynamics as it is suppressed in the absence of the PilT pilus retraction ATPase. Functionally, PilA(PAK) pilin complements gonococcal adherence for human epithelial cells but only in a pilT background, and this property remains dependent on the coexpression of both the PilC adhesin and the PilV pilin-like protein. Since P. aeruginosa pilin only moderately supports neisserial sequence-specific transformation despite its assembly proficiency, these results together suggest that PilA(PAK) pilin functions suboptimally in this environment. This appears to be due to diminished compatibility with resident proteins essential for TFP function and dynamics. Despite this, PilA(PAK) pili support retractile force generation in this background equivalent to that reported for endogenous pili. Furthermore, PilA(PAK) pili are both necessary and sufficient for bacteriophage PO4 binding, although the strain remains phage resistant. Together, these findings have significant implications for TFP biology in both N. gonorrhoeae and P. aeruginosa.
Collapse
Affiliation(s)
- Hanne C Winther-Larsen
- Department of Molecular Biosciences, University of Oslo, P.O. Box 1041 Blindern, 0317 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Alimova A, Katz A, Podder R, Minko G, Wei H, Berriman J, Alfano RR, Gottlieb P. Virus Particles and Receptor Interaction Monitored by Fluorescence Spectroscopy¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb01457.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Ferris MT, Joyce P, Burch CL. High frequency of mutations that expand the host range of an RNA virus. Genetics 2007; 176:1013-22. [PMID: 17409090 PMCID: PMC1894571 DOI: 10.1534/genetics.106.064634] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of a virus population to colonize a novel host is predicted to depend on the equilibrium frequency of potential colonists (i.e., genotypes capable of infecting the novel host) in the source population. In this study, we investigated the determinants of the equilibrium frequency of potential colonists in the RNA bacteriophage 6. We isolated 40 spontaneous mutants capable of infecting a novel Pseudomonas syringae host and sequenced their host attachment genes to identify the responsible mutations. We observed 16 different mutations in the host attachment gene and used a new statistical approach to estimate that 39 additional mutations were missed by our screen. Phenotypic and fitness assays confirmed that the proximate mechanism underlying host range expansion was an increase in the ability to attach to the novel host and that acquisition of this ability most often imposed a cost for growth rate on two standard hosts. Considered in a population genetic framework, our data suggest that host range mutations should exist in phage populations at an equilibrium frequency (3 x 10(-4)) that exceeds the phage mutation rate by more than two orders of magnitude. Thus, colonization of novel hosts is unlikely to be limited by an inability to produce appropriate mutations.
Collapse
Affiliation(s)
- Martin T. Ferris
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 and Department of Mathematics and Department of Statistics, University of Idaho, Moscow, Idaho 83844
| | - Paul Joyce
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 and Department of Mathematics and Department of Statistics, University of Idaho, Moscow, Idaho 83844
| | - Christina L. Burch
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599 and Department of Mathematics and Department of Statistics, University of Idaho, Moscow, Idaho 83844
- Corresponding author: Department of Biology, CB 3280, Coker Hall, University of North Carolina, Chapel Hill, NC 27599-3280. E-mail:
| |
Collapse
|
45
|
Loper JE, Kobayashi DY, Paulsen IT. The Genomic Sequence of Pseudomonas fluorescens Pf-5: Insights Into Biological Control. PHYTOPATHOLOGY 2007; 97:233-8. [PMID: 18944380 DOI: 10.1094/phyto-97-2-0233] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
ABSTRACT The complete sequence of the 7.07 Mb genome of the biological control agent Pseudomonas fluorescens Pf-5 is now available, providing a new opportunity to advance knowledge of biological control through genomics. P. fluorescens Pf-5 is a rhizosphere bacterium that suppresses seedling emergence diseases and produces a spectrum of antibiotics toxic to plant-pathogenic fungi and oomycetes. In addition to six known secondary metabolites produced by Pf-5, three novel secondary metabolite biosynthesis gene clusters identified in the genome could also contribute to biological control. The genomic sequence provides numerous clues as to mechanisms used by the bacterium to survive in the spermosphere and rhizosphere. These features include broad catabolic and transport capabilities for utilizing seed and root exudates, an expanded collection of efflux systems for defense against environmental stress and microbial competition, and the presence of 45 outer membrane receptors that should allow for the uptake of iron from a wide array of siderophores produced by soil microorganisms. As expected for a bacterium with a large genome that lives in a rapidly changing environment, Pf-5 has an extensive collection of regulatory genes, only some of which have been characterized for their roles in regulation of secondary metabolite production or biological control. Consistent with its commensal lifestyle, Pf-5 appears to lack a number of virulence and pathogenicity factors found in plant pathogens.
Collapse
|
46
|
Marco ML, Legac J, Lindow SE. Pseudomonas syringae genes induced during colonization of leaf surfaces. Environ Microbiol 2005; 7:1379-91. [PMID: 16104861 DOI: 10.1111/j.1462-2920.2005.00825.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The foliar pathogen and ice nucleator, Pseudomonas syringae pv. syringae B728a, demonstrates a high level of epiphytic fitness on plants. Using a promoter-trapping strategy termed habitat-inducible rescue of survival (HIRS), we identified genes of this organism that are induced during colonization of healthy bean leaf surfaces. These plant-inducible genes (pigs) encode diverse cellular functions including virulence, transcription regulation, transport, nutrient acquisition and other known and unknown loci, some of which may result in antisense transcripts to annotated P. syringae genes. Prominent among the pigs was ssuE, a gene in the sulfate-starvation regulon, indicating that sulfate is not abundant on leaf surfaces. inaZ reporter gene fusion assays of the plant-inducible loci revealed up to 300-fold higher levels of pig transcriptional activity on plant leaves compared with minimal medium. However, the maximum levels of pig transcriptional activity were typically too weak to be measured using a gfp reporter gene. One exception was orf6 in the hrp/hrc pathogenicity island which was highly induced in epiphytic P. syringae cells. Four pigs were disrupted by insertional mutagenesis. While growth of the ssuE mutant was impaired under certain conditions in laboratory medium, the epiphytic and virulence properties of the mutants on bean plants were identical to wild-type P. syringae. Our results demonstrate the utility of HIRS to identify genes expressed on leaves and provide new insight into the leaf surface environment.
Collapse
Affiliation(s)
- Maria L Marco
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
47
|
Jha G, Rajeshwari R, Sonti RV. Bacterial type two secretion system secreted proteins: double-edged swords for plant pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:891-8. [PMID: 16167759 DOI: 10.1094/mpmi-18-0891] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The type two secretion system (T2S) is important for virulence of a number of gram-negative bacterial plant pathogens. Most of the T2S-secreted proteins that have been characterized to date are involved in degrading different components of plant cell walls. Functional redundancy appears to exist among T2S-secreted proteins because significant effects on virulence are observed only in strains in which multiple secreted proteins are mutated. Several T2S-secreted proteins have been shown to induce plant defense responses, including hypersensitive response-like reactions. Bacterial pathogens can suppress these defense responses, and recent results indicate that suppression is mediated through the type three secretion system.
Collapse
Affiliation(s)
- Gopaljee Jha
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad-500 007, India
| | | | | |
Collapse
|
48
|
Alimova A, Katz A, Podder R, Minko G, Wei H, Berriman J, Alfano RR, Gottlieb P. Virus Particles and Receptor Interaction Monitored by Fluorescence Spectroscopy¶. Photochem Photobiol 2005. [DOI: 10.1562/2005-01-14-ra-416r1.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Peñaloza-Vázquez A, Fakhr MK, Bailey AM, Bender CL. AlgR functions in algC expression and virulence in Pseudomonas syringae pv. syringae. MICROBIOLOGY-SGM 2004; 150:2727-2737. [PMID: 15289569 DOI: 10.1099/mic.0.27199-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pseudomonas syringae pv. syringae strain FF5 is a phytopathogen associated with a rapid dieback on ornamental pear trees. P. syringae and the human pathogen Pseudomonas aeruginosa produce the exopolysaccharide alginate, a copolymer of mannuronic and guluronic acid. In P. aeruginosa, the response regulator AlgR (AlgR1) is required for transcription of algC and algD, which encode key enzymes in the alginate biosynthetic pathway. In P. syringae FF5, however, algR is not required for the activation of algD. Interestingly, algR mutants of P. syringae remain nonmucoid, indicating an undefined role for this response regulator in alginate biosynthesis. In the current study, the algC promoter region was cloned from P. syringae pv. syringae strain FF5, and sequence analysis of the algC promoter indicated the presence of potential binding sites for AlgR and sigma(54), the alternative sigma factor encoded by rpoN. The algC promoter from P. syringae FF5 (PsalgC) was cloned upstream of a promoterless glucuronidase gene (uidA), and the PsalgC-uidA transcriptional fusion was used to monitor algC expression in strains FF5.32 (algR mutant of P. syringae FF5) and PG4180.K2 (rpoN mutant of P. syringae pv. glycinea PG4180). Expression of the PsalgC-uidA fusion was fourfold lower in both the algR and rpoN mutants as compared to respective wild-type strains, indicating that both AlgR and sigma(54) are required for full activation of algC transcription in P. syringae pv. syringae. AlgR from P. syringae was successfully overproduced in Escherichia coli as a C-terminal translational fusion to the maltose-binding protein (MBP). Gel shift experiments indicated that MBP-AlgR binds strongly to the algC promoter region. Biological assays demonstrated that the algR mutant was significantly impaired in both pathogenicity and epiphytic fitness as compared to the wild-type strain. These results, along with the gene expression studies, indicate that AlgR has a positive role in the activation of algC in P. syringae and contributes to both virulence and epiphytic fitness. Furthermore, the symptoms observed with wild-type P. syringae FF5 suggest that this strain can move systemically in leaf tissue, and that a functional copy of algR is required for systemic movement.
Collapse
Affiliation(s)
| | - Mohamed K Fakhr
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ana M Bailey
- Departamento de Ingeniería Genética de Plantas CINVESTAV-IPN Unidad Irapuato, Irapuato, Guanajuato, 36500 Mexico
| | - Carol L Bender
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
50
|
Hienonen E, Rantakari A, Romantschuk M, Taira S. The bacterial type III secretion system-associated pilin HrpA has an unusually long mRNA half-life. FEBS Lett 2004; 571:217-20. [PMID: 15280045 DOI: 10.1016/j.febslet.2004.06.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 06/22/2004] [Accepted: 06/29/2004] [Indexed: 01/19/2023]
Abstract
Secondary structures affect mRNA stability and may play a role in protein secretion. We have studied the mRNA of hrpA, which codes for the major structural unit of the type III secretion system-associated pilus of Pseudomonas syringae pv. tomato, Erwinia carotovora and Pseudomonas syringae pv. phaseolicola. We show that hrpA mRNA has an unusually long half-life, approximately 33-47 min. We mapped regions in the transcript that affected hrpA mRNA accumulation. Apparently, sequences at both 5' and 3' ends affect accumulation. Altering the hypothetical, stable GC rich loop structure in the 3' end of the transcript decreased transcript levels.
Collapse
Affiliation(s)
- Elina Hienonen
- Division of General Microbiology, Department of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter, P.O. Box 56, FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|