1
|
Rodriguez-Rodriguez M, Chikh-Ali M, Feng X, Karasev AV. Genome sequences of six recombinant variants of potato virus Y identified in North American potato cultivars grown in China. Microbiol Resour Announc 2024; 13:e0051223. [PMID: 38133347 PMCID: PMC10868197 DOI: 10.1128/mra.00512-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Six genome sequences for potato virus Y (PVY) recombinants are reported from two North American potato cultivars grown in China. The coding complete sequences encode a single open reading frame characteristic of potyviruses. The six sequenced PVY isolates represent three distinct recombinants of PVY, namely N-Wi, SYR-I, and SYR-II.
Collapse
Affiliation(s)
| | - Mohamad Chikh-Ali
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, USA
| | - Xue Feng
- Shanxi Agricultural University, College of Plant Protection, Taigu, Shanxi, China
| | - Alexander V. Karasev
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
2
|
Chuan J, Xu H, Hammill DL, Hale L, Chen W, Li X. Clasnip: a web-based intraspecies classifier and multi-locus sequence typing for pathogenic microorganisms using fragmented sequences. PeerJ 2023; 11:e14490. [PMID: 36643626 PMCID: PMC9835710 DOI: 10.7717/peerj.14490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/09/2022] [Indexed: 01/11/2023] Open
Abstract
Bioinformatic approaches for the identification of microorganisms have evolved rapidly, but existing methods are time-consuming, complicated or expensive for massive screening of pathogens and their non-pathogenic relatives. Also, bioinformatic classifiers usually lack automatically generated performance statistics for specific databases. To address this problem, we developed Clasnip (www.clasnip.com), an easy-to-use web-based platform for the classification and similarity evaluation of closely related microorganisms at interspecies and intraspecies levels. Clasnip mainly consists of two modules: database building and sample classification. In database building, labeled nucleotide sequences are mapped to a reference sequence, and then single nucleotide polymorphisms (SNPs) statistics are generated. A probability model of SNPs and classification groups is built using Hidden Markov Models and solved using the maximum likelihood method. Database performance is estimated using three replicates of two-fold cross-validation. Sensitivity (recall), specificity (selectivity), precision, accuracy and other metrics are computed for all samples, training sets, and test sets. In sample classification, Clasnip accepts inputs of genes, short fragments, contigs and even whole genomes. It can report classification probability and a multi-locus sequence typing table for SNPs. The classification performance was tested using short sequences of 16S, 16-23S and 50S rRNA regions for 12 haplotypes of Candidatus Liberibacter solanacearum (CLso), a regulated plant pathogen associated with severe disease in economically important Apiaceous and Solanaceous crops. The program was able to classify CLso samples with even only 1-2 SNPs available, and achieved 97.2%, 98.8% and 100.0% accuracy based on 16S, 16-23S, and 50S rRNA sequences, respectively. In comparison with all existing 12 haplotypes, we proposed that to be classified as a new haplotype, given samples have at least 2 SNPs in the combined region of 16S rRNA (OA2/Lsc2) and 16-23S IGS (Lp Frag 4-1611F/Lp Frag 4-480R) regions, and 2 SNPs in the 50S rplJ/rplL (CL514F/CL514R) regions. Besides, we have included the databases for differentiating Dickeya spp., Pectobacterium spp. and Clavibacter spp. In addition to bacteria, we also tested Clasnip performance on potato virus Y (PVY). 251 PVY genomes were 100% correctly classified into seven groups (PVYC, PVYN, PVYO, PVYNTN, PVYN:O, Poha, and Chile3). In conclusion, Clasnip is a statistically sound and user-friendly bioinformatic application for microorganism classification at the intraspecies level. Clasnip service is freely available at www.clasnip.com.
Collapse
Affiliation(s)
- Jiacheng Chuan
- Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, Prince Edward Island, Canada,Department of Biology, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Huimin Xu
- Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, Prince Edward Island, Canada
| | - Desmond L. Hammill
- Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, Prince Edward Island, Canada
| | - Lawrence Hale
- Department of Biology, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Wen Chen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada,Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Xiang Li
- Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
3
|
Mondal S, Wintermantel WM, Gray SM. Infection Dynamics of Potato Virus Y Isolate Combinations in Three Potato Cultivars. PLANT DISEASE 2023; 107:157-166. [PMID: 35657714 DOI: 10.1094/pdis-09-21-1980-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The United States potato industry has recently experienced a strain shift; recombinant potato virus Y (PVY) strains (e.g., PVYNTN) have emerged as the predominant strains over the long dominant ordinary strain (PVYO), yet both are often found as single infections within the same field and as mixed infections within individual plants. To understand mixed infection dynamics in potato plants and in daughter tubers, three potato varieties varying for PVY resistance, 'Red Maria', 'CalWhite', and 'Pike', were mechanically inoculated either at the pre- or postflowering stage with all possible heterologous isolate combinations of two PVYO and two PVYNTN isolates. Virus titer was determined from leaves collected at different positions on the plant at different times, and tuber-borne infection was determined for two successive generations. PVYNTN accumulated to higher levels than PVYO at nearly all sampling time points in 'Pike' potato. However, both virus strains accumulated to similar amounts in 'Red Maria' and 'CalWhite' potato early in the infection when inoculated preflowering; however, PVYNTN dominated at later stages and in plants inoculated postflowering. Regardless of inoculation time, both virus strains were transmitted to daughter plants raised from the tubers for most isolate combinations. The relative titer of PVYNTN and PVYO isolates at the later stages of mother plant development was indicative of what was found in the daughter plants. Although virus titer differed among cultivars depending on their genetics and virus isolates, it did not change the strain outcome in tuber-borne infection in subsequent generations. Differential virus accumulation in these cultivars suggests isolate-specific resistance to PVY accumulation.
Collapse
Affiliation(s)
- Shaonpius Mondal
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853-5904
- USDA-ARS, Crop Improvement and Protection Research Unit, Salinas, CA 93905
| | | | - Stewart M Gray
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853-5904
- USDA-ARS, Emerging Pests and Pathogen Research Unit and Plant Pathology, Ithaca, NY 14853-5904
| |
Collapse
|
4
|
Epidemiology of Yam Viruses in Guadeloupe: Role of Cropping Practices and Seed-Tuber Supply. Viruses 2022; 14:v14112366. [PMID: 36366464 PMCID: PMC9692558 DOI: 10.3390/v14112366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023] Open
Abstract
The epidemiology of yam viruses remains largely unexplored. We present a large-scale epidemiological study of yam viruses in Guadeloupe based on the analysis of 1124 leaf samples collected from yams and weeds. We addressed the prevalence of cucumber mosaic virus (CMV), Cordyline virus 1 (CoV1), Dioscorea mosaic associated virus (DMaV), yam asymptomatic virus 1 (YaV1), yam mosaic virus (YMV), yam mild mosaic virus (YMMV), badnaviruses, macluraviruses and potexviruses, and the key epidemiological drivers of these viruses. We provide evidence that several weeds are reservoirs of YMMV and that YMMV isolates infecting weeds cluster together with those infecting yams, pointing to the role of weeds in the epidemiology of YMMV. We report the occurrence of yam chlorotic necrosis virus (YCNV) in Guadeloupe, the introduction of YMMV isolates through the importation of yam tubers, and the absence of vertical transmission of YaV1. We identified specific effects on some cropping practices, such as weed management and the use of chemical pesticides, on the occurrence of a few viruses, but no crop-related factor had a strong or general effect on the overall epidemiology of the targeted viruses. Overall, our work provides insights into the epidemiology of yam viruses that will help design more efficient control strategies.
Collapse
|
5
|
Nishimura L, Fujito N, Sugimoto R, Inoue I. Detection of Ancient Viruses and Long-Term Viral Evolution. Viruses 2022; 14:v14061336. [PMID: 35746807 PMCID: PMC9230872 DOI: 10.3390/v14061336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/22/2022] Open
Abstract
The COVID-19 outbreak has reminded us of the importance of viral evolutionary studies as regards comprehending complex viral evolution and preventing future pandemics. A unique approach to understanding viral evolution is the use of ancient viral genomes. Ancient viruses are detectable in various archaeological remains, including ancient people's skeletons and mummified tissues. Those specimens have preserved ancient viral DNA and RNA, which have been vigorously analyzed in the last few decades thanks to the development of sequencing technologies. Reconstructed ancient pathogenic viral genomes have been utilized to estimate the past pandemics of pathogenic viruses within the ancient human population and long-term evolutionary events. Recent studies revealed the existence of non-pathogenic viral genomes in ancient people's bodies. These ancient non-pathogenic viruses might be informative for inferring their relationships with ancient people's diets and lifestyles. Here, we reviewed the past and ongoing studies on ancient pathogenic and non-pathogenic viruses and the usage of ancient viral genomes to understand their long-term viral evolution.
Collapse
Affiliation(s)
- Luca Nishimura
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Naoko Fujito
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Ryota Sugimoto
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Correspondence: ; Tel.: +81-55-981-6795
| |
Collapse
|
6
|
Tran LT, Green KJ, Rodriguez-Rodriguez M, Orellana GE, Funke CN, Nikolaeva OV, Quintero-Ferrer A, Chikh-Ali M, Woodell L, Olsen N, Karasev AV. Prevalence of Recombinant Strains of Potato Virus Y in Seed Potato Planted in Idaho and Washington States Between 2011 and 2021. PLANT DISEASE 2022; 106:810-817. [PMID: 34698520 DOI: 10.1094/pdis-08-21-1852-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Potato virus Y (PVY) has emerged as the main reason for potato seed lot rejections, seriously affecting seed potato production in the United States throughout the past 20 years. The dynamics of PVY strain abundance and composition in various potato growing areas of the United States has not been well documented or understood up to now. The objective of this study was to find out the prevalence of PVY strains in potato fields in the Pacific Northwest (PNW), including seed potato production systems in the State of Idaho and commercial potato fields in the Columbia Basin of Washington State between 2011 and 2021. Based on the testing of >10,000 foliar samples during Idaho seed certification winter grow-out evaluations of seed potato lots and seed lot trials in Washington State, a dramatic shift in the PVY strain composition was revealed in the PNW between 2011 and 2016. During this time period, the prevalence of the ordinary, PVYO strain in seed potato dropped 8- to 10-fold, concomitantly with the rise of recombinant strains PVYN-Wi and PVYNTNa, which together accounted for 98% of all PVY positives by 2021. In Idaho seed potato, PVYNTNa strain associated with the potato tuber necrotic ringspot disease (PTNRD) was found to increase threefold between 2011 and 2019, accounting for 24% of all PVY positives in 2019. Mild foliar symptoms induced by recombinant PVY strains may be partially responsible for the proliferation of PVYN-Wi and PVYNTNa in potato crops. A spike of another PTNRD-associated recombinant, PVY-NE11, was recorded in the PNW between 2012 and 2016, but after reaching a 7 to 10% level in 2012 to 2013 this recombinant disappeared from the PNW potato by 2019. Whole genome sequence analysis of the PVY-NE11 suggested this recombinant was introduced in the United States at least three times. The data on PVY strain abundance in the PNW potato crops suggest that virus management strategies must consider the current dominance of the two recombinant PVY strains, PVYN-Wi and PVYNTNa.
Collapse
Affiliation(s)
- Lisa T Tran
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID 83844-2329
| | - Kelsie J Green
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID 83844-2329
| | | | - Gardenia E Orellana
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID 83844-2329
| | - Cassandra N Funke
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID 83844-2329
| | - Olga V Nikolaeva
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID 83844-2329
| | - Arturo Quintero-Ferrer
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID 83844-2329
| | - Mohamad Chikh-Ali
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID 83844-2329
| | - Lynn Woodell
- Department of Plant Science, University of Idaho, Kimberly Research and Extension Center, Kimberly, ID 83844-2333
| | - Nora Olsen
- Department of Plant Science, University of Idaho, Kimberly Research and Extension Center, Kimberly, ID 83844-2333
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID 83844-2329
| |
Collapse
|
7
|
Jones RAC, Barbetti MJ, Fox A, Adams IP. Potato Virus Y Biological Strain Group Y D: Hypersensitive Resistance Genes Elicited and Phylogenetic Placement. PLANT DISEASE 2021; 105:3600-3609. [PMID: 34080887 DOI: 10.1094/pdis-03-21-0534-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potato virus Y (PVY) disrupts healthy seed potato production and causes tuber yield and quality losses globally. Its subdivisions consist of strain groups defined by potato hypersensitive resistance (HR) genes and whether necrosis occurs in tobacco, and phylogroups defined by sequencing. When PVY isolate PP was inoculated to potato cultivar differentials with HR genes, the HR phenotype pattern obtained resembled that caused by strain group PVYD isolate KIP1. A complete genome of isolate PP was obtained by high-throughput sequencing. After removal of its short terminal recombinant segment, it was subjected to phylogenetic analysis together with 30 complete nonrecombinant PVY genomes. It fitted within the same minor phylogroup PVYO3 subclade as KIP1. Putative HR gene Nd was proposed previously to explain the unique HR phenotype pattern that developed when differential cultivars were inoculated with PVYD. However, an alternative explanation was that PVYD elicits HR with HR genes Nc and Ny instead. To establish which gene(s) it elicits, isolates KIP1 and PP were inoculated to F1 potato seedlings from (i) crossing 'Kipfler' and 'White Rose' with 'Ruby Lou' and (ii) self-pollinated 'Desiree' and 'Ruby Lou', where 'Kipfler' is susceptible (S) but 'White Rose', 'Desiree', and 'Ruby Lou' develop HR. With both isolates, the HR:S segregation ratios obtained fitted 5:1 for 'Kipfler' × 'Ruby Lou', 11:1 for 'White Rose' × 'Ruby Lou', and 3:1 for 'Desiree'. Those for 'Ruby Lou' were 68:1 (isolate PP) and 52:0 (isolate KIP1). Because potato is tetraploid, these ratios suggest PVYD elicits HR with Ny from 'Ruby Lou' (duplex condition) and 'Desiree' (simplex condition) and Nc from 'White Rose' (simplex condition) but provide no evidence that Nd exists. Therefore, our differential cultivar inoculations and inheritance studies highlight that PVYD isolates elicit an HR phenotype in potato cultivars with either of two HR genes Nc or Ny, so putative gene Nd can be discounted. Moreover, phylogenetic analysis placed isolate PP within the same minor phylogroup PVYO3 subclade as KIP1, which constitutes the most basal divergence within overall major phylogroup PVYO.
Collapse
Affiliation(s)
- Roger A C Jones
- The University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| | - Martin J Barbetti
- The University of Western Australia Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
- School of Agriculture and Environment, University of Western Australia, Crawley, WA 6009, Australia
| | - Adrian Fox
- Fera Science Ltd., Sand Hutton, York YO41 1LZ, UK
| | - Ian P Adams
- Fera Science Ltd., Sand Hutton, York YO41 1LZ, UK
| |
Collapse
|
8
|
Rodriguez-Rodriguez M, Quintero-Ferrer A, Green KJ, Robles-Hernández L, Gonzalez-Franco AC, Karasev AV. Molecular and Biological Characterization of Recombinant Isolates of Potato virus Y Circulating in Potato Fields in Mexico. PLANT DISEASE 2021; 105:2688-2696. [PMID: 33267640 DOI: 10.1094/pdis-10-20-2215-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potato virus Y (PVY) is a significant threat to potato (Solanum tuberosum) production in Mexico. The presence of recombinant strains of PVY circulating in potato has been reported in the country, but no systematic study on the genetic diversity of PVY in potato and prevalence of PVY strains has been conducted yet. We report on a series of surveys in seed potato production areas in two states in Mexico, namely, Chihuahua and Jalisco, between 2011 and 2019. PVY was detected through the period of nine years in multiple potato cultivars in both states, often remaining asymptomatic in the most popular cultivars, such as 'Fianna' and 'Agata'. When typed to strain, all PVY samples studied were found to have N-serotype, and were all identified molecularly as isolates of the same recombinant strain, PVYNTN. Five of these PVY isolates were tested on tobacco (Nicotiana tabacum), where they induced vein necrosis supporting the molecular typing. This identification was also confirmed biologically on differential potato cultivars, where one PVYNTN isolate from the 2013 survey triggered the hypersensitive resistance conferred by the Nztbr gene in the cv. Maris Bard. Seven of these Mexican PVYNTN isolates, collected between 2013 and 2019, including two PVY isolates from potato tubers exhibiting potato tuber necrotic ringspot disease, were subjected to whole genome sequencing and found to show a typical PVYNTNa recombinant structure. When subjected to phylogenetic analysis, Mexican PVYNTN sequences clustered in more than three separate clades, suggesting multiple introductions of PVYNTN in the country. The wide circulation of the PVYNTN strain in Mexican potato should be considered by potato producers, to develop mitigation strategies for this PVY strain associated with tuber necrotic symptoms.
Collapse
Affiliation(s)
- Mariana Rodriguez-Rodriguez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844-2329, U.S.A
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, 31310 Mexico
| | - Arturo Quintero-Ferrer
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844-2329, U.S.A
| | - Kelsie J Green
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844-2329, U.S.A
| | - Loreto Robles-Hernández
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, 31310 Mexico
| | - Ana C Gonzalez-Franco
- Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Chihuahua, 31310 Mexico
| | - Alexander V Karasev
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844-2329, U.S.A
| |
Collapse
|
9
|
Fuentes S, Gibbs AJ, Hajizadeh M, Perez A, Adams IP, Fribourg CE, Kreuze J, Fox A, Boonham N, Jones RAC. The Phylogeography of Potato Virus X Shows the Fingerprints of Its Human Vector. Viruses 2021; 13:644. [PMID: 33918611 PMCID: PMC8070401 DOI: 10.3390/v13040644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/23/2022] Open
Abstract
Potato virus X (PVX) occurs worldwide and causes an important potato disease. Complete PVX genomes were obtained from 326 new isolates from Peru, which is within the potato crop's main domestication center, 10 from historical PVX isolates from the Andes (Bolivia, Peru) or Europe (UK), and three from Africa (Burundi). Concatenated open reading frames (ORFs) from these genomes plus 49 published genomic sequences were analyzed. Only 18 of them were recombinants, 17 of them Peruvian. A phylogeny of the non-recombinant sequences found two major (I, II) and five minor (I-1, I-2, II-1, II-2, II-3) phylogroups, which included 12 statistically supported clusters. Analysis of 488 coat protein (CP) gene sequences, including 128 published previously, gave a completely congruent phylogeny. Among the minor phylogroups, I-2 and II-3 only contained Andean isolates, I-1 and II-2 were of both Andean and other isolates, but all of the three II-1 isolates were European. I-1, I-2, II-1 and II-2 all contained biologically typed isolates. Population genetic and dating analyses indicated that PVX emerged after potato's domestication 9000 years ago and was transported to Europe after the 15th century. Major clusters A-D probably resulted from expansions that occurred soon after the potato late-blight pandemic of the mid-19th century. Genetic comparisons of the PVX populations of different Peruvian Departments found similarities between those linked by local transport of seed potato tubers for summer rain-watered highland crops, and those linked to winter-irrigated crops in nearby coastal Departments. Comparisons also showed that, although the Andean PVX population was diverse and evolving neutrally, its spread to Europe and then elsewhere involved population expansion. PVX forms a basal Potexvirus genus lineage but its immediate progenitor is unknown. Establishing whether PVX's entirely Andean phylogroups I-2 and II-3 and its Andean recombinants threaten potato production elsewhere requires future biological studies.
Collapse
Affiliation(s)
- Segundo Fuentes
- Crop and System Sciences Division, International Potato Center, La Molina Lima 15023, Peru; (S.F.); (A.P.); (J.K.)
| | - Adrian J. Gibbs
- Emeritus Faculty, Australian National University, Canberra, ACT 2600, Australia;
| | - Mohammad Hajizadeh
- Plant Protection Department, Faculty of Agriculture, University of Kurdistan, Sanandaj 6617715175, Iran;
| | - Ana Perez
- Crop and System Sciences Division, International Potato Center, La Molina Lima 15023, Peru; (S.F.); (A.P.); (J.K.)
| | - Ian P. Adams
- Fera Science Ltd., Sand Hutton York YO41 1LZ, UK; (I.P.A.); (A.F.)
| | - Cesar E. Fribourg
- Departamento de Fitopatologia, Universidad Nacional Agraria, La Molina Lima 12056, Peru;
| | - Jan Kreuze
- Crop and System Sciences Division, International Potato Center, La Molina Lima 15023, Peru; (S.F.); (A.P.); (J.K.)
| | - Adrian Fox
- Fera Science Ltd., Sand Hutton York YO41 1LZ, UK; (I.P.A.); (A.F.)
| | - Neil Boonham
- Institute for Agrifood Research Innovations, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| | - Roger A. C. Jones
- UWA Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
10
|
Jones RAC. Global Plant Virus Disease Pandemics and Epidemics. PLANTS (BASEL, SWITZERLAND) 2021; 10:233. [PMID: 33504044 PMCID: PMC7911862 DOI: 10.3390/plants10020233] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
The world's staple food crops, and other food crops that optimize human nutrition, suffer from global virus disease pandemics and epidemics that greatly diminish their yields and/or produce quality. This situation is becoming increasingly serious because of the human population's growing food requirements and increasing difficulties in managing virus diseases effectively arising from global warming. This review provides historical and recent information about virus disease pandemics and major epidemics that originated within different world regions, spread to other continents, and now have very wide distributions. Because they threaten food security, all are cause for considerable concern for humanity. The pandemic disease examples described are six (maize lethal necrosis, rice tungro, sweet potato virus, banana bunchy top, citrus tristeza, plum pox). The major epidemic disease examples described are seven (wheat yellow dwarf, wheat streak mosaic, potato tuber necrotic ringspot, faba bean necrotic yellows, pepino mosaic, tomato brown rugose fruit, and cucumber green mottle mosaic). Most examples involve long-distance virus dispersal, albeit inadvertent, by international trade in seed or planting material. With every example, the factors responsible for its development, geographical distribution and global importance are explained. Finally, an overall explanation is given of how to manage global virus disease pandemics and epidemics effectively.
Collapse
Affiliation(s)
- Roger A C Jones
- The UWA Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
11
|
Rodriguez-Rodriguez M, Chikh-Ali M, Johnson SB, Gray SM, Malseed N, Crump N, Karasev AV. The Recombinant Potato virus Y (PVY) Strain, PVY NTN, Identified in Potato Fields in Victoria, Southeastern Australia. PLANT DISEASE 2020; 104:3110-3114. [PMID: 33058718 DOI: 10.1094/pdis-05-20-0961-sc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Potato virus Y (PVY) is one of the main viruses affecting potato in Australia. However, molecular characterization of PVY isolates circulating in potato in different states of Australia has not yet been thoroughly conducted. Only nonrecombinant isolates of three biological PVY strains collected from potato were reported previously from Western Australia and one from Queensland. Here, PVY isolates collected from seed potato originating in Victoria, Australia, and printed on FTA cards, were subjected to strain typing by RT-PCR, with three isolates subjected to whole genome sequencing. All the 59 PVY isolates detected during two growing seasons were identified to be recombinants based on two RT-PCR assays. No nonrecombinant PVY isolates were identified. All the RT-PCR typed isolates belonged to the PVYNTN strain. Sequence analysis of the whole genomes of three isolates suggested a single introduction of the PVYNTN strain to Australia but provided no clues as to where this introduction originated. Given the association of the PVYNTN strain with potato tuber damage, growers in Australia should implement appropriate strategies to manage PVYNTN in potato.
Collapse
Affiliation(s)
| | - Mohamad Chikh-Ali
- University of Idaho, Department of EPPN, Moscow, ID 83844-2329, U.S.A
| | - Steven B Johnson
- University of Maine Cooperative Extension, Orono, ME 04469, U.S.A
| | - Stewart M Gray
- USDA-ARS and Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | | | | | | |
Collapse
|
12
|
Green KJ, Funke CN, Chojnacky J, Alvarez-Quinto RA, Ochoa JB, Quito-Avila DF, Karasev AV. Potato Virus Y (PVY) Isolates from Solanum betaceum Represent Three Novel Recombinants Within the PVY N Strain Group and Are Unable to Systemically Spread in Potato. PHYTOPATHOLOGY 2020; 110:1588-1596. [PMID: 32370660 DOI: 10.1094/phyto-04-20-0111-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tamarillo, or tree tomato (Solanum betaceum), is a perennial small tree or shrub species cultivated in subtropical areas for fresh fruit and juice production. In Ecuador, tamarillo orchards are affected by several viruses, with one previously identified as potato virus Y (PVY); however, the specific strain composition of PVY in tamarillo was not determined. In 2015 and 2016, eight tamarillo plants exhibiting symptoms of leaf drop, mosaic, and mottled fruit were sampled near Tumbaco and Quito, Ecuador. These tamarillo PVY isolates were able to systemically infect tobacco, Nicotiana benthamiana, naranjilla, and tamarillo. Seven of the eight PVY isolates from tamarillo exhibited N-serotype, while one of the PVY isolates studied, Tam15, had no identifiable serotype. One isolate, Tam17, had N-serotype but produced asymptomatic systemic infection in tobacco. In tamarillo, four tamarillo isolates induced mosaic and slight growth retardation and were unable to systemically infect pepper or potato. Tamarillo, on the other hand, was unable to support systemic infection of PVY isolates belonging to the PVYO and PVYEu-N strains. The whole genomes of eight PVY isolates were sequenced from a series of overlapping RT-PCR fragments. Phylogenetically, tamarillo PVY isolates were found to belong to the large PVYN lineage, in a new tamarillo clade. Recombination analysis revealed that these tamarillo PVY isolates represent at least three novel recombinant types not reported before. The combination of the biological and molecular properties found in these eight PVY isolates suggested the existence of a new tamarillo strain of PVY that may have coevolved with S. betaceum.
Collapse
Affiliation(s)
| | | | | | - Robert A Alvarez-Quinto
- Centro de Investigaciones Biotecnologicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Jose B Ochoa
- Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP), Quito, Ecuador
| | - Diego F Quito-Avila
- Centro de Investigaciones Biotecnologicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral (ESPOL), Guayaquil, Ecuador
| | - Alexander V Karasev
- Department of EPPN, University of Idaho, Moscow, ID
- Bioinformatics and Computational Biology Program, University of Idaho, Moscow, ID
| |
Collapse
|