1
|
Ao X, Shi T, Yang W, Ouyang H, Fan R, Siddiqui JA, Wu C, Lv Z, Deng S, Chen X. Biological characterization and in vitro fungicide screening of a new causal agent of walnut leaf spot in Guizhou Province, China. Front Microbiol 2024; 15:1439487. [PMID: 39450284 PMCID: PMC11500075 DOI: 10.3389/fmicb.2024.1439487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Walnut (Juglans regia L.) is a widely grown nut plant worldwide, including in Guizhou Province, located in southwest China. The high quality and special taste make Guizhou walnuts, particularly those produced in Hezhang County, a "Chinese National Geographical Indication Product" that substantially contributes to the local economy and grower's income. In July 2022, a serious occurrence of leaf spot disease was observed in a walnut plantation area, Shuitang Town, Hezhang County, Guizhou Province, China (27°07'67″N, 104°64'61″E). The causal agent was identified as Didymella segeticola through morphological characterization and amplification and sequencing of the internal transcribed spacer (ITS) region, beta-tubulin (TUB) gene, and glyceraldehyde-3-phosphate dehydrogenase (G3PD) gene. Koch's postulates, including re-isolation and identification, were performed to confirm its pathogenicity on healthy leaves. To our knowledge, this is the first report of D. segeticola causing leaf spot on walnuts worldwide. Further, to determine its biological characteristics, which could be utilized for future disease management, the effects of temperature, light, and carbon and nitrogen resources on mycelial growth, conidia production, and conidia germination and the effects of humidity on conidia germination were studied. The optimum temperature for mycelial growth of representative strain D. segeticola C27 was 20°C. Increasing the light period significantly decreased conidia production and conidia germination. Maltose and beef extract were the best carbon and nitrogen sources, respectively, for the pathogen. Conidia germination was enhanced at 90% humidity. In vitro screening of effective fungicides was conducted. Among the 20 screened fungicides, difenoconazole showed the best inhibition rate, with an EC50 (concentration for 50% of the maximal effect) of 0.0007 μg/mL. Tetramycin also showed sufficient inhibitory effects against D. segeticola, with an EC50 value of 0.0009 μg/mL. Our study provides new insights into the causal agent of walnut leaf spot in Guizhou, China, as well as the first pathogen characteristics and promising candidate fungicides for its management.
Collapse
Affiliation(s)
- Xianxi Ao
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| | - Ting Shi
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| | - Wenjia Yang
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| | - Hao Ouyang
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
| | - Ruidong Fan
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
| | - Junaid Ali Siddiqui
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
| | - Chaoming Wu
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| | - Zhoule Lv
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| | - Shasha Deng
- Key Laboratory of Surveillance and Management of Invasive Alien Species in Guizhou Education Department, College of Biological and Environmental Engineering, Guiyang University, Guiyang, China
| | - Xiaoyulong Chen
- College of Agriculture/College of Life Sciences, Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Karim MM, Usman HM, Tan Q, Hu JJ, Fan F, Hussain R, Luo CX. Fungicide resistance in Colletotrichum fructicola and Colletotrichum siamense causing peach anthracnose in China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106006. [PMID: 39084801 DOI: 10.1016/j.pestbp.2024.106006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/24/2024] [Accepted: 06/29/2024] [Indexed: 08/02/2024]
Abstract
Peach is one of the popular and economically important fruit crops in China. Peach cultivation is hampered due to attacks of anthracnose disease, causing significant economic losses. Colletotrichum fructicola and Colletotrichum siamense belong to the Colletotrichum gloeosporioides species complex and are considered major pathogens of peach anthracnose. Application of different groups of fungicides is a routine approach for controlling this disease. However, fungicide resistance is a significant drawback in managing peach anthracnose nowadays. In this study, 39 isolates of C. fructicola and 41 isolates of C. siamense were collected from different locations in various provinces in China. The sensitivity of C. fructicola and C. siamense to some commonly used fungicides, i.e., carbendazim, iprodione, fluopyram, and propiconazole, was determined. All the isolates of C. fructicola collected from Guangdong province showed high resistance to carbendazim, whereas isolates collected from Guizhou province were sensitive. In C. siamense, isolates collected from Hebei province showed moderate resistance, while those from Shandong province were sensitive to carbendazim. On the other hand, all the isolates of C. fructicola and C. siamense showed high resistance to the dicarboximide (DCF) fungicide iprodione and succinate dehydrogenase inhibitor (SDHI) fungicide fluopyram. However, they are all sensitive to the demethylation inhibitor (DMI) fungicide propiconazole. Positive cross-resistance was observed between carbendazim and benomyl as they are members of the same methyl benzimidazole carbamate (MBC) group. While no correlation of sensitivity was observed between different groups of fungicides. No significant differences were found in each fitness parameter between carbendazim-resistant and sensitive isolates in both species. Molecular characterization of the β-tubulin 2 (TUB2) gene revealed that in C. fructicola, the E198A point mutation was the determinant for the high resistance to carbendazim, while the F200Y point mutation was linked with the moderate resistance to carbendazim in C. siamense. Based on the results of this study, DMI fungicides, e.g., propiconazole or prochloraz could be used to control peach anthracnose, especially at locations where the pathogens have already developed the resistance to carbendazim and other fungicides.
Collapse
Affiliation(s)
- Mohammad Mazharul Karim
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; Plant Pathology Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Hafiz Muhammad Usman
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Qin Tan
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia-Jie Hu
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Fan
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Rafakat Hussain
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao-Xi Luo
- National Key Laboratory for Germplasm Innovation Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Cosseboom SD, Hu M. Utilizing Disease Prediction Models to Time Fungicide Applications for Controlling Ripe Rot, Caused by Colletotrichum spp., in Maryland Vineyards. PLANT DISEASE 2024; 108:1526-1532. [PMID: 38105460 DOI: 10.1094/pdis-10-23-2114-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Two previously published ripe rot prediction models, DF2-NN and GH2-DT, were evaluated for fungicide application timing efficacy in Maryland vineyards. Both models utilize leaf wetness duration (LWD), temperature, and grape cluster phenological stages as model parameters. These three parameters were tracked throughout the 2021 to 2023 seasons in three vineyards. The fungicide efficacy trials started at the veraison phenological stage and included a nontreated control, a 12-day interval treatment, and two model-triggered treatments when risk predicted by the models crossed a threshold. The severity of ripe rot on the clusters in each treatment was assessed when the fruit were mature. Ripe rot severity in the nontreated controls was higher during seasons with more LWD and more precipitation. Days in which the models were triggered by the environmental conditions primarily coincided with precipitation events and lengthy LWDs. The model-triggered treatments never had significantly higher ripe rot severity than the 12-day interval treatment but had significantly lower severities than the nontreated control in most trials which had high ripe rot pressure. Furthermore, the model-triggered treatments resulted in fewer fungicide applications than the 12-day interval treatment on average. The DF2-NN model appeared to be more accurate and useful for ripe rot prediction and treatment than the GH2-DT model because it triggered fewer fungicide applications while reducing ripe rot. This model may be useful for improving or maintaining ripe rot control with fewer fungicide inputs, which may be beneficial for the environment and the reduction of fungicide resistance selection.
Collapse
Affiliation(s)
- Scott D Cosseboom
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742
| | - Mengjun Hu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742
| |
Collapse
|
4
|
Zhang A, Li L, Xie X, Chai A, Shi Y, Xing D, Yu Z, Li B. Identification and Genetic Diversity Analysis of the Pathogen of Anthracnose of Pepper in Guizhou. PLANTS (BASEL, SWITZERLAND) 2024; 13:728. [PMID: 38475575 DOI: 10.3390/plants13050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024]
Abstract
Anthracnose of pepper is a significant disease caused by Colletotrichum spp. In 2017 and 2021, 296 isolates were obtained from 69 disease samples. Through morphological analysis, pathogenicity detection, and polygenic phylogenetic analysis, the above strains were attributed to 10 species: C. scovillei, C. fructicola, C. karstii, C. truncatum, C. gloeosporioides, C. kahawae, C. boninense, C. nymphaeae, C. plurivorum, and C. nigrum. C. scovillei had the most strains (150), accounting for 51.02% of the total isolates; C. fructicola came in second (72 isolates), accounting for 24.49%. Regarding regional distribution, Zunyi City has the highest concentration of strains-92 strains total, or 34.18%-across seven species. Notably, this investigation showed that C. nymphaeae infected pepper fruit for the first time in China. Genetic diversity analysis showed that C. fructicola could be divided into seven haplotypes, and the population in each region had apparent genetic differentiation. However, the genetic distance between each population was not significantly related to geographical distance. Neutral detection and nucleotide mismatch analysis showed that C. fructicola might have undergone population expansion.
Collapse
Affiliation(s)
- Aimin Zhang
- Plant Protection College, Shenyang Agricultural University, Shenyang 110866, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Pepper, Guizhou Academy of Agriculture Science, Guiyang 550025, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dan Xing
- Institute of Pepper, Guizhou Academy of Agriculture Science, Guiyang 550025, China
| | - Zhiguo Yu
- Plant Protection College, Shenyang Agricultural University, Shenyang 110866, China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
Jiang C, Zhou L, Zhao Q, Wang M, Shen S, Zhao T, Cui K, He L. Selection and Validation of Reference Genes for Reverse-Transcription Quantitative PCR Analysis in Sclerotium rolfsii. Int J Mol Sci 2023; 24:15198. [PMID: 37894879 PMCID: PMC10607518 DOI: 10.3390/ijms242015198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Reference genes are important for the accuracy of gene expression profiles using reverse-transcription quantitative PCR (RT-qPCR). However, there are no available reference genes reported for Sclerotium rolfsii; it actually has a pretty diverse and wide host range. In this study, seven candidate reference genes (UBC, β-TUB, 28S, 18S, PGK, EF1α and GAPDH) were validated for their expression stability in S. rolfsii under conditions of different developmental stages, populations, fungicide treatments, photoperiods and pHs. Four algorithm programs (geNorm, Normfinder, Bestkeeper and ΔCt) were used to evaluate the gene expression stability, and RefFinder was used to integrate the ranking results of four programs. Two reference genes were recommended by RefFinder for RT-qPCR normalization in S. rolfsii. The suitable reference genes were GAPDH and UBC across developmental stages, PGK and UBC across populations, GAPDH and PGK across fungicide treatments, EF1α and PGK across photoperiods, β-TUB and EF1α across pHs and PGK and GAPDH across all samples. Four target genes (atrB, PacC, WC1 and CAT) were selected for the validation of the suitability of selected reference genes. However, using one or two reference genes in combination to normalize the expression of target genes showed no significant difference in S. rolfsii. In short, this study provided reliable reference genes for studying the expression and function of genes in S. rolfsii.
Collapse
Affiliation(s)
- Chaofan Jiang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Qingchen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengke Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Sirui Shen
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Te Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Kaidi Cui
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Leiming He
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory of Creation and Application of New Pesticide, Henan Agricultural University, No. 218, Ping’an Avenue, Zhengzhou 450046, China
- Henan Research Center of Green Pesticide Engineering and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
6
|
Zhang J, Hu H, Li S, Shang W, Jiang J, Xu X, Liu D, Hu X. Diversity of Fungal Endophytes in American Ginseng Seeds. PLANT DISEASE 2023; 107:2784-2791. [PMID: 36802296 DOI: 10.1094/pdis-10-22-2312-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Seeds play a critical role in the production of American ginseng. Seeds are also one of the most important media for the long-distant dissemination and the crucial way for pathogen survival. Figuring out the pathogens carried by seeds is the basis for effective management of seedborne diseases. In this paper, we tested the fungi carried by the seeds of American ginseng from the main production areas of China using incubation and highly throughput sequencing methods. The seed-carried rates of fungi in Liuba, Fusong, Rongcheng, and Wendeng were 100, 93.8, 75.2, and 45.7%, respectively. Sixty-seven fungal species, which belonged to 28 genera, were isolated from the seeds. Eleven pathogens were identified from the seed samples. Among the pathogens, Fusarium spp. were found in all of the seed samples. The relative abundance of Fusarium spp. in the kernel was higher than that in the shell. Alpha index showed that the fungal diversity between seed shell and kernel differed significantly. Nonmetric multidimensional scaling analysis revealed that the samples from different provinces and between seed shell and kernel were distinctly separated. The inhibition rates of four fungicides to seed-carried fungi of American ginseng were 71.83% for Tebuconazole SC, 46.67% for Azoxystrobin SC, 46.08% for Fludioxonil WP, and 11.11% for Phenamacril SC. Fludioxonil, a conventional seed treatment agent, showed a low inhibitory effect on seed-carried fungi of American ginseng.
Collapse
Affiliation(s)
- Jiguang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Hongyan Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Shuaihui Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Wenjing Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jinlong Jiang
- Shaanxi Key Laboratory of Bio-Resources, School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Xiangming Xu
- Pest and Pathogen Ecology, NIAB East Malling, West Malling, Kent ME19 6BJ, U.K
| | - Deming Liu
- Liuba County Jiashisen Chinese Medicine Development Co. Ltd., China
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
7
|
Li T, Li N, Lei Z, Zhang C. Sensitivity and resistance risk of Botryosphaeria dothidea causing Chinese hickory trunk canker to fludioxonil. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105500. [PMID: 37532358 DOI: 10.1016/j.pestbp.2023.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 08/04/2023]
Abstract
Hickory trunk canker (HTC), primarily caused by Botryosphaeria dothidea, is an aggravating disease that threatens an important regional economic tree species of Chinese hickory and few information is available in the control of this disease. Here, the sensitivity of 93 isolates to fludioxonil and the resistance risk were investigated. All the isolates tested were sensitive to fludioxonil and the EC50 ranged from 0.0028 to 0.0569 μg/mL. The tamed fludioxonil-resistant mutants remained highly resistant to fludioxonil even after 10 consecutive transfers to fludioxonil-free PDA plates. As for fitness penalty, the fludioxonil-resistant mutants demonstrated a reduction in conidia production and virulence as well as increased sensitivity to high osmotic stress. While, variations in mycelial growth and responses to SDS and H2O2 were not detected in all the resistant mutants. In addition, the resistant mutants demonstrated positive cross-resistance to iprodione but not to fungicides of other modes of action. Sequential analysis of BdNik1 showed that premature stop codon occurred in all the resistant mutants despite of point mutation (BD16-22R9 and BD16-22R20) or frameshift mutation (BD16-22R8, BD16-22R11 and BD16-22R18). Our study suggested that fludioxonil exhibited excellent inhibition activity on mycelial growth of B. dothidea in vitro, the resistance risk of B. dothidea to fludioxonil should be low to moderate and fludioxonil would be a nice candidate in controlling HTC caused by B. dothidea.
Collapse
Affiliation(s)
- Tao Li
- Department of Plant Protection, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Na Li
- Department of Plant Protection, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Ziyang Lei
- Department of Plant Protection, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Chuanqing Zhang
- Department of Plant Protection, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
8
|
Bao Z, Wang D, Zhao Y, Luo T, Yang G, Jin Y. Insights into enhanced toxic effects by the binary mixture of carbendazim and procymidone on hepatic lipid metabolism in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163648. [PMID: 37094686 DOI: 10.1016/j.scitotenv.2023.163648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Carbendazim (CBZ) and procymidone (PRO) are two widely used fungicides in agriculture. However, there are still gaps in knowledge regarding about the potential hazards of joint exposure to CBZ and PRO in animals. Here, 6-week-old ICR mice were exposed to CBZ, PRO and CBZ + PRO for 30 days, and metabolomics were performed to discover the mechanism by which the mixture enhanced the effects on lipid metabolism. Co-exposure to CBZ + PRO elevated the body weights, relative liver weights and relative epididymis fat weights, but not in the single exposure groups. Molecular docking analysis suggested that CBZ and PRO combined with peroxisome proliferator-activated receptor (PPARγ) at the same amino acid site as the agonist rosiglitazone. The RT-qPCR and WB results demonstrated that the levels of PPARγ were higher in the co-exposure group than in the single exposure groups. In addition, hundreds of differential metabolites were discovered by metabolomics and enriched in different pathways, such as pentose phosphate pathway and purine metabolism. A unique effect, a decrease in glucose-6-phosphate (G6P) that promoted more NADPH production, was observed in the CBZ + PRO group. These results demonstrated that exposure to CBZ + PRO caused more serious lipid metabolism disorder in the liver than exposure to a single fungicide, which could provide some new insight for the toxic effects after fungicides joint exposure.
Collapse
Affiliation(s)
- Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yao Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Guilin Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Xianghu Laboratory, Hangzhou, 311231, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
9
|
Rebello CS, Baggio JS, Forcelini BB, Peres NA. Sensitivity of Colletotrichum acutatum Species Complex from Strawberry to Fungicide Alternatives to Quinone-Outside Inhibitors. PLANT DISEASE 2022; 106:2053-2059. [PMID: 35285270 DOI: 10.1094/pdis-09-21-1934-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Colletotrichum acutatum is a species complex that causes anthracnose fruit rot and root necrosis on strawberry. The major and minor species within the complex that affect strawberry production are C. nymphaeae and C. fioriniae, respectively. The disease can significantly reduce yield under conducive weather, and its management has greatly relied on quinone-outside inhibitor fungicides (QoI). However, due to the emergence of resistant isolates, such products are no longer effective. Therefore, alternative fungicides were investigated. C. nymphaeae and C. fioriniae isolates were collected from multiple strawberry fields in the United States from 1995 to 2017. The sensitivity of benzovindiflupyr, penthiopyrad, pydiflumetofen, fluazinam, fludioxonil, and cyprodinil was assessed by in vitro and in vivo assays. Both Colletotrichum species were sensitive to benzovindiflupyr, penthiopyrad, fluazinam, and fludioxonil based on mycelial growth assays. Interestingly, of these products, only penthiopyrad did not inhibit conidial germination at 100 µg/ml. For cyprodinil, C. nymphaeae was sensitive based on the mycelial growth, whereas C. fioriniae was not inhibited. Neither species was inhibited by pydiflumetofen in mycelial growth, conidial germination, nor detached fruit assays. The prepackaged mixtures fludioxonil + cyprodinil and fludioxonil + pydiflumetofen were effective in a field trial; however, their use should be carefully considered because of the lack of efficacy of one of the compounds in the mixture. This study sheds light on the potential registration of products alternative to QoIs, such as benzovindiflupyr and fluazinam, which could improve the management of strawberry anthracnose.
Collapse
Affiliation(s)
- Carolina S Rebello
- Department of Plant Pathology, University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
| | - Juliana S Baggio
- Department of Plant Pathology, University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
- Syngenta Crop Protection, Vero Beach, FL 32967
| | - Bruna B Forcelini
- Department of Plant Pathology, University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
- Corteva Agriscience, Indianapolis, IN 46268
| | - Natalia A Peres
- Department of Plant Pathology, University of Florida, Gulf Coast Research and Education Center, Wimauma, FL 33598
| |
Collapse
|
10
|
Tan Q, Schnabel G, Chaisiri C, Yin LF, Yin WX, Luo CX. Colletotrichum Species Associated with Peaches in China. J Fungi (Basel) 2022; 8:313. [PMID: 35330315 PMCID: PMC8950351 DOI: 10.3390/jof8030313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Colletotrichum is regarded as one of the 10 most important genera of plant pathogens in the world. It causes diseases in a wide range of economically important plants, including peaches. China is the largest producer of peaches in the world but little is known about the Colletotrichum spp. affecting the crop. In 2017 and 2018, a total of 286 Colletotrichum isolates were isolated from symptomatic fruit and leaves in 11 peach production provinces of China. Based on multilocus phylogenetic analyses (ITS, ACT, CAL, CHS-1, GAPDH, TUB2, and HIS3) and morphological characterization, the isolates were identified to be C. nymphaeae, C. fioriniae, and C. godetiae of the C. acutatum species complex, C. fructicola and C. siamense of the C. gloeosporioides species complex, C. karsti of the C. boninense species complex, and one newly identified species, C. folicola sp. nov. This study is the first report of C. karsti and C. godetiae in peaches, and the first report of C. nymphaeae, C. fioriniae, C. fructicola, and C. siamense in peaches in China. C. nymphaeae is the most prevalent species of Colletotrichum in peaches in China, which may be the result of fungicide selection. Pathogenicity tests revealed that all species found in this study were pathogenic on both the leaves and fruit of peaches, except for C. folicola, which only infected the leaves. The present study substantially improves our understanding of the causal agents of anthracnose on peaches in China.
Collapse
Affiliation(s)
- Qin Tan
- Key Lab of Horticultural Plant Biology, Ministry of Education, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.T.); (C.C.)
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Chingchai Chaisiri
- Key Lab of Horticultural Plant Biology, Ministry of Education, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.T.); (C.C.)
| | - Liang-Fen Yin
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-F.Y.); (W.-X.Y.)
| | - Wei-Xiao Yin
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-F.Y.); (W.-X.Y.)
| | - Chao-Xi Luo
- Key Lab of Horticultural Plant Biology, Ministry of Education, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.T.); (C.C.)
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.-F.Y.); (W.-X.Y.)
| |
Collapse
|