1
|
Garello M, Piombo E, Buonsenso F, Prencipe S, Valente S, Meloni GR, Marcet-Houben M, Gabaldón T, Spadaro D. Several secondary metabolite gene clusters in the genomes of ten Penicillium spp. raise the risk of multiple mycotoxin occurrence in chestnuts. Food Microbiol 2024; 122:104532. [PMID: 38839238 DOI: 10.1016/j.fm.2024.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/14/2024] [Accepted: 04/02/2024] [Indexed: 06/07/2024]
Abstract
Penicillium spp. produce a great variety of secondary metabolites, including several mycotoxins, on food substrates. Chestnuts represent a favorable substrate for Penicillium spp. development. In this study, the genomes of ten Penicillium species, virulent on chestnuts, were sequenced and annotated: P. bialowiezense. P. pancosmium, P. manginii, P. discolor, P. crustosum, P. palitans, P. viridicatum, P. glandicola, P. taurinense and P. terrarumae. Assembly size ranges from 27.5 to 36.8 Mb and the number of encoded genes ranges from 9,867 to 12,520. The total number of predicted biosynthetic gene clusters (BGCs) in the ten species is 551. The most represented families of BGCs are non ribosomal peptide synthase (191) and polyketide synthase (175), followed by terpene synthases (87). Genome-wide collections of gene phylogenies (phylomes) were reconstructed for each of the newly sequenced Penicillium species allowing for the prediction of orthologous relationships among our species, as well as other 20 annotated Penicillium species available in the public domain. We investigated in silico the presence of BGCs for 10 secondary metabolites, including 5 mycotoxins, whose production was validated in vivo through chemical analyses. Among the clusters present in this set of species we found andrastin A and its related cluster atlantinone A, mycophenolic acid, patulin, penitrem A and the cluster responsible for the synthesis of roquefortine C/glandicoline A/glandicoline B/meleagrin. We confirmed the presence of these clusters in several of the Penicillium species conforming our dataset and verified their capacity to synthesize them in a chestnut-based medium with chemical analysis. Interestingly, we identified mycotoxin clusters in some species for the first time, such as the andrastin A cluster in P. flavigenum and P. taurinense, and the roquefortine C cluster in P. nalgiovense and P. taurinense. Chestnuts proved to be an optimal substrate for species of Penicillium with different mycotoxigenic potential, opening the door to risks related to the occurrence of multiple mycotoxins in the same food matrix.
Collapse
Affiliation(s)
- Marco Garello
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Almas Allé 5, 75651, Uppsala, Sweden
| | - Fabio Buonsenso
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Simona Prencipe
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Silvia Valente
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Giovanna Roberta Meloni
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain; CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain.
| | - Davide Spadaro
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo Braccini 2, 10095, Grugliasco, TO, Italy; AGROINNOVA - Interdepartmental Centre for the Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, 10095, Grugliasco, TO, Italy.
| |
Collapse
|
2
|
Ormanli E, Amca Uluturk B, Bozdogan N, Bayraktar O, Tavman S, Kumcuoglu S. Development of a novel, sustainable, cellulose-based food packaging material and its application for pears. Food Chem 2023; 429:136719. [PMID: 37454622 DOI: 10.1016/j.foodchem.2023.136719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
This study aimed to develop a cellulose-based active food packaging material using paper, a biodegradable, sustainable, recyclable, renewable, and relatively low-cost material. For electrospray coating, fulvic acid (FA), which has antioxidant and antimicrobial properties, and sericin (S) were used as an active agent and a carrier medium, respectively. Solutions prepared at various concentrations and ratios of FA and S were analyzed, the properties of the active packaging material were examined, and the effect on the quality of pears was studied. The optimum conditions of electrospraying for minimum droplet size and maximum antibacterial effect were 0.8 g/mL concentration of solutions, 1:1 FA:S ratio, 20 kV voltage, 0.75 mL/h flow rate, and 23 cm collector-needle tip distance. FA had static, lethal, and inhibitory effects on Pseudomonas syringae and P. digitatum, the common pathogenic microorganisms on pears. The antioxidant activity of FA was higher than that of S (872.96 mM vs. 239.36 mM). At the end of the 90-day storage period, pears stored in the active packaging material at 7 °C and 90% RH showed better preserved color and texture, matured later, had a lower antimicrobial load, and were more appreciated in sensory evaluation than other samples.
Collapse
Affiliation(s)
- Ebru Ormanli
- Department of Food Engineering, Graduate School of Natural and Applied Sciences, Ege University, 35100 İzmir, Türkiye
| | - Buket Amca Uluturk
- Department of Food Engineering, Graduate School of Natural and Applied Sciences, Ege University, 35100 İzmir, Türkiye
| | - Neslihan Bozdogan
- Department of Food Engineering, Graduate School of Natural and Applied Sciences, Ege University, 35100 İzmir, Türkiye
| | - Oguz Bayraktar
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 İzmir, Türkiye
| | - Sebnem Tavman
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100 İzmir, Türkiye
| | - Seher Kumcuoglu
- Department of Food Engineering, Faculty of Engineering, Ege University, 35100 İzmir, Türkiye.
| |
Collapse
|
3
|
Bartholomew HP, Luciano-Rosario D, Bradshaw MJ, Gaskins VL, Peng H, Fonseca JM, Jurick WM. Avirulent Isolates of Penicillium chrysogenum to Control the Blue Mold of Apple Caused by P. expansum. Microorganisms 2023; 11:2792. [PMID: 38004803 PMCID: PMC10673114 DOI: 10.3390/microorganisms11112792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Blue mold is an economically significant postharvest disease of pome fruit that is primarily caused by Penicillium expansum. To manage this disease and sustain product quality, novel decay intervention strategies are needed that also maintain long-term efficacy. Biocontrol organisms and natural products are promising tools for managing postharvest diseases. Here, two Penicillium chrysogenum isolates, 404 and 413, were investigated as potential biocontrol agents against P. expansum in apple. Notably, 404 and 413 were non-pathogenic in apple, yet they grew vigorously in vitro when compared to the highly aggressive P. expansum R19 and Pe21 isolates. Whole-genome sequencing and species-specific barcoding identified both strains as P. chrysogenum. Each P. chrysogenum strain was inoculated in apple with the subsequent co-inoculation of R19 or Pe21 simultaneously, 3, or 7 days after prior inoculation with 404 or 413. The co-inoculation of these isolates showed reduced decay incidence and severity, with the most significant reduction from the longer establishment of P. chrysogenum. In vitro growth showed no antagonism between species, further suggesting competitive niche colonization as the mode of action for decay reduction. Both P. chrysogenum isolates had incomplete patulin gene clusters but tolerated patulin treatment. Finally, hygromycin resistance was observed for both P. chrysogenum isolates, yet they are not multiresistant to apple postharvest fungicides. Overall, we demonstrate the translative potential of P. chrysogenum to serve as an effective biocontrol agent against blue mold decay in apples, pending practical optimization and formulation.
Collapse
Affiliation(s)
- Holly P. Bartholomew
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Dianiris Luciano-Rosario
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Michael J. Bradshaw
- Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Verneta L. Gaskins
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Hui Peng
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Jorge M. Fonseca
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Wayne M. Jurick
- Food Quality Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| |
Collapse
|
4
|
Andres SE, Emery NJ, Rymer PD, Powell JR. Soil chemistry and fungal communities are associated with dieback in an Endangered Australian shrub. PLANT AND SOIL 2023; 483:47-70. [PMID: 36211803 PMCID: PMC9525234 DOI: 10.1007/s11104-022-05724-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/23/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Field surveys across known populations of the Endangered Persoonia hirsuta (Proteaceae) in 2019 suggested the soil environment may be associated with dieback in this species. To explore how characteristics of the soil environment (e.g., pathogens, nutrients, soil microbes) relate to dieback, a soil bioassay (Experiment 1) was conducted using field soils from two dieback effected P. hirsuta populations. Additionally, a nitrogen addition experiment (Experiment 2) was conducted to explore how the addition of soil nitrogen impacts dieback. METHODS The field soils were baited for pathogens, and soil physiochemical and microbial community characteristics were assessed and related to dieback among plants in the field and nursery-grown plants inoculated with the same field soils. Roots from inoculated plants were harvested to confirm the presence of soil pathogens and root-associated endophytes. Using these isolates, a dual culture antagonism assay was performed to examine competition among these microbes and identify candidate pathogens or pathogen antagonists. RESULTS Dieback among plants in the field and Experiment 1 was associated with soil physiochemical properties (nitrogen and potassium), and soil microbes were identified as significant indicators of healthy and dieback-affected plants. Plants in Experiment 2 exhibited greater dieback when treated with elevated nitrogen. Additionally, post-harvest culturing identified fungi and other soil pathogens, some of which exhibited antagonistic behavior. CONCLUSION This study identified candidate fungi and soil physiochemical properties associated with observed dieback and dieback resistance in an Endangered shrub and provides groundwork for further exploring what drives dieback and how it can be managed to promote the conservation of wild populations. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11104-022-05724-7.
Collapse
Affiliation(s)
- Samantha E. Andres
- Hawkesbury Institute for the Environment, Richmond, New South Wales 2753 Australia
| | - Nathan J. Emery
- The Australian PlantBank, Australian Botanic Garden, Australian Institute of Botanical Science, Mount Annan, New South Wales 2567 Australia
| | - Paul D. Rymer
- Hawkesbury Institute for the Environment, Richmond, New South Wales 2753 Australia
| | - Jeff R. Powell
- Hawkesbury Institute for the Environment, Richmond, New South Wales 2753 Australia
| |
Collapse
|
5
|
Scafati V, Troilo F, Ponziani S, Giovannoni M, Scortica A, Pontiggia D, Angelucci F, Di Matteo A, Mattei B, Benedetti M. Characterization of two 1,3-β-glucan-modifying enzymes from Penicillium sumatraense reveals new insights into 1,3-β-glucan metabolism of fungal saprotrophs. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:138. [PMID: 36510318 PMCID: PMC9745967 DOI: 10.1186/s13068-022-02233-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND 1,3-β-glucan is a polysaccharide widely distributed in the cell wall of several phylogenetically distant organisms, such as bacteria, fungi, plants and microalgae. The presence of highly active 1,3-β-glucanases in fungi evokes the biological question on how these organisms can efficiently metabolize exogenous sources of 1,3-β-glucan without incurring in autolysis. RESULTS To elucidate the molecular mechanisms at the basis of 1,3-β-glucan metabolism in fungal saprotrophs, the putative exo-1,3-β-glucanase G9376 and a truncated form of the putative glucan endo-1,3-β-glucosidase (ΔG7048) from Penicillium sumatraense AQ67100 were heterologously expressed in Pichia pastoris and characterized both in terms of activity and structure. G9376 efficiently converted laminarin and 1,3-β-glucan oligomers into glucose by acting as an exo-glycosidase, whereas G7048 displayed a 1,3-β-transglucanase/branching activity toward 1,3-β-glucan oligomers with a degree of polymerization higher than 5, making these oligomers more recalcitrant to the hydrolysis acted by exo-1,3-β-glucanase G9376. The X-ray crystallographic structure of the catalytic domain of G7048, solved at 1.9 Å of resolution, consists of a (β/α)8 TIM-barrel fold characteristic of all the GH17 family members. The catalytic site is in a V-shaped cleft containing the two conserved catalytic glutamic residues. Molecular features compatible with the activity of G7048 as 1,3-β-transglucanase are discussed. CONCLUSIONS The antagonizing activity between ΔG7048 and G9376 indicates how opportunistic fungi belonging to Penicillium genus can feed on substrates similar for composition and structure to their own cell wall without incurring in a self-deleterious autohydrolysis.
Collapse
Affiliation(s)
- Valentina Scafati
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Francesca Troilo
- grid.5326.20000 0001 1940 4177Institute of Molecular Biology and Pathology, CNR, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Sara Ponziani
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Moira Giovannoni
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Anna Scortica
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Daniela Pontiggia
- grid.7841.aDepartment of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Angelucci
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Adele Di Matteo
- grid.5326.20000 0001 1940 4177Institute of Molecular Biology and Pathology, CNR, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Benedetta Mattei
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Manuel Benedetti
- grid.158820.60000 0004 1757 2611Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
6
|
Orfali R, Perveen S, Peng J, Alqahtani AS, Nasr FA, Ahmed MZ, Luciano P, Chianese G, Al-Taweel AM, Taglialatela-Scafati O. Penicillactonin and preaustinoid C, lactone-containing metabolites from a hot spring sediment Penicillium sp. Fitoterapia 2022; 163:105330. [DOI: 10.1016/j.fitote.2022.105330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022]
|
7
|
Cottrell MT. A Search for Diastatic Enzymes Endogenous to Humulus lupulus and Produced by Microbes Associated with Pellet Hops Driving “Hop Creep” of Dry Hopped Beer. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2022. [DOI: 10.1080/03610470.2022.2084327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Lombardi SJ, Pannella G, Tremonte P, Mercurio I, Vergalito F, Caturano C, Maiuro L, Iorizzo M, Succi M, Sorrentino E, Coppola R. Fungi Occurrence in Ready-to-Eat Hazelnuts ( Corylus avellana) From Different Boreal Hemisphere Areas. Front Microbiol 2022; 13:900876. [PMID: 35558107 PMCID: PMC9087596 DOI: 10.3389/fmicb.2022.900876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
The present study evaluated the fungal contamination of ready-to-eat dried hazelnuts considering for the first time the application of the same condition drying process of several hazelnut cultivars from different boreal hemisphere areas. Fifty lots of hazelnuts (Corylus avellana), belonging to eight cultivars from seven regions in four countries, were analyzed for fungal microbiota, describing both load levels and species diversity. For this purpose, a polyphasic approach consisting of morphological examination (optical and scanning electron microscope observation) and molecular characterization [PCR-DGGE analysis and sequence analyses of the internal transcribed spacer (ITS)] was performed. The results show that different fungal populations occur in dried hazelnuts regardless of their geographical area of production. Although some varieties appear to be relatively less susceptible, species related to Aspergillus, such as A. commune and A. ochraceus, Penicillium, including P. commune, P. solitum, and P. expansum, and Rhizopus, for instance, R. stolonifer and R. oryzae, have generally been found. A related character "hazelnut cultivar-fungi" was found for species related to the genera Trichoderma and Fusarium, including F. oxyxporum, F. solani, and F. falciforme. All 14 species found are known to host pathogenic strains. Therefore, their presence in a ready-to-eat product, such as dried hazelnuts, can pose a real danger to the consumer. Based on these considerations, the development of new protective strategies seems highly desirable. The species-level description of the contaminating fungal community acquired through this study is the starting point for the development of tailor-made protective biotechnologies.
Collapse
Affiliation(s)
| | | | - Patrizio Tremonte
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Campobasso, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tilahun S, Alemu M, Tsegaw M, Berhane N. Morphological and Molecular Diversity of Ginger ( Zingiber officinale Roscoe) Pathogenic Fungi in Chilga District, North Gondar, Ethiopia. FRONTIERS IN FUNGAL BIOLOGY 2022; 2:765737. [PMID: 37744090 PMCID: PMC10512325 DOI: 10.3389/ffunb.2021.765737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/07/2021] [Indexed: 09/26/2023]
Abstract
Ginger diseases caused by fungal pathogens have become one of the most serious problems causing reduced production around the world. It has also caused a major problem among farmers in different parts of Ethiopia resulting in a huge decline in rhizome yield. However, the exact causative agents of this disease have not been identified in the state. Although there are few studies related to pathogenic fungus identification, molecular level identification of fungal pathogen was not done in the area. Therefore, this study was undertaken to isolate and characterized the fungal causative agent of ginger disease from the diseased plant and the soil samples collected around the diseased plant from Chilga district, Gondar, Ethiopia. Samples from infected ginger plants and the soil around the infected plant were collected. Culturing and purification of isolates were made using Potato Dextrose Agar supplemented with antibacterial agent chloramphenicol. The morphological characterization was done by structural identification of the isolates under the microscope using lactophenol cotton blue stains. Isolated fungi were cultured and molecular identification was done using an internal transcribed spacer (ITS) of ribosomal DNA (rDNA). A total of 15 fungal morphotypes including 11 Aspergillus spp. (73.3%), 2 Penicillium spp. (13.3%), and single uncultured fungus clone S23 were isolated from the samples representing all the plant organs and the soil. Aspergillus spp. (73.3%) was the most common and seems to be the major causative agent. To the best of our knowledge, this is the first report of ginger pathogenic fungi in Ethiopia identified using ITS rDNA molecular techniques. This study will lay foundation for the development of management strategies for fungal diseases infecting ginger.
Collapse
Affiliation(s)
- Sefinew Tilahun
- Department of Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Marye Alemu
- Department of Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Mesfin Tsegaw
- Department of Agricultural Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| | - Nega Berhane
- Department of Medical Biotechnology, Institute of Biotechnology, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
10
|
Žebeljan A, Duduk N, Vučković N, Jurick WM, Vico I. Incidence, Speciation, and Morpho-Genetic Diversity of Penicillium spp. Causing Blue Mold of Stored Pome Fruits in Serbia. J Fungi (Basel) 2021; 7:jof7121019. [PMID: 34947001 PMCID: PMC8709240 DOI: 10.3390/jof7121019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
Blue mold, caused by Penicillium spp., is one of the most economically important postharvest diseases of pome fruits, globally. Pome fruits, in particular apple, is the most widely grown pome fruit in Serbia, and the distribution of Penicillium spp. responsible for postharvest decay is unknown. A two-year survey was conducted in 2014 and 2015, where four pome fruits (apple, pear, quince, and medlar) with blue mold symptoms were collected from 20 storage locations throughout Serbia. Detailed morphological characterization, analysis of virulence in three apple cultivars, and multilocus phylogeny revealed three main Penicillium spp. in order of abundance: P. expansum, P. crustosum, and P. solitum. Interestingly, P. expansum split into two distinct clades with strong statistical support that coincided with several morphological observations. Findings from this study are significant and showed previously undocumented diversity in blue mold fungi responsible for postharvest decay including the first finding of P. crustosum, and P. solitum as postharvest pathogens of quince and P. crustosum of medlar fruit in the world, and P. expansum of quince in Serbia. Data from this study provide timely information regarding phenotypic, morphological and genotypic plasticity in P. expansum that will impact the design of species-specific detection tools and guide the development of blue mold management strategies.
Collapse
Affiliation(s)
- Aleksandra Žebeljan
- Faculty of Agriculture, University of Belgrade, 11000 Belgrade, Serbia; (A.Ž.); (N.V.); (I.V.)
| | - Nataša Duduk
- Faculty of Agriculture, University of Belgrade, 11000 Belgrade, Serbia; (A.Ž.); (N.V.); (I.V.)
- Correspondence: ; Tel.: +1-381-11-441-3555
| | - Nina Vučković
- Faculty of Agriculture, University of Belgrade, 11000 Belgrade, Serbia; (A.Ž.); (N.V.); (I.V.)
| | - Wayne M. Jurick
- USDA-ARS, Food Quality Laboratory, Beltsville, MD 20705, USA;
| | - Ivana Vico
- Faculty of Agriculture, University of Belgrade, 11000 Belgrade, Serbia; (A.Ž.); (N.V.); (I.V.)
| |
Collapse
|
11
|
Mango Endophyte and Epiphyte Microbiome Composition during Fruit Development and Post-Harvest Stages. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The influence of the development stage and post-harvest handling on the microbial composition of mango fruit plays a central role in fruit health. Hence, the composition of fungal and bacterial microbiota on the anthoplane, fructoplane, stems and stem-end pulp of mango during fruit development and post-harvest handling were determined using next-generation sequencing of the internal transcribed spacer and 16S rRNA regions. At full bloom, the inflorescence had the richest fungal and bacterial communities. The young developing fruit exhibited lower fungal richness and diversities in comparison to the intermediate and fully developed fruit stages on the fructoplane. At the post-harvest stage, lower fungal and bacterial diversities were observed following prochloraz treatment both on the fructoplane and stem-end pulp. Ascomycota (52.8%) and Basidiomycota (43.2%) were the most dominant fungal phyla, while Penicillium, Botryosphaeria, Alternaria and Mucor were detected as the known post-harvest decay-causing fungal genera. The Cyanobacteria (35.6%), Firmicutes (26.1%) and Proteobacteria (23.1%) were the most dominant bacterial phyla. Changes in the presence of Bacillus subtilis following post-harvest interventions such as prochloraz suggested a non-target effect of the fungicide. The present study, therefore, provides the primary baseline data on mango fungal and bacterial diversity and composition, which can be foundational in the development of effective disease (stem-end rot) management strategies.
Collapse
|
12
|
Stošić S, Ristić D, Savković Ž, Grbić ML, Vukojević J, Živković S. Penicillium and Talaromyces Species as Postharvest Pathogens of Pear Fruit ( Pyrus communis) in Serbia. PLANT DISEASE 2021; 105:3510-3521. [PMID: 34010022 DOI: 10.1094/pdis-01-21-0037-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Pears are one of the oldest and the third most important fruit species grown in temperate regions. They are consumed because of their nutritional and health benefits, in fresh form or as various processed products. This article resolves the etiology of the Penicillium-like mold symptoms on pear fruits in Serbia. Samples of pear fruits with blue mold and other Penicillium-like mold symptoms were collected in Serbia from 2016 to 2019, from four storages. The recovered isolates were identified and characterized according to a polyphasic approach. Morphological and physiological analyses were performed on three media and five temperatures, respectively. Four loci (internal transcribed spacer, beta-tubulin, calmodulin, and DNA-dependent RNA polymerase II second largest subunit) were used for sequencing, genetic identification, and phylogenetic analyses. The results of the identification by conventional and molecular methods were in agreement, and they revealed that the obtained isolates belong to five species: Penicillium crustosum, P. expansum, P. italicum, Talaromyces minioluteus, and T. rugulosus. In a pathogenicity test, P. crustosum, P. expansum, T. minioluteus, and T. rugulosus produced decay on artificially inoculated pear fruits, and P. italicum induced tissue response lesions. The results of this study are the first reports of T. minioluteus and T. rugulosus as postharvest pear pathogens. Also, these are the first world records of T. minioluteus, T. rugulosus, and P. italicum on fruits of European pear. Furthermore, this is the first finding of P. crustosum, P. expansum, P. italicum, T. minioluteus, and T. rugulosus on pear fruit in Serbia.
Collapse
Affiliation(s)
- Stefan Stošić
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| | - Danijela Ristić
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| | - Željko Savković
- University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac," 11000 Belgrade, Serbia
| | - Milica Ljaljević Grbić
- University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac," 11000 Belgrade, Serbia
| | - Jelena Vukojević
- University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden "Jevremovac," 11000 Belgrade, Serbia
| | - Svetlana Živković
- Department of Plant Diseases, Institute for Plant Protection and Environment, 11000 Belgrade, Serbia
| |
Collapse
|
13
|
Habib W, Masiello M, Chahine-Tsouvalakis H, Al Moussawi Z, Saab C, Tawk ST, Piemontese L, Solfrizzo M, Logrieco AF, Moretti A, Susca A. Occurrence and Characterization of Penicillium Species Isolated from Post-Harvest Apples in Lebanon. Toxins (Basel) 2021; 13:toxins13100730. [PMID: 34679023 PMCID: PMC8537683 DOI: 10.3390/toxins13100730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
The apple is one of the most important fruit tree crops in the Mediterranean region. Lebanon, in particular, is among the top apple producer countries in the Middle East; however, recently, several types of damage, particularly rot symptoms, have been detected on fruits in cold storage. This study aims to identify the causal agents of apple decay in Lebanese post-harvest facilities and characterize a set of 39 representative strains of the toxigenic fungus Penicillium. The results demonstrated that blue mould was the most frequent fungal disease associated with apples showing symptoms of decay after 3–4 months of storage at 0 °C, with an average frequency of 76.5% and 80.6% on cv. Red and cv. Golden Delicious apples, respectively. The morphological identification and phylogenetic analysis of benA gene showed that most Penicillium strains (87.2%) belong to P. expansum species whereas the remaining strains (12.8%) belong to P. solitum. Furthermore, 67.7% of P. expansum strains produced patulin when grown on apple puree for 14 days at 25 °C with values ranging from 10.7 mg kg−1 to 125.9 mg kg−1, whereas all P. solitum did not produce the mycotoxin. This study highlights the presence of Penicillium spp. and their related mycotoxin risk during apple storage and calls for the implementation of proper measures to decrease the risk of mycotoxin contamination of apple fruit products.
Collapse
Affiliation(s)
- Wassim Habib
- Laboratory of Mycology, Department of Plant Protection, Lebanese Agricultural Research Institute, P.O. Box 90-1965, Fanar 1202, Lebanon; (W.H.); (C.S.)
- Faculty of Agricultural Sciences, Lebanese University, George Matta, Dekwaneh 1202, Lebanon; (H.C.-T.); (Z.A.M.); (S.T.T.)
| | - Mario Masiello
- Institute of Science of Food Production—ISPA, Research National Council—CNR, Via Amendola, 122/O, 70126 Bari, Italy; (M.S.); (A.F.L.); (A.M.); (A.S.)
- Correspondence:
| | - Hala Chahine-Tsouvalakis
- Faculty of Agricultural Sciences, Lebanese University, George Matta, Dekwaneh 1202, Lebanon; (H.C.-T.); (Z.A.M.); (S.T.T.)
| | - Zahraa Al Moussawi
- Faculty of Agricultural Sciences, Lebanese University, George Matta, Dekwaneh 1202, Lebanon; (H.C.-T.); (Z.A.M.); (S.T.T.)
| | - Carine Saab
- Laboratory of Mycology, Department of Plant Protection, Lebanese Agricultural Research Institute, P.O. Box 90-1965, Fanar 1202, Lebanon; (W.H.); (C.S.)
| | - Salwa Tohmé Tawk
- Faculty of Agricultural Sciences, Lebanese University, George Matta, Dekwaneh 1202, Lebanon; (H.C.-T.); (Z.A.M.); (S.T.T.)
| | - Luca Piemontese
- Department of Pharmacy and Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy;
| | - Michele Solfrizzo
- Institute of Science of Food Production—ISPA, Research National Council—CNR, Via Amendola, 122/O, 70126 Bari, Italy; (M.S.); (A.F.L.); (A.M.); (A.S.)
| | - Antonio Francesco Logrieco
- Institute of Science of Food Production—ISPA, Research National Council—CNR, Via Amendola, 122/O, 70126 Bari, Italy; (M.S.); (A.F.L.); (A.M.); (A.S.)
| | - Antonio Moretti
- Institute of Science of Food Production—ISPA, Research National Council—CNR, Via Amendola, 122/O, 70126 Bari, Italy; (M.S.); (A.F.L.); (A.M.); (A.S.)
| | - Antonia Susca
- Institute of Science of Food Production—ISPA, Research National Council—CNR, Via Amendola, 122/O, 70126 Bari, Italy; (M.S.); (A.F.L.); (A.M.); (A.S.)
| |
Collapse
|
14
|
An assessment of the air quality in apple warehouses: new records of Aspergillus europaeus, Aspergillus pulverulentus, Penicillium allii and Penicillium sumatraense as decay agents. Arch Microbiol 2021; 203:5975-5992. [PMID: 34535810 DOI: 10.1007/s00203-021-02551-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022]
Abstract
Airborne fungi are one of the major components of aeromycobiota known to produce several fungal diseases in fruits. Their presence in indoor environment of warehouses may limit the storage period of apples. Qualitative and quantitative analyses of airborne fungal spores were conducted using gravity settling techniques to detect fungal airspora present in the atmosphere of two apple warehouses in Tunisia. In this study, 375 fungal isolates were obtained and purified. Phylogenetic analysis of calmodulin, beta-tubulin and ITS regions coupled with phenotypic characterization helped to identify 15 fungal species. Penicillium exhibited the highest diversity with ten species detected (Penicillium allii, P. chrysogenum, P. citrinum, P. expansum, P. italicum, P. polonicum, P. solitum, P. steckii, P. sumatraense and P. viridicatum), followed by four species of Aspergillus genus (Aspergillus europaeus, A. flavus, A. niger and A. pulverulentus) and Alternaria alternata. In vivo experiments confirmed the pathogenicity of 13 species at room temperature and under cold-storage conditions. Among them, A. europaeus, A. pulverulentus, P. allii and P. sumatraense were described for the first time as pathogens on apples. The present study identified the major airborne fungi associated with postharvest rot in apple storage facilities in Tunisia and may help in efficient control of postharvest and storage fruit diseases.
Collapse
|
15
|
Huang X, Ren J, Li P, Feng S, Dong P, Ren M. Potential of microbial endophytes to enhance the resistance to postharvest diseases of fruit and vegetables. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1744-1757. [PMID: 32974893 DOI: 10.1002/jsfa.10829] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Food loss of fruit and vegetables caused by postharvest diseases is a major issue worldwide. The method used to prevent and control postharvest diseases is usually to use chemical fungicides, but long-term and large-scale use will make the pathogens resistant and potentially have a negative impact on human health and the ecological environment. Therefore, finding a safe and effective biological control method instead of chemical control is a hot research topic in recent years. Endophytes, colonizing plants asymptomatically, can promote the growth of the hosts and enhance their resistance. The use of endophytes as biological control agents for postharvest diseases of fruit and vegetables has attracted increasing attention in the last 20 years. Compared with chemical control, endophytes have the advantages of being more environmentally friendly, sustainable, and safer. However, there are relatively few relevant studies, so herein we summarize the available literature. This review focuses mainly on the recent progress of using endophytes to enhance the resistance of postharvest fruit and vegetables to diseases, with the emphasis on the possible mechanisms and the potential applications. Furthermore, this article suggests future areas for study using antagonistic endophytes to prevent and control fruit and vegetable postharvest diseases: (i) screening more potential broad-spectrum anti-pathogen endophytes and their metabolic active substances by the method of macrogenomics; (ii) elucidating the underlining molecular mechanism among endophytes, harvested vegetables and fruit, pathogens, and microbial communities; (iii) needing more application research to overcome the difficulties of commercialization practice. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqing Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Jie Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Peihua Li
- College of Agronomy, Xichang University, Xichang, China
| | - Shun Feng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
16
|
Cheng Y, Lin Y, Cao H, Li Z. Citrus Postharvest Green Mold: Recent Advances in Fungal Pathogenicity and Fruit Resistance. Microorganisms 2020; 8:E449. [PMID: 32209982 PMCID: PMC7143998 DOI: 10.3390/microorganisms8030449] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/10/2020] [Accepted: 03/21/2020] [Indexed: 01/04/2023] Open
Abstract
As the major postharvest disease of citrus fruit, postharvest green mold is caused by the necrotrophic fungus Penicillium digitatum (Pd), which leads to huge economic losses worldwide. Fungicides are still the main method currently used to control postharvest green mold in citrus fruit storage. Investigating molecular mechanisms of plant-pathogen interactions, including pathogenicity and plant resistance, is crucial for developing novel and safer strategies for effectively controlling plant diseases. Despite fruit-pathogen interactions remaining relatively unexplored compared with well-studied leaf-pathogen interactions, progress has occurred in the citrus fruit-Pd interaction in recent years, mainly due to their genome sequencing and establishment or optimization of their genetic transformation systems. Recent advances in Pd pathogenicity on citrus fruit and fruit resistance against Pd infection are summarized in this review.
Collapse
Affiliation(s)
- Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Yunlong Lin
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Haohao Cao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China (H.C.)
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| |
Collapse
|
17
|
Dukare AS, Singh RK, Jangra RK, Bhushan B. Non-Fungicides-Based Promising Technologies for Managing Post-Production Penicillium Induced Spoilage in Horticultural Commodities: A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1727497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ajinath Shridhar Dukare
- Division of Horticultural Crop Processing, ICAR- Central Institute of Post Harvest Engineering and Technology (CIPHET), Abohar/Ludhiana, India
| | - Rajesh Kumar Singh
- ICAR- Central Institute of Post Harvest Engineering and Technology (CIPHET), Abohar/Ludhiana, India
| | - Ramesh Kumar Jangra
- Division of Horticultural Crop Processing, ICAR- Central Institute of Post Harvest Engineering and Technology (CIPHET), Abohar/Ludhiana, India
| | - Bharat Bhushan
- Plant Biochemistry, ICAR-Indian Institute of Maize Research, Ludhiana, India
| |
Collapse
|
18
|
Louw JP, Korsten L. Impact of Postharvest Storage on the Infection and Colonization of Penicillium digitatum and Penicillium expansum on Nectarine. PLANT DISEASE 2019; 103:1584-1594. [PMID: 31025905 DOI: 10.1094/pdis-08-18-1475-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Very few studies have investigated the host-pathogen interaction of Penicillium spp. on nectarine. Penicillium digitatum was identified as pathogenic and highly aggressive on nectarine. A strong association was made with host age/ripeness. This points to a new mechanism or life strategy used by P. digitatum to infect and colonize previously thought nonhosts. The aim of this study was to determine the effect of postharvest storage of nectarine on the infection and colonization of P. digitatum and Penicillium expansum at molecular and physical (firmness and pH) levels. The impact of environmental conditions (cold storage) and pathogen pressure (inoculum load) was also investigated. Although disease incidence was much lower, lesions caused by P. digitatum were similar in size to those caused by P. expansum on freshly harvested nectarine. Disease incidence and lesion diameter significantly increased (larger than P. expansum) on longer stored fruit. Cold storage had the largest effect on P. digitatum. Inoculum load had a meaningful effect on both Penicillium spp. Storage significantly affected pH modulation and gene expression. The pathogens not only decreased but also, increased and maintained (similar to initial pH of the host) pH of infected tissue. The polygalacturonase (PG) gene and creA were upregulated by P. digitatum on 7-day postharvest fruit (other genes were unaffected). It partly explains the larger lesions on older or riper fruit. A different expression profile was observed from P. expansum: strong downregulation in PG and slight upregulation in pacC. Very different life strategies were used by the two Penicillium spp. when infecting nectarine. Unlike what is known on citrus, P. digitatum showed an opportunistic lifestyle that takes advantage of specific host and environmental conditions. It is largely still unclear (gene expression) what specifically triggers the increase in disease incidence (infection) and lesion diameter (colonization) of P. digitatum on older or riper fruit. The differences between in vivo and in vitro studies make it difficult to directly correlate results. Additional research is still needed to differentiate and understand the infection and colonization of these pathogens on the same host.
Collapse
Affiliation(s)
- Johannes Petrus Louw
- 1 Department of Plant and Soil Sciences, University of Pretoria, Hillcrest 0083, South Africa
- 2 University of Pretoria, Pretoria 0028, South Africa
| | - Lise Korsten
- 1 Department of Plant and Soil Sciences, University of Pretoria, Hillcrest 0083, South Africa
- 2 University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
19
|
Gong D, Bi Y, Li Y, Zong Y, Han Y, Prusky D. Both Penicillium expansum and Trichothecim roseum Infections Promote the Ripening of Apples and Release Specific Volatile Compounds. FRONTIERS IN PLANT SCIENCE 2019; 10:338. [PMID: 30949192 PMCID: PMC6435981 DOI: 10.3389/fpls.2019.00338] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Blue mold and core rot caused by Penicillium expansum and Trichothecium roseum are major diseases of apple fruit in China; however, their differential aggressiveness in apples and effect on fruit postharvest physiology are unclear. The effects of colonization of apples cv. Red Delicious by both pathogens were compared to physiological parameters of ripening and release of volatile compounds (VOCs). P. expansum colonization showed increased aggressiveness compared to T. roesum colonization of apple fruits. P. expansum enhanced colonization occurred with differential higher ethylene production and respiratory rate evolution, lower membrane integrity and fruit firmness in correspondence with the colonization pattern of inoculated apples. Moreover, P. expansum caused lower contents of total soluble solid and titratable acid, and higher malondialdehyde compared with T. roesum colonization. While both pathogen infections enhanced VOCs release, compared with T. roseum inoculated apples, P. expansum inoculated apple showed a higher total VOCs production including alcohols, aldehydes and esters, being the C6 alcohols, aldehydes and esters amount. PLS-DA analysis indicated that hexanoic acid was the most important factor to distinguish the inoculated fruits from the controls. Interestingly, propyl acetate and hexyl benzoate, and undecylenic acid and hexadecane were only identified in the P. expansum and T. roseum inoculated fruits, respectively. Taken together, our findings indicate that both fungi inoculations promote apple fruit ripening and release specific VOCs; moreover, apple fruits are more susceptible to P. expansum colonization than T. roesum.
Collapse
Affiliation(s)
- Di Gong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ye Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
20
|
Abstract
Control of postharvest diseases of fresh fruits has relied for many years on the continuous use of conventional chemical fungicides. However, nonpolluting alternatives are increasingly needed because of human health and environmental issues related to the generation of chemical residues. Low-toxicity chemicals classified as food preservatives or as generally recognized as safe (GRAS) compounds have known and very low toxicological effects on mammals and minimal impact on the environment. Among them, inorganic or organic salts such as carbonates, sorbates, benzoates, silicates, etc., show significant advantages for potential commercial use, such as their availability, low cost, and general high solubility in water. Typically, these substances are first evaluated in vitro against target pathogens that cause important postharvest diseases. Selected salts and concentrations are then assayed as aqueous solutions in in vivo tests with target fresh fruit. Laboratory and small-scale experiments are conducted with fruit artificially inoculated with pathogens, whereas naturally infected fruit are used for large-scale, semicommercial, or commercial trials. Another approach that is increasingly gaining importance is evaluating GRAS salts as antifungal ingredients of novel synthetic edible coatings. These coatings could replace the fungicide-amended commercial waxes applied to many fruit commodities and could be used for organic or “zero-residue” fresh fruit production systems.
Collapse
|
21
|
Several species of Penicillium isolated from chestnut flour processing are pathogenic on fresh chestnuts and produce mycotoxins. Food Microbiol 2018; 76:396-404. [PMID: 30166166 DOI: 10.1016/j.fm.2018.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 01/27/2023]
Abstract
A collection of 124 isolates of Penicillium spp. was created by monitoring fresh chestnuts, dried chestnuts, chestnut granulates, chestnut flour and indoor chestnut mills. Sequencing of the ITS region, β-tubulin and calmodulin, macro-morphology and secondary metabolite production made it possible to determine 20 species of Penicillium. P. bialowiezense was dominant in the fresh chestnuts, while P. crustosum was more frequent in the other sources. A pathogenicity test on chestnut showed that around 70% of the isolates were virulent. P. corylophilum and P. yezoense were not pathogenic, while the other 18 species had at least one virulent isolate. P. expansum and P. crustosum were the most virulent. The isolates were characterized to establish their ability to produce 14 toxic metabolites in vivo: 59% were able to produce at least one mycotoxin. P. expansum was able to produce patulin, chaetoglobosin A and roquefortine, while P. bialowiezense produced C. Mycophenolic acid. Cyclopenins and viridicatins were produced by most of the P. crustosum, P. polonicum, P. solitum and P. discolour isolates. Some of the P. crustosum isolates were also able to produce roquefortine C or penitrem A. Information about the occurrence of Penicillium spp. and their mycotoxins will help producers to set up management procedures that can help to control the fungal growth and the mycotoxin production of chestnuts.
Collapse
|
22
|
Yin G, Zhang Y, Pennerman KK, Hua SST, Yu J, Guo A, Liu Z, Bennett JW. Draft Genome Sequence of the Fungus Penicillium solitum NJ1. GENOME ANNOUNCEMENTS 2016; 4:e01176-16. [PMID: 27881535 PMCID: PMC5122677 DOI: 10.1128/genomea.01176-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/05/2016] [Indexed: 11/20/2022]
Abstract
Penicillium solitum is one of the most prevalent species causing postharvest decay of pomaceous fruits during storage. Here, we report the draft genome of P. solitum strain NJ1, received as a transfer of a strain originally identified as P. griseofulvum by classical means.
Collapse
Affiliation(s)
- Guohua Yin
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Yuliang Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Kayla K Pennerman
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Sui Sheng T Hua
- U.S. Department of Agriculture, ARS, Western Regional Research Center, Albany, California, USA
| | - Jiujiang Yu
- U.S. Department of Agriculture, ARS, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
| | - Anping Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Zhixin Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Joan W Bennett
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
23
|
Abdelfattah A, Wisniewski M, Droby S, Schena L. Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. HORTICULTURE RESEARCH 2016; 3:16047. [PMID: 27766161 PMCID: PMC5051542 DOI: 10.1038/hortres.2016.47] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 05/10/2023]
Abstract
The fungal diversity in harvested apples from organic or conventional management practices was analyzed in different fruit locations (stem end, calyx end, peel, and wounded flesh) shortly after fruit purchase (T1) and after 2 weeks of storage (T5). A total of 5,760,162 high-quality fungal sequences were recovered and assigned to 8,504 Operational Taxonomic Units. Members of the phylum Ascomycota were dominant in all samples and accounted for 91.6% of the total number of detected sequences. This was followed by Basidiomycota (8%), Chytridiomycota (0.1%), and unidentified fungi (0.3%). Alpha and beta diversity analyses revealed the presence of significantly different fungal populations in the investigated fruit parts. Among detected fungi, the genus Penicillium prevailed in the peel and in the wounded flesh while Alternaria spp. prevailed in the calyx and stem end samples that included apple core tissues. Several taxonomic units that appear to be closely related to pathogenic fungi associated with secondary human infections were present in peel and wounds. Moreover, significantly different populations were revealed in organic and conventional apples and this result was consistent in all investigated fruit parts (calyx end, peel, stem end, and wounded flesh). Several unique taxa were exclusively detected in organic apples suggesting that management practices may have been a contributing factor in determining the taxa present. In contrast, little differences were revealed in the two assessment times (T1 and T5). Results of the present study represent an advancement of the current knowledge on the fungal microbiota in collected fruit tissues of apple.
Collapse
Affiliation(s)
- Ahmed Abdelfattah
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Località Feo di Vito, 89124 Reggio, Calabria, Italy
| | - Michael Wisniewski
- U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), 2217 Wiltshire Road, Kearneysville, WV 25430, USA
| | - Samir Droby
- ARO, Department of Postharvest and Food Sciences, The Volcani Center, 68 HaMccabim Road, Rishon LeZion 7505101, Israel
| | - Leonardo Schena
- Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Località Feo di Vito, 89124 Reggio, Calabria, Italy
| |
Collapse
|
24
|
Louw JP, Korsten L. Pathogenicity and Host Susceptibility of Penicillium spp. on Citrus. PLANT DISEASE 2015; 99:21-30. [PMID: 30699736 DOI: 10.1094/pdis-02-14-0122-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Citrus fruit are exposed to numerous postharvest pathogens throughout the fresh produce supply chain. Well-known postharvest citrus fruit pathogens are Penicillium digitatum and P. italicum. Lesser-known pathogens include P. crustosum and P. expansum. This study examined pathogenicity and aggressiveness of Penicillium spp. present in fresh fruit supply chains on various Citrus spp. and cultivars. The impact of different inoculation methods and storage conditions on decay were also assessed. P. digitatum and P. italicum were the most aggressive Penicillium spp. on citrus but aggressiveness varied significantly over the evaluated citrus range. Decay and tissue-response lesions caused by P. crustosum were observed on 'Nules Clementine', 'Nova', 'Owari Satsuma', 'Delta Valencia', 'Cambria Navel', 'Eureka' seeded, and 'Star Ruby' for the first time. Likewise, these lesions caused by P. expansum were noted on Nules Clementine, Owari Satsuma, Delta Valencia, 'Midknight Valencia', and Eureka seeded for the first time. Tissue-response lesions affect fruit quality and some Penicillium spp. sporulated from the lesions, causing the inoculated species to complete their life cycle. New citrus-Penicillium spp. interactions were observed and the importance of monitoring inoculum loads of pathogens and nonhost pathogens were highlighted.
Collapse
Affiliation(s)
- Johannes Petrus Louw
- University of Pretoria, Department of Microbiology and Plant Pathology, New Agricultural Building, Lunnon Road, Hillcrest, 0083, South Africa
| | - Lise Korsten
- University of Pretoria, Department of Microbiology and Plant Pathology, New Agricultural Building, Lunnon Road, Hillcrest, 0083, South Africa
| |
Collapse
|