1
|
Jiang H, Yuan L, Ma L, Qi K, Zhang Y, Zhang B, Ma G, Qi J. Histone H3 N-Terminal Lysine Acetylation Governs Fungal Growth, Conidiation, and Pathogenicity through Regulating Gene Expression in Fusarium pseudograminearum. J Fungi (Basel) 2024; 10:379. [PMID: 38921366 PMCID: PMC11204548 DOI: 10.3390/jof10060379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
The acetylation of histone lysine residues regulates multiple life processes, including growth, conidiation, and pathogenicity in filamentous pathogenic fungi. However, the specific function of each lysine residue at the N-terminus of histone H3 in phytopathogenic fungi remains unclear. In this study, we mutated the N-terminal lysine residues of histone H3 in Fusarium pseudograminearum, the main causal agent of Fusarium crown rot of wheat in China, which also produces deoxynivalenol (DON) toxins harmful to humans and animals. Our findings reveal that all the FpH3K9R, FpH3K14R, FpH3K18R, and FpH3K23R mutants are vital for vegetative growth and conidiation. Additionally, FpH3K14 regulates the pathogen's sensitivity to various stresses and fungicides. Despite the slowed growth of the FpH3K9R and FpH3K23R mutants, their pathogenicity towards wheat stems and heads remains unchanged. However, the FpH3K9R mutant produces more DON. Furthermore, the FpH3K14R and FpH3K18R mutants exhibit significantly reduced virulence, with the FpH3K18R mutant producing minimal DON. In the FpH3K9R, FpH3K14R, FpH3K18R, and FpH3K23R mutants, there are 1863, 1400, 1688, and 1806 downregulated genes, respectively, compared to the wild type. These downregulated genes include many that are crucial for growth, conidiation, pathogenicity, and DON production, as well as some essential genes. Gene ontology (GO) enrichment analysis indicates that genes downregulated in the FpH3K14R and FpH3K18R mutants are enriched for ribosome biogenesis, rRNA processing, and rRNA metabolic process. This suggests that the translation machinery is abnormal in the FpH3K14R and FpH3K18R mutants. Overall, our findings suggest that H3 N-terminal lysine residues are involved in regulating the expression of genes with important functions and are critical for fungal development and pathogenicity.
Collapse
Affiliation(s)
- Hang Jiang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| | - Lifang Yuan
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Liguo Ma
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| | - Kai Qi
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| | - Yueli Zhang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| | - Bo Zhang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| | - Guoping Ma
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| | - Junshan Qi
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| |
Collapse
|
2
|
Stummer BE, Zhang X, Moghaddam MJ, Yang H, Harvey PR. Wheat rhizosphere dynamics of Trichoderma gamsii A5MH and suppression of a Pythium root rot-Fusarium crown rot disease complex over two consecutive cropping seasons. J Appl Microbiol 2024; 135:lxae069. [PMID: 38503567 DOI: 10.1093/jambio/lxae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
AIMS Determine the wheat rhizosphere competence of Trichoderma gamsii strain A5MH and in planta suppression of the Pythium root and Fusarium crown rot pathogens Globisporangium irregulare and Fusarium pseudograminearum. METHODS AND RESULTS Wheat was continuously cropped (eight years) at a minimum tillage, low growing season rainfall (GSR ≤ 170 mm) site shown as highly conducive to Pythium root and Fusarium crown rots. Root isolation frequency (RIF) and qPCR were used to determine the rhizosphere dynamics of strain A5MH and the target pathogens at tillering, grain harvest, and in postharvest stubble over the final 2 years. Strain A5MH actively colonized the wheat rhizosphere throughout both growing seasons, had high root abundance at harvest [log 4.5 genome copies (GC) g-1] and persisted in standing stubble for at least 293-d postinoculation. Globisporangium irregulare was most abundant in roots at tillering, whereas F. pseudograminearum was only abundant at harvest and up to 9-fold greater in the drier, second year (GSR 105 mm). Strain A5MH decreased RIF of both pathogens by up to 40%, root abundance of G. irregulare by 100-fold, and F. pseudogaminearum by 700-fold, but was ineffective against crown rot in the second year when pathogen abundance was >log 6.0 GC g-1 root. Strain A5MH increased crop emergence and tillering biomass by up to 40%. CONCLUSIONS Further trials are required to determine if the A5MH-induced pathogen suppression translates to yield improvements in higher rainfall regions where non-cereal rotations reduce crown rot inoculum.
Collapse
Affiliation(s)
| | - Xinjian Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103 Shandong, China
| | | | - Hetong Yang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103 Shandong, China
| | - Paul R Harvey
- CSIRO Agriculture and Food, PMB 2, Glen Osmond, SA 5064, Australia
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan 250103 Shandong, China
| |
Collapse
|
3
|
Milgate A, Baxter B, Simpfendorfer S, Herdina, Giblot-Ducray D, Yang N, Orchard B, Ovenden B. Improved quantification of Fusarium pseudograminearum (Fusarium crown rot) using qPCR measurement of infection in multi-species winter cereal experiments. FRONTIERS IN PLANT SCIENCE 2023; 14:1225283. [PMID: 37600176 PMCID: PMC10433387 DOI: 10.3389/fpls.2023.1225283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023]
Abstract
Fusarium crown rot (FCR) causes significant grain yield loss in winter cereals around the world. Breeding for resistance and/or tolerance to FCR has been slow with relatively limited success. In this study, multi-species experiments were used to demonstrate an improved method to quantify FCR infection levels at plant maturity using quantitative PCR (qPCR), as well as the genotype yield retention using residual regression deviation. Using qPCR to measure FCR infection allowed a higher degree of resolution between genotypes than traditional visual stem basal browning assessments. The results were consistent across three environments with different levels of disease expression. The improved measure of FCR infection along with genotype yield retention allows for partitioning of both tolerance and partial resistance. Together these methods offer new insights into FCR partial resistance and its relative importance to tolerance in bread wheat and barley. This new approach offers a more robust, unbiased way to select for both FCR traits within breeding programs. Key message: Genetic gain for tolerance and partial resistance against Fusarium crown rot (FCR) in winter cereals has been impeded by laborious and variable visual measures of infection severity. This paper presents results of an improved method to quantify FCR infection that are strongly correlated to yield loss and reveal previously unrecognised partial resistance in barley and wheat varieties.
Collapse
Affiliation(s)
- Andrew Milgate
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Brad Baxter
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Steven Simpfendorfer
- NSW Department of Primary Industries, Tamworth Agricultural Institute, Tamworth, NSW, Australia
| | - Herdina
- South Australian Research and Development Institute, Plant Research Centre, Urrbrae, SA, Australia
| | - Daniele Giblot-Ducray
- South Australian Research and Development Institute, Plant Research Centre, Urrbrae, SA, Australia
| | - Nannan Yang
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Beverly Orchard
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Ben Ovenden
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| |
Collapse
|
4
|
Saadaoui M, Faize M, Bonhomme L, Benyoussef NO, Kharrat M, Chaar H, Label P, Venisse JS. Assessment of Tunisian Trichoderma Isolates on Wheat Seed Germination, Seedling Growth and Fusarium Seedling Blight Suppression. Microorganisms 2023; 11:1512. [PMID: 37375014 DOI: 10.3390/microorganisms11061512] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Beneficial microorganisms, including members of the Trichoderma genus, are known for their ability to promote plant growth and disease resistance, as well as being alternatives to synthetic inputs in agriculture. In this study, 111 Trichoderma strains were isolated from the rhizospheric soil of Florence Aurore, an ancient wheat variety that was cultivated in an organic farming system in Tunisia. A preliminary ITS analysis allowed us to cluster these 111 isolates into three main groups, T. harzianum (74 isolates), T. lixii (16 isolates) and T. sp. (21 isolates), represented by six different species. Their multi-locus analysis (tef1, translation elongation factor 1; rpb2, RNA polymerase B) identified three T. afroharzianum, one T. lixii, one T. atrobrunneum and one T. lentinulae species. These six new strains were selected to determine their suitability as plant growth promoters (PGP) and biocontrol agents (BCA) against Fusarium seedling blight disease (FSB) in wheat caused by Fusarium culmorum. All of the strains exhibited PGP abilities correlated to ammonia and indole-like compound production. In terms of biocontrol activity, all of the strains inhibited the development of F. culmorum in vitro, which is linked to the production of lytic enzymes, as well as diffusible and volatile organic compounds. An in planta assay was carried out on the seeds of a Tunisian modern wheat variety (Khiar) by coating them with Trichoderma. A significant increase in biomass was observed, which is associated with increased chlorophyll and nitrogen. An FSB bioprotective effect was confirmed for all strains (with Th01 being the most effective) by suppressing morbid symptoms in germinated seeds and seedlings, as well as by limiting F. culmorum aggressiveness on overall plant growth. Plant transcriptome analysis revealed that the isolates triggered several SA- and JA-dependent defense-encoding genes involved in F. culmorum resistance in the roots and leaves of three-week-old seedlings. This finding makes these strains very promising in promoting growth and controlling FSB disease in modern wheat varieties.
Collapse
Affiliation(s)
- Mouadh Saadaoui
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
- Université de Tunis El Manar, Campus Universitaire Farhat Hached, B.P. n° 94-ROMMANA, Tunis 1068, Tunisia
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
| | - Mohamed Faize
- Laboratory of Plant Biotechnology, Ecology and Ecosystem Valorization URL-CNRST 10, Faculty of Sciences, University Chouaib Doukkali, El Jadida 24000, Morocco
| | - Ludovic Bonhomme
- UMR 1095 Génétique Diversité Ecophysiologie des Céréales, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Noura Omri Benyoussef
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
- National Institute of Agronomy of Tunisia (INAT), Tunis 1082, Tunisia
| | - Mohamed Kharrat
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
| | - Hatem Chaar
- Field Crops Laboratory, National Institute for Agricultural Research of Tunisia (INRAT), Hedi Karray Street, El Menzah, Ariana 1004, Tunisia
- National Institute of Agronomy of Tunisia (INAT), Tunis 1082, Tunisia
| | - Philippe Label
- Université Clermont Auvergne, INRAE, PIAF, 63000 Clermont-Ferrand, France
| | | |
Collapse
|
5
|
Wei J, Guo X, Jiang J, Qian L, Xu J, Che Z, Huang X, Liu S. Resistance risk assessment of Fusarium pseudograminearum from wheat to prothioconazole. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105346. [PMID: 36963928 DOI: 10.1016/j.pestbp.2023.105346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Fusarium crown rot (FCR), primarily caused by Fusarium pseudograminearum, poses significant threats to cereal crops worldwide. Prothioconazole is a demethylation inhibitor (DMI) fungicide used to control FCR. However, the risk of resistance in F. pseudograminearum to prothioconazole has not yet been evaluated. In this study, the sensitivity of a total of 255 F. pseudograminearum strains obtained from Henan Province, China to prothioconazole were determined by the mycelial growth inhibition. The results showed that the effective concentration to 50% growth inhibition (EC50) of these strains ranged from 0.4228 μg/mL to 2.5284 μg/mL, with a mean EC50 value of 1.0692 ± 0.4527 μg/mL (mean ± SD). Thirty prothioconazole-resistant mutants were obtained out of six selected sensitive parental strains by means of fungicide taming. The resistant mutants exhibited defects in vegetative growth, conidia production, and pathogenicity on wheat seedlings compared to their parental strains. Under ion, cell wall, and temperature stress conditions but not osmotic stress, all the mutants exhibited decreased growth rates compared with their parental strains, which was consistent with the control treatment. Cross-resistance test showed that there was a cross-resistance relationship between prothioconazole and four DMI fungicides, including prochloraz, metconazole, tebuconazole and hexaconazole, but no cross-resistance was observed between prothioconazole and carbendazim, phenamacril, fludioxonil, or azoxystrobin. Although no site mutation occurred on Cyp51a and Cyp51b genes, the constitutive expression level of the Cyp51a gene was significantly increased in all mutants. After being treated with prothioconazole, the Cyp51a and Cyp51b genes were significantly increased in both the resistant mutants and their parents. These results suggested that the resistance to prothioconazole of the mutants may be attributed to the changes of the relative expression level of Cyp51a and Cyp51b genes. Taken together, these results could provide a theoretical basis for the scientific use of prothioconazole in the field and fungicide resistance management strategies.
Collapse
Affiliation(s)
- Jiangqiao Wei
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Xuhao Guo
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Jia Jiang
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Le Qian
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Jianqiang Xu
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhiping Che
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Xiaobo Huang
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Shengming Liu
- Department of Plant Protection, College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|
6
|
Ul Haq SI, Zheng D, Feng N, Jiang X, Qiao F, He JS, Qiu QS. Progresses of CRISPR/Cas9 genome editing in forage crops. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153860. [PMID: 36371870 DOI: 10.1016/j.jplph.2022.153860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) mediated-genome editing has evolved into a powerful tool that is widely used in plant species to induce editing in the genome for analyzing gene function and crop improvement. CRISPR/Cas9 is an RNA-guided genome editing tool consisting of a Cas9 nuclease and a single-guide RNA (sgRNA). The CRISPR/Cas9 system enables more accurate and efficient genome editing in crops. In this review, we summarized the advances of the CRISPR/Cas9 technology in plant genome editing and its applications in forage crops. We described briefly about the development of CRISPR/Cas9 technology in plant genome editing. We assessed the progress of CRISPR/Cas9-mediated targeted-mutagenesis in various forage crops, including alfalfa, Medicago truncatula, Hordeum vulgare, Sorghum bicolor, Setaria italica and Panicum virgatum. The potentials and challenges of CRISPR/Cas9 in forage breeding were discussed.
Collapse
Affiliation(s)
- Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Xingyu Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Feng Qiao
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China; State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou, Gansu, 730000, China; Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
7
|
Hafez M, Gourlie R, Telfer M, Schatz N, Turkington TK, Beres B, Aboukhaddour R. Diversity of Fusarium spp. Associated with Wheat Node and Grain in Representative Sites Across the Western Canadian Prairies. PHYTOPATHOLOGY 2022; 112:1003-1015. [PMID: 34818906 DOI: 10.1094/phyto-06-21-0241-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fusarium head blight (FHB) and Fusarium crown and root rot (FCRR) are major wheat diseases. Populations of FHB and FCRR pathogens are highly dynamic, and shifts in these populations in different regions is reported. Analyzing fungal populations associated with wheat node and grain tissues collected from different regions can provide useful information and predict diseases that might affect subsequent crops and effective disease management practices. In this study, wheat node and grain samples were collected from four representative sites across the western Canadian prairies in the 2018 growing season to characterize the major Fusarium spp. and other mycobiota associated with wheat in these regions. In total, 994 fungal isolates were recovered, and based on culture and molecular diagnostic methods, three genera constituted over 90% of all fungal isolates, namely Alternaria (39.6%), Fusarium (27.8%), and Parastagonospora (23.9%). A quantitative PCR (qPCR) diagnostic toolkit was developed to quantify the most frequently isolated Fusarium spp. in infected wheat tissues: Fusarium avenaceum, F. culmorum, F. graminearum, and F. poae. This qPCR specificity was validated in silico, in vitro, and in planta and proved specific to the target species. The qPCR results showed that F. graminearum was not detected frequently from wheat node and grain samples collected from four locations in this study. F. poae was the most abundant Fusarium species in grain samples in all tested locations. However, in node samples, F. culmorum (Beaverlodge and Scott) and F. avenaceum (Lacombe and Lethbridge) were the most abundant species. Trichothecene genotyping showed that the 3ADON is the most dominant trichothecene genotype (68%), followed by type-A trichothecenes (29.5%), whereas the 15ADON trichothecene genotype was least dominant (2.5%) and the NIV genotype was not detected. Moreover, a total of 129 translation elongation factor 1-alpha (TEF1α) sequences from nine Fusarium spp. were compared at the haplotype level to evaluate genetic variability and distribution. F. avenaceum and F. poae exhibited higher diversity as reflected by higher number of haplotypes present in these two species compared with the rest.
Collapse
Affiliation(s)
- Mohamed Hafez
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta T1J 4B1, Canada
| | - Ryan Gourlie
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta T1J 4B1, Canada
| | - Melissa Telfer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta T1J 4B1, Canada
| | - Nicola Schatz
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta T1J 4B1, Canada
| | - Thomas K Turkington
- Agriculture and Agri-Food Canada, Lacombe Research and Development Center, Lacombe, Alberta T4L 1V7, Canada
| | - Brian Beres
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta T1J 4B1, Canada
| | - Reem Aboukhaddour
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Center, Lethbridge, Alberta T1J 4B1, Canada
| |
Collapse
|
8
|
Xie Y, Wang Z, Li K, Liu D, Jia Y, Gao F, Dai J, Zhang S, Zhang X, Li H. A Megabirnavirus Alleviates the Pathogenicity of Fusarium pseudograminearum to Wheat. PHYTOPATHOLOGY 2022; 112:1175-1184. [PMID: 34889668 DOI: 10.1094/phyto-03-21-0126-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fusarium pseudograminearum is a phytopathogen that causes wheat crown rot disease worldwide. Fusarium pseudograminearum megabirnavirus 1 (FpgMBV1) was isolated from the hypovirulent strain FC136-2A of F. pseudograminearum as a novel double-stranded RNA mycovirus belonging to the family Megabirnaviridae. Here we examined the effects of FpgMBV1 on colony morphology and pathogenicity of F. pseudograminearum. Through hyphal tip culture, we obtained virus-free progeny of strain FC136-2A, referred to as FC136-2A-V-. FpgMBV1 was transferred horizontally to another virus-free strain, WZ-8A-HygR-V-. The progeny obtained through horizontal transfer was referred to as WZ-8A-HygR-V+. Colony morphology was similar between the FpgMBV1-positive and -negative strains. The ability to penetrate cellophane in vitro was lost, and pathogenicity on wheat plants was reduced significantly in the FpgMBV1-positive strains relative to the FpgMBV1-negative strains. Microscopic observations showed a 6-h delay in the formation of appressoria-like structures in FC136-2A relative to FC136-2A-V-. Mycelium extension was significantly longer in wheat coleoptiles infected by WZ-8A-HygR-V- than in that infected by WZ-8A-HygR-V+ at 12 and 20 h after inoculation (hai). In addition, expression of five genes that encode cell wall-degrading enzymes differed significantly between FpgMBV1-positive and -negative strains at 12 and 20 hai during early infection of wheat cells by conidia. This study provides evidence for the hypovirulence effect of FpgMBV1 on F. pseudograminearum and suggests that the underlying mechanism involves unsuccessful early infection and perhaps cell wall degradation.
Collapse
Affiliation(s)
- Yuan Xie
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Zhifang Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Ke Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Dongwei Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yifan Jia
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Fei Gao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Junli Dai
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Songbai Zhang
- Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiaoting Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, Henan, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, Henan, China
| |
Collapse
|
9
|
Morphological and Molecular Identification of Plant Pathogenic Fungi Associated with Dirty Panicle Disease in Coconuts (Cocos nucifera) in Thailand. J Fungi (Basel) 2022; 8:jof8040335. [PMID: 35448566 PMCID: PMC9029170 DOI: 10.3390/jof8040335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/06/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Dirty panicle disease in coconuts (Cocos nucifera) was first observed in the KU-BEDO Coconut BioBank, Nakhon Pathom province, Thailand. The occurrence of the disease covers more than 30% of the total coconut plantation area. The symptoms include small brown to dark brown spots and discoloration of male flowers. Herein, three fungal strains were isolated from infected samples. Based on the morphological characteristics the fungal isolates, they were classified into two genera, namely, Alternaria (Al01) and Fusarium (FUO01 and FUP01). DNA sequences of internal transcribed spacer (ITS), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), translation elongation factor 1-α (tef1-α), and RNA polymerase II second largest subunit (rpb2) revealed Al01 as Alternaria burnsii, whereas DNA sequences of ITS, rpb2, and tef1-α identified FUO01 and FUP01 as Fusarium clavum and F. tricinctum, respectively. A pathogenicity test by the agar plug method demonstrated that these pathogens cause dirty panicle disease similar to that observed in natural infections. To the best of our knowledge, this is the first report on the novel dirty panicle disease in coconuts in Thailand or elsewhere, demonstrating that it is associated with the plant pathogenic fungi A. burnsii, F. clavum, and F. tricinctum.
Collapse
|
10
|
Antagonistic Activity of Fungal Strains against Fusarium Crown Rot. PLANTS 2022; 11:plants11030255. [PMID: 35161236 PMCID: PMC8838148 DOI: 10.3390/plants11030255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/17/2022]
Abstract
The crown rot of wheat is a destructive soil-borne pathogen that severely reduces the yield and quality of wheat. This study aimed to screen and identify the antagonistic strains against Fusarium pseudograminearum (Fp), which is the dominant pathogen associated with the crown rot of wheat in China, and evaluate their biosynthetic potential. The antagonistic strains were screened via a dual-culture antagonism assay, and then identified by combining the morphological characteristics and internal transcribed spacer gene sequencing. The polyketide synthases (PKS-I and PKS-II) and non-ribosomal peptide synthetase (NRPS) genes in the antagonistic strains were detected via specific amplification of chromosomal DNA. Eleven out of 157 fungal strains, including six strains with matrix competition and five strains with antibiosis, were obtained. The eleven antagonistic strains belonged to the following four genera: Alternaria, Botryosphaeria, Phoma and Talaromyces. The inhibition rate of six strains with matrix competition was greater than 50%, with B. dothidea S2-22 demonstrating the highest at 80.3%. The width of the inhibition zone of T. trachyspermus R-17 among the five strains with antibiosis was the widest at 11 mm. Among the eleven antagonistic strains, three strains of A. alternata and the strain P. moricola only contained the PKS-II gene, the strain A. tenuissima contained PKS-I and PKS-II genes, three strains of B. dothidea contained PKS-II and NRPS genes, while three strains of T. trachyspermus did not contain any genes. These results demonstrated potential strains for the biocontrol of the crown rot of wheat. In particular, T. trachyspermus R-17 can be investigated further as a promising agent, and the active substances secreted by antagonistic strains may be synthesized by other pathways.
Collapse
|
11
|
Kadkol GP, Meza J, Simpfendorfer S, Harden S, Cullis B. Genetic variation for fusarium crown rot tolerance in durum wheat. PLoS One 2021; 16:e0240766. [PMID: 33577599 PMCID: PMC7880437 DOI: 10.1371/journal.pone.0240766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
Tolerance to the cereal disease Fusarium crown rot (FCR) was investigated in a set of 34 durum wheat genotypes, with Suntop, (bread wheat) and EGA Bellaroi (durum) as tolerant and intolerant controls, in a series of replicated field trials over four years with inoculated (FCR-i) and non-inoculated (FCR-n) plots of the genotypes. The genotypes included conventional durum lines and lines derived from crossing durum with 2-49, a bread wheat genotype with the highest level of partial resistance to FCR. A split plot trial design was chosen to optimize the efficiency for the prediction of FCR tolerance for each genotype. A multi-environment trial (MET) analysis was undertaken which indicated that there was good repeatability of FCR tolerance across years. Based on an FCR tolerance index, Suntop was the most tolerant genotype and EGA Bellaroi was very intolerant, but some durum wheats had FCR tolerance indices which were comparable to Suntop. These included some conventional durum genotypes, V101030, TD1702, V11TD013*3X-63 and DBA Bindaroi, as well as genotypes from crosses with 2-49 (V114916 and V114942). The correlation between FCR tolerance and FCR-n yield predictions was moderately negative indicating it could be somewhat difficult to develop FCR-tolerant genotypes that are high yielding under low disease pressure. However, FCR tolerance showed a positive correlation with FCR-i yield predictions in seasons of high disease expression indicating it could be possible to screen for FCR tolerance using only FCR-i treatments. These results are the first demonstration of genetic diversity in durum germplasm for FCR tolerance and they provide a basis for breeding for this trait.
Collapse
Affiliation(s)
| | - Jess Meza
- Centre for Bioinformatics and Biometrics, National Institute for Applied Statistics Research Australia, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - Steve Harden
- Tamworth Agricultural Institute, NSW DPI, Calala, New South Wales, Australia
| | - Brian Cullis
- Centre for Bioinformatics and Biometrics, National Institute for Applied Statistics Research Australia, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
12
|
Alahmad S, Kang Y, Dinglasan E, Mazzucotelli E, Voss-Fels KP, Able JA, Christopher J, Bassi FM, Hickey LT. Adaptive Traits to Improve Durum Wheat Yield in Drought and Crown Rot Environments. Int J Mol Sci 2020; 21:ijms21155260. [PMID: 32722187 PMCID: PMC7432628 DOI: 10.3390/ijms21155260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023] Open
Abstract
Durum wheat (Triticum turgidum L. ssp. durum) production can experience significant yield losses due to crown rot (CR) disease. Losses are usually exacerbated when disease infection coincides with terminal drought. Durum wheat is very susceptible to CR, and resistant germplasm is not currently available in elite breeding pools. We hypothesize that deploying physiological traits for drought adaptation, such as optimal root system architecture to reduce water stress, might minimize losses due to CR infection. This study evaluated a subset of lines from a nested association mapping population for stay-green traits, CR incidence and yield in field experiments as well as root traits under controlled conditions. Weekly measurements of normalized difference vegetative index (NDVI) in the field were used to model canopy senescence and to determine stay-green traits for each genotype. Genome-wide association studies using DArTseq molecular markers identified quantitative trait loci (QTLs) on chromosome 6B (qCR-6B) associated with CR tolerance and stay-green. We explored the value of qCR-6B and a major QTL for root angle QTL qSRA-6A using yield datasets from six rainfed environments, including two environments with high CR disease pressure. In the absence of CR, the favorable allele for qSRA-6A provided an average yield advantage of 0.57 t·ha−1, whereas in the presence of CR, the combination of favorable alleles for both qSRA-6A and qCR-6B resulted in a yield advantage of 0.90 t·ha−1. Results of this study highlight the value of combining above- and belowground physiological traits to enhance yield potential. We anticipate that these insights will assist breeders to design improved durum varieties that mitigate production losses due to water deficit and CR.
Collapse
Affiliation(s)
- Samir Alahmad
- Centre for Crop Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia; (Y.K.); (E.D.); (K.P.V.-F.)
- Correspondence: (S.A.); (L.T.H.)
| | - Yichen Kang
- Centre for Crop Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia; (Y.K.); (E.D.); (K.P.V.-F.)
| | - Eric Dinglasan
- Centre for Crop Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia; (Y.K.); (E.D.); (K.P.V.-F.)
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics (CREA)—Research Centre for Genomics and Bioinformatics, 29017 Fiorenzuola d’Arda (PC), Italy;
| | - Kai P. Voss-Fels
- Centre for Crop Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia; (Y.K.); (E.D.); (K.P.V.-F.)
| | - Jason A. Able
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Urrbrae, SA 5064, Australia;
| | - Jack Christopher
- Centre for Crop Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Leslie Research Facility, Toowoomba, QLD 4350, Australia;
| | - Filippo M. Bassi
- International Center for the Agricultural Research in the Dry Areas, Rabat 10000, Morocco;
| | - Lee T. Hickey
- Centre for Crop Science, The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, Brisbane, QLD 4072, Australia; (Y.K.); (E.D.); (K.P.V.-F.)
- Correspondence: (S.A.); (L.T.H.)
| |
Collapse
|
13
|
Smiley RW, Machado S. Fusarium Crown Rot of Winter Wheat Influenced by Resource Competition Near a Tree Windbreak. PLANT DISEASE 2020; 104:348-357. [PMID: 31841102 DOI: 10.1094/pdis-01-19-0213-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fusarium crown rot becomes most severe when wheat is stressed for water near the time of anthesis. This research examined the potential to study crown rot in the gradient of resource competition near a tree windbreak. Winter wheat was planted for 2 years into a field infested by Fusarium pseudograminearum and bordered by 17-m-high Austrian pines. Crown rot, plant growth and yield, and soil water content were evaluated at six distances (5 to 46 m) perpendicular to the tree line in strip plots inoculated or not inoculated with the pathogen. Crown rot was minor (<5% whiteheads) in noninoculated strips and greater in inoculated strips (26 to 35%) in a 21-m zone from 9 to 30 m from the tree line (0.5-1.8 times the tree height; 0.5-1.8H). At 46 m (2.7H), crown rot was similar in noninoculated and inoculated strips (2 to 5% whiteheads). Whiteheads and culm browning were roughly the reverse of soil water depletion by tree roots. Grain yield at 23 m compared with 46 m was reduced by 33 to 35% in noninoculated plots and by 43 to 49% in inoculated plots. It is possible to study associations between water stress and Fusarium crown rot in the zone of resource competition near windbreaks.
Collapse
Affiliation(s)
- Richard W Smiley
- Oregon State University, Columbia Basin Agricultural Research Center, P.O. Box 370, Pendleton, OR 97801
| | - Stephen Machado
- Oregon State University, Columbia Basin Agricultural Research Center, P.O. Box 370, Pendleton, OR 97801
| |
Collapse
|
14
|
Beres BL, Rahmani E, Clarke JM, Grassini P, Pozniak CJ, Geddes CM, Porker KD, May WE, Ransom JK. A Systematic Review of Durum Wheat: Enhancing Production Systems by Exploring Genotype, Environment, and Management (G × E × M) Synergies. FRONTIERS IN PLANT SCIENCE 2020; 11:568657. [PMID: 33193496 PMCID: PMC7658099 DOI: 10.3389/fpls.2020.568657] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/06/2020] [Indexed: 05/08/2023]
Abstract
According to the UN-FAO, agricultural production must increase by 50% by 2050 to meet global demand for food. This goal can be accomplished, in part, by the development of improved cultivars coupled with modern best management practices. Overall, wheat production on farms will have to increase significantly to meet future demand, and in the face of a changing climate that poses risk to even current rates of production. Durum wheat [Triticum turgidum L. ssp. durum (Desf.)] is used largely for pasta, couscous and bulgur production. Durum producers face a range of factors spanning abiotic (frost damage, drought, and sprouting) and biotic (weed, disease, and insect pests) stresses that impact yields and quality specifications desired by export market end-users. Serious biotic threats include Fusarium head blight (FHB) and weed pest pressures, which have increased as a result of herbicide resistance. While genetic progress for yield and quality is on pace with common wheat (Triticum aestivum L.), development of resistant durum cultivars to FHB is still lagging. Thus, successful biotic and abiotic threat mitigation are ideal case studies in Genotype (G) × Environment (E) × Management (M) interactions where superior cultivars (G) are grown in at-risk regions (E) and require unique approaches to management (M) for sustainable durum production. Transformational approaches to research are needed in order for agronomists, breeders and durum producers to overcome production constraints. Designing robust agronomic systems for durum demands scientific creativity and foresight based on a deep understanding of constitutive components and their innumerable interactions with each other and the environment. This encompasses development of durum production systems that suit specific agro-ecozones and close the yield gap between genetic potential and on-farm achieved yield. Advances in individual technologies (e.g., genetic improvements, new pesticides, seeding technologies) are of little benefit until they are melded into resilient G × E × M systems that will flourish in the field under unpredictable conditions of prairie farmlands. We explore how recent genetic progress and selected management innovations can lead to a resilient and transformative durum production system.
Collapse
Affiliation(s)
- Brian L. Beres
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
- *Correspondence: Brian L. Beres,
| | - Elham Rahmani
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - John M. Clarke
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Patricio Grassini
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, United States
| | - Curtis J. Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Charles M. Geddes
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Kenton D. Porker
- South Australia Research and Development Institute, Adelaide, SA, Australia
| | - William E. May
- Agriculture and Agri-Food Canada, Indian Head Research Station, Saskatchewan, SK, Canada
| | - Joel K. Ransom
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
15
|
Smiley RW. Mechanized Method to Inoculate Field Soil to Evaluate Fusarium Crown Rot of Wheat. PLANT DISEASE 2019; 103:2857-2864. [PMID: 31524084 DOI: 10.1094/pdis-01-19-0215-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Assessments of Fusarium crown rot are often made in field trials inoculated with Fusarium pseudograminearum or F. culmorum. Factors affecting the efficiency of two inoculation procedures were evaluated. Pulverized Fusarium-colonized wheat plus oat grain inoculum mixed with the wheat seed caused more seedling damping-off compared with equal rates of colonized whole millet seeds placed 2 cm above the wheat seed. Both inoculation systems increased the incidence and severity of crown rot. The efficiency of F. pseudograminearum-colonized millet seed inoculum was not reduced when wheat seed was treated with difenoconazole. Crown rot in inoculated plots became greater when starter fertilizer was applied with or below the wheat seed and when soil below the wheat seed was disrupted by a seed drill with an opener that creates a groove or trench directly below the seed. No biologically important associations were detected between whiteheads and other measures of crown rot, grain yield, or grain test weight. The millet seed inoculation system was the most efficient for wheat production systems in the semiarid U.S. Pacific Northwest.
Collapse
Affiliation(s)
- Richard W Smiley
- Columbia Basin Agricultural Research Center, Oregon State University, Pendleton, OR 97801
| |
Collapse
|
16
|
Smiley RW. Fusarium Crown Rot Whitehead Symptom as Influenced by Wheat Crop Management and Sampling Date. PLANT DISEASE 2019; 103:2612-2623. [PMID: 31408402 DOI: 10.1094/pdis-01-19-0226-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Symptoms of Fusarium crown rot of wheat include premature death of inflorescens (whiteheads), lesions on subcrown internodes, and rotting of crown tissue and lower stem internodes. Each symptom type is influenced by a different set of environmental conditions. Whiteheads are the easiest symptom to quantify and are frequently reported in the Pacific Northwest U.S.A. The objective of this research was to examine factors associated with whitehead expression and relationships with wheat yield and test weight. Incidence of whiteheads differed for inoculations with different isolates of F. pseudograminearum and F. culmorum, and over years due to weather factors. Whiteheads became less as planting dates for winter wheat were delayed until after September, and incidence was increased with increasing nitrogen application rate. Dates of initial and greatest expression of whiteheads differed among cultivars, which was associated in part with the cultivar heading date. Whiteheads were not correlated with subcrown internode lesions or browning of crown tissue. Whiteheads were also not correlated with grain test weight. Whiteheads were sometimes negatively associated with grain yield, but that relationship was variable and could not be considered a reliable, recurrent, or accurate measure of crown rot severity. These results indicate the need for caution in reporting whiteheads as a sole indicator of cultivar susceptibility to Fusarium crown rot.
Collapse
Affiliation(s)
- Richard W Smiley
- Emeritus Professor, Oregon State University, Columbia Basin Agricultural Research Center, Pendleton, OR 97801
| |
Collapse
|
17
|
Forknall CR, Simpfendorfer S, Kelly AM. Using Yield Response Curves to Measure Variation in the Tolerance and Resistance of Wheat Cultivars to Fusarium Crown Rot. PHYTOPATHOLOGY 2019; 109:932-941. [PMID: 30575445 DOI: 10.1094/phyto-09-18-0354-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The disease crown rot, caused predominantly by the fungal pathogen Fusarium pseudograminearum, is a major disease of winter cereals in many regions of the world, including Australia. A methodology is proposed, using response curves, to robustly estimate the relationship between grain yield and increasing crown rot pathogen burdens. Using data from a field experiment conducted in northern New South Wales, Australia in 2016, response curves were derived for five commercial wheat cultivars exposed to six increasing rates of crown rot inoculum, where the rates served to establish a range of crown rot pathogen burdens. In this way, the response curve methodology is fundamentally different from alternate approaches that rely on genetic or environmental variation to establish a range in pathogen burdens over which yield loss relationships are estimated. By manipulating only the rates of crown rot inoculum and, thus, pathogen burden directly, the number of additional confounding factors and interactions are minimized, enabling the robust estimation of the rate of change in yield due to increasing crown rot pathogen burdens for each cultivar. The methodology revealed variation in the rate of change in yield between cultivars, along with the extent of crown rot symptoms expressed by the cultivars. Variation in the rate of change in yield between cultivars provides definitive evidence of differences in the tolerance of commercial Australian wheat cultivars to crown rot caused by F. pseudograminearum, while variation in the extent of crown rot symptoms signifies differences in the resistance of the cultivars to this disease. The response curve methodology also revealed variation in how the different mechanisms of tolerance and resistance act to limit yield losses due to crown rot for different cultivars.
Collapse
Affiliation(s)
- Clayton R Forknall
- 1 Department of Agriculture and Fisheries, Leslie Research Facility, Toowoomba, Queensland 4350, Australia; and
| | - Steven Simpfendorfer
- 2 New South Wales Department of Primary Industries, Tamworth, New South Wales 2340, Australia
| | - Alison M Kelly
- 1 Department of Agriculture and Fisheries, Leslie Research Facility, Toowoomba, Queensland 4350, Australia; and
| |
Collapse
|
18
|
Robinson A, Ryu D, Lee HJ. Utility of a Multilevel Modeling Approach to Investigate Differences in Isolation Frequency of Fusarium culmorum in Agricultural Soil Across the Inland Pacific Northwest. PHYTOPATHOLOGY 2019; 109:1062-1073. [PMID: 30652959 DOI: 10.1094/phyto-05-18-0168-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The plant pathogen Fusarium culmorum represents an inoculum source capable of contaminating grains with deoxynivalenol in the Inland Northwest region of the United States. A multilevel modeling approach utilizing varying intercepts for different sampling quadrats, fields, and iterations in the dataset was performed to characterize differences in isolation frequency of F. culmorum collected during a 2-year soil survey. Differences in the isolation frequency of F. culmorum varied the most by sampled field followed by quadrat and iteration, respectively. Higher relative elevation within the sampling region of a field limited the amount of F. culmorum recovered. The effect of annual climate variables was investigated using combinations of single-variable and multivariable model equations with linear and polynomial terms. The same data analysis approach was applied to an external dataset of F. culmorum isolation frequencies in grains from fields across eastern Australia. These results represent a case study for investigating variability within datasets containing overdispersed fungal counts and incorporating climate summaries as predictor variables.
Collapse
Affiliation(s)
- Andrew Robinson
- School of Food Science, University of Idaho, Moscow, ID 83844-2312
| | - Dojin Ryu
- School of Food Science, University of Idaho, Moscow, ID 83844-2312
| | - Hyun Jung Lee
- School of Food Science, University of Idaho, Moscow, ID 83844-2312
| |
Collapse
|
19
|
Zhou H, He X, Wang S, Ma Q, Sun B, Ding S, Chen L, Zhang M, Li H. Diversity of the Fusarium pathogens associated with crown rot in the Huanghuai wheat-growing region of China. Environ Microbiol 2019; 21:2740-2754. [PMID: 30897256 DOI: 10.1111/1462-2920.14602] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 11/27/2022]
Abstract
To investigate the distribution and diversity of the pathogens associated with Fusarium crown rot in the Huanghuai wheat-growing region (HHWGR) of China, we collected wheat samples with symptomatic stem bases from seven provinces in the HHWGR between 2013 and 2016. A total of 1196 isolates obtained from 222 locations were identified as 9 Fusarium species based on morphological and molecular identification. Of these pathogen species, F. pseudograminearum was the dominant species. Furthermore, F. sinensis was isolated from the disease specimens and tested for virulence to wheat. The result of the pathogenicity revealed that an intraspecific differentiation existed in F. pseudograminearum; sequence analysis of the EF-1α gene showed that 194 F. pseudograminearum isolates were differentiated into two distinct clades which closed to the strains from Australia and China respectively, but neither pathogenicity nor EF-1α sequence was related to the geographic origins of these isolates. However, universal rice primers-polymerase chain reaction showed a correlation with the geographical origins of the 194 isolates, which were divided into eight subclusters, the level of genetic diversity was higher within a geographical population than among the different populations. The results of these analyses can be directly used to facilitate disease monitoring and development of control strategies.
Collapse
Affiliation(s)
- Haifeng Zhou
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiaolun He
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Shuo Wang
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Qingzhou Ma
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Bingjian Sun
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Shengli Ding
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, Henan, China.,Collaborative Innovation Center of HenanGrain Crops, Zhengzhou, 450002, Henan, China
| | - Linlin Chen
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, Henan, China.,National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, Henan, China
| | - Meng Zhang
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Honglian Li
- Department of Plant Pathology, Henan Agricultural University, Zhengzhou, 450002, Henan, China.,National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, Henan, China.,Collaborative Innovation Center of HenanGrain Crops, Zhengzhou, 450002, Henan, China
| |
Collapse
|
20
|
Qian X, Chen L, Guo X, He D, Shi M, Zhang D. Shifts in community composition and co-occurrence patterns of phyllosphere fungi inhabiting Mussaenda shikokiana along an elevation gradient. PeerJ 2018; 6:e5767. [PMID: 30345176 PMCID: PMC6187995 DOI: 10.7717/peerj.5767] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/17/2018] [Indexed: 02/03/2023] Open
Abstract
The altitudinal effects on the distributions of phyllosphere fungal assemblages in conspecific plants remain poorly elucidated. To address this, phyllosphere fungal communities associated with Mussaenda shikokiana were investigated at four sites across a 350 m elevation gradient in a subtropical forest by employing Illumina metabarcoding of the fungal internal transcribed spacer 2 (ITS2) region. Our results demonstrated that phyllosphere fungal assemblages with a single host possessed high taxonomic diversity and multiple trophic guilds. OTU richness was significantly influenced by elevation. The elevation gradient also entailed distinct shifts in the community composition of phyllosphere fungi, which was significantly related to geographical distance and mean annual temperature (MAT). Additionally, comparison of phyllosphere fungal networks showed reduced connectivity with increasing elevation. Our data provide insights on the distribution and interactions of the phyllosphere fungal community associated with a single host along a short elevation gradient.
Collapse
Affiliation(s)
- Xin Qian
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Guo
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dan He
- Center for Ecological and Environmental Sciences, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Miaomiao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Kazan K, Gardiner DM. Fusarium crown rot caused by Fusarium pseudograminearum in cereal crops: recent progress and future prospects. MOLECULAR PLANT PATHOLOGY 2018; 19:1547-1562. [PMID: 29105256 PMCID: PMC6638152 DOI: 10.1111/mpp.12639] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 05/22/2023]
Abstract
Diseases caused by Fusarium pathogens inflict major yield and quality losses on many economically important plant species worldwide, including cereals. Fusarium crown rot (FCR), caused by Fusarium pseudograminearum, is a cereal disease that occurs in many arid and semi-arid cropping regions of the world. In recent years, this disease has become more prevalent, in part as a result of the adoption of moisture-preserving cultural practices, such as minimum tillage and stubble retention. In this pathogen profile, we present a brief overview of recent research efforts that have not only advanced our understanding of the interactions between F. pseudograminearum and cereal hosts, but have also provided new disease management options. For instance, significant progress has been made in the genetic characterization of pathogen populations, the development of new tools for disease prediction, and the identification and pyramiding of loci that confer quantitative resistance to FCR in wheat and barley. In addition, transcriptome analyses have revealed new insights into the processes involved in host defence. Significant progress has also been made in understanding the mechanistic details of the F. pseudograminearum infection process. The sequencing and comparative analyses of the F. pseudograminearum genome have revealed novel virulence factors, possibly acquired through horizontal gene transfer. In addition, a conserved pathogen gene cluster involved in the degradation of wheat defence compounds has been identified, and a role for the trichothecene toxin deoxynivalenol (DON) in pathogen virulence has been reported. Overall, a better understanding of cereal host-F. pseudograminearum interactions will lead to the development of new control options for this increasingly important disease problem. Taxonomy: Fusarium pseudograminearum O'Donnell & Aoki; Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Sordariomycetes; Subclass Hypocreomycetidae; Order Hypocreales; Family Nectriaceae; Genus Fusarium. Disease symptoms: Fusarium crown rot caused by F. pseudograminearum is also known as crown rot, foot rot and root rot. Infected seedlings can die before or after emergence. If infected seedlings survive, typical disease symptoms are browning of the coleoptile, subcrown internode, lower leaf sheaths and adjacent stems and nodal tissues; this browning can become evident within a few weeks after planting or throughout plant development. Infected plants may develop white heads with no or shrivelled grains. Disease symptoms are exacerbated under water limitation. Identification and detection: Fusarium pseudograminearum macroconidia usually contain three to five septa (22-60.5 × 2.5-5.5 μm). On potato dextrose agar (PDA), aerial mycelia appear floccose and reddish white, with red or reddish-brown reverse pigmentation. Diagnostic polymerase chain reaction (PCR) tests based on the amplification of the gene encoding translation elongation factor-1a (TEF-1a) have been developed for molecular identification. Host range: All major winter cereals can be colonized by F. pseudograminearum. However, the main impact of this pathogen is on bread (Triticum aestivum L.) and durum (Triticum turgidum L. spp. durum (Dest.)) wheat and barley (Hordeum vulgare L.). Oats (Avena sativa L.) can be infected, but show little or no disease symptoms. In addition, the pathogen has been isolated from various other grass genera, such as Phalaris, Agropyron and Bromus, which may occur as common weeds. Useful websites: https://nt.ars-grin.gov/fungaldatabases/; http://plantpath.psu.edu/facilities/fusarium-research-center; https://nt.ars-grin.gov/fungaldatabases/; http://www.speciesfungorum.org/Names/Names.asp.
Collapse
Affiliation(s)
- Kemal Kazan
- CSIRO Agriculture and Food Queensland Bioscience PrecinctSt. LuciaQld 4067Australia
- Queensland Alliance for Agriculture & Food Innovation (QAAFI)University of Queensland, Queensland Bioscience PrecinctSt. LuciaQld 4067Australia
| | - Donald M. Gardiner
- CSIRO Agriculture and Food Queensland Bioscience PrecinctSt. LuciaQld 4067Australia
| |
Collapse
|
22
|
Knight NL, Sutherland MW. Assessment of Fusarium pseudograminearum and F. culmorum Biomass in Seedlings of Potential Host Cereal Species. PLANT DISEASE 2017; 101:2116-2122. [PMID: 30677367 DOI: 10.1094/pdis-12-16-1739-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fusarium crown rot is a major disease of wheat and barley worldwide, with the most frequently isolated causal agents being Fusarium pseudograminearum and F. culmorum. This study has successfully designed a quantitative polymerase chain reaction assay that is specific for F. culmorum, which has been used in conjunction with a previously established F. pseudograminearum-specific assay to compare the location and extent of infection by each fungus across a range of potential hosts, including six winter and three summer cereal species. All common winter cereals, excluding oat, demonstrated a similar range of visual and fungal biomass results when inoculated with either F. pseudograminearum or F. culmorum. Oat exhibited the lowest visual disease ratings and fungal biomass values of the winter cereals, while the sorghum, maize, and rice cultivars returned the lowest values overall. The ranking of host species according to visual discoloration was strongly correlated for both pathogens. Visual reactions to F. pseudograminearum were greater than those caused by F. culmorum in all potential hosts trialed; however, fungal biomass results only indicated this trend for barley. These results demonstrate significant variation in the ability of these pathogens to colonize the range of cereal species examined and also suggest differences between the pathogens in their patterns of host colonization.
Collapse
Affiliation(s)
- Noel L Knight
- Centre for Crop Health, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
| | - Mark W Sutherland
- Centre for Crop Health, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
| |
Collapse
|