1
|
Wani MY, Ganie NA, Dar KA, Dar SQ, Khan AH, Khan NA, Zahmatkesh S, Manzar MS, Banerjee R. Nanotechnology future in food using carbohydrate macromolecules: A state-of-the-art review. Int J Biol Macromol 2023; 239:124350. [PMID: 37028631 DOI: 10.1016/j.ijbiomac.2023.124350] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023]
Abstract
It is commonly known that agricultural pest and disease management is achieved through the use of agricultural chemicals and other synthetic compounds, which can contaminate water, soil, and food. Using agrochemicals indiscriminately has negative effects on the environment and poor food quality. In contrast, the world's population is increasing rapidly, and arable land is diminishing daily. Traditional agricultural methods must be replaced by nanotechnology-based treatments that efficiently address both the demands of the present and the needs of the future. As a promising contributor to sustainable agriculture and food production worldwide, nanotechnology has been applied through innovative and resourceful tools. Recent advances in nanomaterial engineering have increased agricultural and food sector production and protected crops using nanoparticles (1000 nm). Agrochemicals, nutrients, and genes can now be distributed to plants in a precise and tailored manner through nanoencapsulation (nanofertilizers, nanopesticides, and genes). Despite the advancement of technology in agriculture, some areas remain unexplored. The various agricultural domains must therefore be updated in priority order. The development of long-lasting and efficient nanoparticle materials will be key to the development of future eco-friendly and nanoparticle-based technologies. We thoroughly covered the many types of nanoscale agro-materials and gave an overview of biological techniques in nano-enabled tactics that can effectively reduce plant biotic and abiotic challenges while potentially boosting plant nutritional values.
Collapse
Affiliation(s)
- M Younus Wani
- College of Temperate Sericulture, Mirgund, SKUAST-Kashmir, Shalimar, Jammu & Kashmir 190025, India
| | - N A Ganie
- College of Temperate Sericulture, Mirgund, SKUAST-Kashmir, Shalimar, Jammu & Kashmir 190025, India
| | - K A Dar
- College of Temperate Sericulture, Mirgund, SKUAST-Kashmir, Shalimar, Jammu & Kashmir 190025, India
| | - S Q Dar
- Civil Engineering Department, College of Engineering, Jazan University, PO Box: 706, Jazan 45142, Saudi Arabia
| | - Afzal Husain Khan
- Civil Engineering Department, College of Engineering, Jazan University, PO Box: 706, Jazan 45142, Saudi Arabia
| | - Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico.
| | - Mohammad Saood Manzar
- Department of Environmental Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | |
Collapse
|
2
|
Abd-Elgawad MMM. Optimizing Safe Approaches to Manage Plant-Parasitic Nematodes. PLANTS 2021; 10:plants10091911. [PMID: 34579442 PMCID: PMC8472902 DOI: 10.3390/plants10091911] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Plant-parasitic nematodes (PPNs) infect and cause substantial yield losses of many foods, feed, and fiber crops. Increasing concern over chemical nematicides has increased interest in safe alternative methods to minimize these losses. This review focuses on the use and potential of current methods such as biologicals, botanicals, non-host crops, and related rotations, as well as modern techniques against PPNs in sustainable agroecosystems. To evaluate their potential for control, this review offers overviews of their interactions with other biotic and abiotic factors from the standpoint of PPN management. The positive or negative roles of specific production practices are assessed in the context of integrated pest management. Examples are given to reinforce PPN control and increase crop yields via dual-purpose, sequential, and co-application of agricultural inputs. The involved PPN control mechanisms were reviewed with suggestions to optimize their gains. Using the biologicals would preferably be backed by agricultural conservation practices to face issues related to their reliability, inconsistency, and slow activity against PPNs. These practices may comprise offering supplementary resources, such as adequate organic matter, enhancing their habitat quality via specific soil amendments, and reducing or avoiding negative influences of pesticides. Soil microbiome and planted genotypes should be manipulated in specific nematode-suppressive soils to conserve native biologicals that serve to control PPNs. Culture-dependent techniques may be expanded to use promising microbial groups of the suppressive soils to recycle in their host populations. Other modern techniques for PPN control are discussed to maximize their efficient use.
Collapse
Affiliation(s)
- Mahfouz M M Abd-Elgawad
- Plant Pathology Department, National Research Centre, El-Behooth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
3
|
Forghani F, Hajihassani A. Recent Advances in the Development of Environmentally Benign Treatments to Control Root-Knot Nematodes. FRONTIERS IN PLANT SCIENCE 2020; 11:1125. [PMID: 32793271 PMCID: PMC7387703 DOI: 10.3389/fpls.2020.01125] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/08/2020] [Indexed: 05/17/2023]
Abstract
Root-knot nematodes (RKNs), Meloidogyne spp., are sedentary endoparasites that negatively affect almost every crop in the world. Current management practices are not enough to completely control RKN. Application of certain chemicals is also being further limited in recent years. It is therefore crucial to develop additional control strategies through the application of environmentally benign methods. There has been much research performed around the world on the topic, leading to useful outcomes and interesting findings capable of improving farmers' income. It is important to have dependable resources gathering the data produced to facilitate future research. This review discusses recent findings on the application of environmentally benign treatments to control RKN between 2015 and April 2020. A variety of biological control strategies, natural compounds, soil amendments and other emerging strategies have been included, among which, many showed promising results in RKN control in vitro and/or in vivo. Development of these methods continues to be an area of active research, and new information on their efficacy will continuously become available. We have discussed some of the control mechanisms involved and suggestions were given on maximizing the outcome of the future efforts.
Collapse
|
4
|
Fu G, Chen K, Wang J, Wang M, Li R, Wu X, Wu C, Zhang P, Liu C, Wan Y. Screening of tea saponin-degrading strain to degrade the residual tea saponin in tea seed cake. Prep Biochem Biotechnol 2020; 50:697-707. [PMID: 32108551 DOI: 10.1080/10826068.2020.1731827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although tea seed cake (TSC) possesses high nutritional value, its high content of tea saponin (TS) limits its potential as feed. This study aimed to degrade TS in TSC by saponin-degrading strain and used a multistrains fermentation method to improve its nutritional value and palatability. Three saponin-degrading strains were isolated from Oleum Camelliae mill soil and identified as Citrobacter sp. FCTS301, Pantoea sp. FCTS302, and Enterobacter sp. FCTS303. Single-factor experiment showed that Citrobacter sp. FCTS301 had the highest degradation rate of TS. Response surface analysis for Citrobacter sp. FCTS301 indicated that the optimum culture conditions were as follows: initial pH of 7.2, culture temperature of 34.2 °C, inoculation amount of 7.3%, the agitation rate of 150 rpm, and the TS concentration of 10.0 g/L. Under these conditions, the maximum degradation rate was 82.6%. The fermentation process of TSC was obtained by a multistrains fermentation experiment. Considering the protein content, crude fiber degradation rate, and TS degradation rate of each group, the optimum inoculum amount of strains included Citrobacter sp. FCTS301, Aspergillus oryzae NCUF414, Saccharomyces cersvisiae NCUF306.5, and Lactobacillus plantarum NCUF201.1(5%, 0.5%, 1.0%, and 1.5%). After TS was degraded efficiently, fermented TSC can be presumed a potential feed raw material.
Collapse
Affiliation(s)
- Guiming Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang City, China
| | - Kedan Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang City, China
| | - Jiantao Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang City, China
| | - Mei Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang City, China.,Quality Supervision and Inspection Institute of Products, Ganzhou, China
| | - Ruyi Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang City, China
| | - Xiaojiang Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang City, China
| | - Choufei Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| | - Peng Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang City, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang City, China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang City, China
| |
Collapse
|