1
|
Lhamo D, Sun Q, Friesen TL, Karmacharya A, Li X, Fiedler JD, Faris JD, Xia G, Luo M, Gu YQ, Liu Z, Xu SS. Association mapping of tan spot and septoria nodorum blotch resistance in cultivated emmer wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:193. [PMID: 39073628 DOI: 10.1007/s00122-024-04700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
KEY MESSAGE A total of 65 SNPs associated with resistance to tan spot and septoria nodorum blotch were identified in a panel of 180 cultivated emmer accessions through association mapping Tan spot and septoria nodorum blotch (SNB) are foliar diseases caused by the respective fungal pathogens Pyrenophora tritici-repentis and Parastagonospora nodorum that affect global wheat production. To find new sources of resistance, we evaluated a panel of 180 cultivated emmer wheat (Triticum turgidum ssp. dicoccum) accessions for reactions to four P. tritici-repentis isolates Pti2, 86-124, 331-9 and DW5, two P. nodorum isolate, Sn4 and Sn2000, and four necrotrophic effectors (NEs) produced by the pathogens. About 8-36% of the accessions exhibited resistance to the four P. tritici-repentis isolates, with five accessions demonstrating resistance to all isolates. For SNB, 64% accessions showed resistance to Sn4, 43% to Sn2000 and 36% to both isolates, with Spain (11% accessions) as the most common origin of resistance. To understand the genetic basis of resistance, association mapping was performed using SNP (single nucleotide polymorphism) markers generated by genotype-by-sequencing and the 9 K SNP Infinium array. A total of 46 SNPs were significantly associated with tan spot and 19 SNPs with SNB resistance or susceptibility. Six trait loci on chromosome arms 1BL, 3BL, 4AL (2), 6BL and 7AL conferred resistance to two or more isolates. Known NE sensitivity genes for disease development were undetected except Snn5 for Sn2000, suggesting novel genetic factors are controlling host-pathogen interaction in cultivated emmer. The emmer accessions with the highest levels of resistance to the six pathogen isolates (e.g., CItr 14133-1, PI 94634-1 and PI 377672) could serve as donors for tan spot and SNB resistance in wheat breeding programs.
Collapse
Affiliation(s)
- Dhondup Lhamo
- USDA-ARS, Crop Improvement and Genetics Research Unit, Western Regional Research Center, Albany, CA, 94710, USA
| | - Qun Sun
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Timothy L Friesen
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Anil Karmacharya
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Jason D Fiedler
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Justin D Faris
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Mingcheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Yong-Qiang Gu
- USDA-ARS, Crop Improvement and Genetics Research Unit, Western Regional Research Center, Albany, CA, 94710, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA.
| | - Steven S Xu
- USDA-ARS, Crop Improvement and Genetics Research Unit, Western Regional Research Center, Albany, CA, 94710, USA.
| |
Collapse
|
2
|
Mandal R, He X, Singh G, Kabir MR, Joshi AK, Singh PK. Screening of CIMMYT and South Asian Bread Wheat Germplasm Reveals Marker-Trait Associations for Seedling Resistance to Septoria Nodorum Blotch. Genes (Basel) 2024; 15:890. [PMID: 39062669 PMCID: PMC11276481 DOI: 10.3390/genes15070890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Wheat (Triticum aestivum L.) production is adversely impacted by Septoria nodorum blotch (SNB), a fungal disease caused by Parastagonospora nodorum. Wheat breeders are constantly up against this biotic challenge as they try to create resistant cultivars. The genome-wide association study (GWAS) has become an efficient tool for identifying molecular markers linked with SNB resistance. This technique is used to acquire an understanding of the genetic basis of resistance and to facilitate marker-assisted selection. In the current study, a total of 174 bread wheat accessions from South Asia and CIMMYT were assessed for SNB reactions at the seedling stage in three greenhouse experiments at CIMMYT, Mexico. The results indicated that 129 genotypes were resistant to SNB, 39 were moderately resistant, and only 6 were moderately susceptible. The Genotyping Illumina Infinium 15K Bead Chip was used, and 11,184 SNP markers were utilized to identify marker-trait associations (MTAs) after filtering. Multiple tests confirmed the existence of significant MTAs on chromosomes 5B, 5A, and 3D, and the ones at Tsn1 on 5B were the most stable and conferred the highest phenotypic variation. The resistant genotypes identified in this study could be cultivated in South Asian countries as a preventative measure against the spread of SNB. This work also identified molecular markers of SNB resistance that could be used in future wheat breeding projects.
Collapse
Affiliation(s)
- Rupsanatan Mandal
- Visiting Scientist, International Maize and Wheat Improvement Center (CIMMYT), Texcoco 56237, Mexico;
- Department of Genetics and Plant Breeding, Uttar Banga Krishi Viswavidyalaya, Cooch Behar 736165, India
| | - Xinyao He
- International Maize and Wheat Improvement Centre, Texcoco 56237, Mexico;
| | - Gyanendra Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India;
| | | | - Arun Kumar Joshi
- International Maize and Wheat Improvement Center (CIMMYT)-India Office, New Delhi 110012, India;
- Borlaug Institute for South Asia, New Delhi 110012, India
| | - Pawan Kumar Singh
- International Maize and Wheat Improvement Centre, Texcoco 56237, Mexico;
| |
Collapse
|
3
|
Navathe S, He X, Kamble U, Kumar M, Patial M, Singh G, Singh GP, Joshi AK, Singh PK. Assessment of Indian wheat germplasm for Septoria nodorum blotch and tan spot reveals new QTLs conferring resistance along with recessive alleles of Tsn1 and Snn3. FRONTIERS IN PLANT SCIENCE 2023; 14:1223959. [PMID: 37881616 PMCID: PMC10597639 DOI: 10.3389/fpls.2023.1223959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
The leaf blight diseases, Septoria nodorum blotch (SNB), and tan spot (TS) are emerging due to changing climatic conditions in the northern parts of India. We screened 296 bread wheat cultivars released in India over the past 20 years for seedling resistance against SNB (three experiments) and TS (two experiments). According to a genome-wide association study, six QTLs on chromosome arms 1BL, 2AS, 5BL, and 6BL were particularly significant for SNB across all three years, of which Q.CIM.snb.1BL, Q.CIM.snb.2AS1, Q.CIM.snb.2AS.2, and Q.CIM.snb.6BL appeared novel. In contrast, those on 5BS and 5BL may correspond to Snn3 and Tsn1, respectively. The allelic combination of tsn1/snn3 conferred resistance to SNB, whereas that of Tsn1/Snn3 conferred high susceptibility. As for TS, Tsn1 was the only stably significant locus identified in this panel. Several varieties like PBW 771, DBW 277, and HD 3319, were identified as highly resistant to both diseases that can be used in future wheat improvement programs as resistant donors.
Collapse
Affiliation(s)
- Sudhir Navathe
- Genetics and Plant Breeding Group, Agharkar Research Institute, Pune, India
| | - Xinyao He
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT), Texcoco, Mexico
| | - Umesh Kamble
- Division of Crop Improvement, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Manjeet Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Madhu Patial
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gyanendra Singh
- Division of Crop Improvement, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Gyanendra Pratap Singh
- Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Arun Kumar Joshi
- International Maize and Wheat Improvement Centre (CIMMYT) & Borlaug Institute for South Asia (BISA), New Delhi, India
| | - Pawan Kumar Singh
- Global Wheat Program, International Maize and Wheat Improvement Centre (CIMMYT), Texcoco, Mexico
| |
Collapse
|
4
|
Peters Haugrud AR, Shi G, Seneviratne S, Running KLD, Zhang Z, Singh G, Szabo-Hever A, Acharya K, Friesen TL, Liu Z, Faris JD. Genome-wide association mapping of resistance to the foliar diseases septoria nodorum blotch and tan spot in a global winter wheat collection. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:54. [PMID: 37337566 PMCID: PMC10276793 DOI: 10.1007/s11032-023-01400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Septoria nodorum blotch (SNB) and tan spot, caused by the necrotrophic fungal pathogens Parastagonospora nodorum and Pyrenophora tritici-repentis, respectively, often occur together as a leaf spotting disease complex on wheat (Triticum aestivum L.). Both pathogens produce necrotrophic effectors (NEs) that contribute to the development of disease. Here, genome-wide association analysis of a diverse panel of 264 winter wheat lines revealed novel loci on chromosomes 5A and 5B associated with sensitivity to the NEs SnTox3 and SnTox5 in addition to the known sensitivity genes for NEs Ptr/SnToxA, SnTox1, SnTox3, and SnTox5. Sensitivity loci for SnTox267 and Ptr ToxB were not detected. Evaluation of the panel with five P. nodorum isolates for SNB development indicated the Snn3-SnTox3 and Tsn1-SnToxA interactions played significant roles in disease development along with additional QTL on chromosomes 2A and 2D, which may correspond to the Snn7-SnTox267 interaction. For tan spot, the Tsc1-Ptr ToxC interaction was associated with disease caused by two isolates, and a novel QTL on chromosome 7D was associated with a third isolate. The Tsn1-ToxA interaction was associated with SNB but not tan spot. Therefore some, but not all, of the previously characterized host gene-NE interactions in these pathosystems play significant roles in disease development in winter wheat. Based on these results, breeders should prioritize the selection of resistance alleles at the Tsc1, Tsn1, Snn3, and Snn7 loci as well as the 2A and 7D QTL to obtain good levels of resistance to SNB and tan spot in winter wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01400-5.
Collapse
Affiliation(s)
- Amanda R. Peters Haugrud
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102 USA
| | - Sudeshi Seneviratne
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102 USA
| | | | - Zengcui Zhang
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Gurminder Singh
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102 USA
| | - Agnes Szabo-Hever
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Krishna Acharya
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102 USA
| | - Timothy L. Friesen
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102 USA
| | - Justin D. Faris
- Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, , Fargo, ND 58102 USA
| |
Collapse
|
5
|
Gupta PK, Vasistha NK, Singh S, Joshi AK. Genetics and breeding for resistance against four leaf spot diseases in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1023824. [PMID: 37063191 PMCID: PMC10096043 DOI: 10.3389/fpls.2023.1023824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
In wheat, major yield losses are caused by a variety of diseases including rusts, spike diseases, leaf spot and root diseases. The genetics of resistance against all these diseases have been studied in great detail and utilized for breeding resistant cultivars. The resistance against leaf spot diseases caused by each individual necrotroph/hemi-biotroph involves a complex system involving resistance (R) genes, sensitivity (S) genes, small secreted protein (SSP) genes and quantitative resistance loci (QRLs). This review deals with resistance for the following four-leaf spot diseases: (i) Septoria nodorum blotch (SNB) caused by Parastagonospora nodorum; (ii) Tan spot (TS) caused by Pyrenophora tritici-repentis; (iii) Spot blotch (SB) caused by Bipolaris sorokiniana and (iv) Septoria tritici blotch (STB) caused by Zymoseptoria tritici.
Collapse
Affiliation(s)
- Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Murdoch’s Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
- Borlaug Institute for South Asia (BISA), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India
| | - Neeraj Kumar Vasistha
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Department of Genetics-Plant Breeding and Biotechnology, Dr Khem Singh Gill, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, India
| | - Sahadev Singh
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia (BISA), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India
- The International Maize and Wheat Improvement Center (CIMMYT), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India
| |
Collapse
|
6
|
Lin M, Ficke A, Dieseth JA, Lillemo M. Genome-wide association mapping of septoria nodorum blotch resistance in Nordic winter and spring wheat collections. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4169-4182. [PMID: 36151405 PMCID: PMC9734210 DOI: 10.1007/s00122-022-04210-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/29/2022] [Indexed: 05/05/2023]
Abstract
A new QTL for SNB, QSnb.nmbu-2AS, was found in both winter and spring wheat panels that can greatly advance SNB resistance breeding Septoria nodorum blotch (SNB), caused by the necrotrophic fungal pathogen Parastagonospora nodorum, is the dominant leaf blotch pathogen of wheat in Norway. Resistance/susceptibility to SNB is a quantitatively inherited trait, which can be partly explained by the interactions between wheat sensitivity loci (Snn) and corresponding P. nodorum necrotrophic effectors (NEs). Two Nordic wheat association mapping panels were assessed for SNB resistance in the field over three to four years: a spring wheat and a winter wheat panel (n = 296 and 102, respectively). Genome-wide association studies found consistent SNB resistance associated with quantitative trait loci (QTL) on eleven wheat chromosomes, and ten of those QTL were common in the spring and winter wheat panels. One robust QTL on the short arm of chromosome 2A, QSnb.nmbu-2AS, was significantly detected in both the winter and spring wheat panels. For winter wheat, using the four years of SNB field severity data in combination with five years of historical data, the effect of QSnb.nmbu-2AS was confirmed in seven of the nine years, while for spring wheat, the effect was confirmed for all tested years including the historical data from 2014 to 2015. However, lines containing the resistant haplotype are rare in both Nordic spring (4.0%) and winter wheat cultivars (15.7%), indicating the potential of integrating this QTL in SNB resistance breeding programs. In addition, clear and significant additive effects were observed by stacking resistant alleles of the detected QTL, suggesting that marker-assisted selection can greatly facilitate SNB resistance breeding.
Collapse
Affiliation(s)
- Min Lin
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, NO-1432, ÅS, Norway
| | - Andrea Ficke
- Division of Biotechnology and Plant Health, Norwegian Inst. of Bioeconomy Research, P.O. Box 115, NO-1431, ÅS, Norway
| | - Jon Arne Dieseth
- Graminor, AS, Bjørke Gård, Hommelstadvegen 60, NO-2322, Ridabu, Norway
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, NO-1432, ÅS, Norway.
| |
Collapse
|
7
|
Peters Haugrud AR, Zhang Z, Friesen TL, Faris JD. Genetics of resistance to septoria nodorum blotch in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3685-3707. [PMID: 35050394 DOI: 10.1007/s00122-022-04036-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/23/2021] [Indexed: 05/12/2023]
Abstract
Septoria nodorum blotch (SNB) is a foliar disease of wheat caused by the necrotrophic fungal pathogen Parastagonospora nodorum. Research over the last two decades has shown that the wheat-P. nodorum pathosystem mostly follows an inverse gene-for-gene model. The fungus produces necrotrophic effectors (NEs) that interact with specific host gene products encoded by dominant sensitivity (S) genes. When a compatible interaction occurs, a 'defense response' in the host leads to programmed cell death thereby provided dead/dying cells from which the pathogen, being a necrotroph, can acquire nutrients allowing it to grow and sporulate. To date, nine S gene-NE interactions have been characterized in this pathosystem. Five NE-encoding genes, SnTox1, SnTox3, SnToxA, SnTox5, and SnTox267, have been cloned along with three host S genes, Tsn1, Snn1, and Snn3-D1. Studies have shown that P. nodorum hijacks multiple and diverse host targets to cause disease. SNB resistance is often quantitative in nature because multiple compatible interactions usually occur concomitantly. NE gene expression plays a key role in disease severity, and the effect of each compatible interaction can vary depending on the other existing compatible interactions. Numerous SNB-resistance QTL have been identified in addition to the known S genes, and more research is needed to understand the nature of these resistance loci. Marker-assisted elimination of S genes through conventional breeding practices and disruption of S genes using gene editing techniques are both effective strategies for the development of SNB-resistant wheat cultivars, which will become necessary as the global demand for sustenance grows.
Collapse
Affiliation(s)
| | - Zengcui Zhang
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Timothy L Friesen
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA.
| |
Collapse
|
8
|
Shi G, Kariyawasam G, Liu S, Leng Y, Zhong S, Ali S, Moolhuijzen P, Moffat CS, Rasmussen JB, Friesen TL, Faris JD, Liu Z. A Conserved Hypothetical Gene Is Required but Not Sufficient for Ptr ToxC Production in Pyrenophora tritici-repentis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:336-348. [PMID: 35100008 DOI: 10.1094/mpmi-12-21-0299-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fungus Pyrenophora tritici-repentis causes tan spot, an important foliar disease of wheat worldwide. The fungal pathogen produces three necrotrophic effectors, namely Ptr ToxA, Ptr ToxB, and Ptr ToxC to induce necrosis or chlorosis in wheat. Both Ptr ToxA and Ptr ToxB are proteins, and their encoding genes have been cloned. Ptr ToxC was characterized as a low-molecular weight molecule 20 years ago but the one or more genes controlling its production in P. tritici-repentis are unknown. Here, we report the genetic mapping, molecular cloning, and functional analysis of a fungal gene that is required for Ptr ToxC production. The genetic locus controlling the production of Ptr ToxC, termed ToxC, was mapped to a subtelomeric region using segregating biparental populations, genome sequencing, and association analysis. Additional marker analysis further delimited ToxC to a 173-kb region. The predicted genes in the region were examined for presence/absence polymorphism in different races and isolates leading to the identification of a single candidate gene. Functional validation showed that this gene was required but not sufficient for Ptr ToxC production, thus it is designated as ToxC1. ToxC1 encoded a conserved hypothetical protein likely located on the vacuole membrane. The gene was highly expressed during infection, and only one haplotype was identified among 120 isolates sequenced. Our work suggests that Ptr ToxC is not a protein and is likely produced through a cascade of biosynthetic pathway. The identification of ToxC1 is a major step toward revealing the Ptr ToxC biosynthetic pathway and studying its molecular interactions with host factors.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Gayan Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Yueqiang Leng
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Shaukat Ali
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University Brookings, SD 57006, U.S.A
| | - Paula Moolhuijzen
- Center for Crop Disease and Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Caroline S Moffat
- Center for Crop Disease and Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Jack B Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, U.S.A
| |
Collapse
|
9
|
Lozano-Ramírez N, Dreisigacker S, Sansaloni CP, He X, Islas SS, Pérez-Rodríguez P, Carballo AC, Nava-Díaz C, Kishii M, Singh PK. Genome-Wide Association Study for Resistance to Tan Spot in Synthetic Hexaploid Wheat. PLANTS (BASEL, SWITZERLAND) 2022; 11:433. [PMID: 35161413 PMCID: PMC8839754 DOI: 10.3390/plants11030433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Synthetic hexaploid wheat (SHW) has shown effective resistance to a diversity of diseases and insects, including tan spot, which is caused by Pyrenophora tritici-repentis, being an important foliar disease that can attack all types of wheat and several grasses. In this study, 443 SHW plants were evaluated for their resistance to tan spot under controlled environmental conditions. Additionally, a genome-wide association study was conducted by genotyping all entries with the DArTSeq technology to identify marker-trait associations for tan spot resistance. Of the 443 SHW plants, 233 showed resistant and 183 moderately resistant reactions, and only 27 were moderately susceptible or susceptible to tan spot. Durum wheat (DW) parents of the SHW showed moderately susceptible to susceptible reactions. A total of 30 significant marker-trait associations were found on chromosomes 1B (4 markers), 1D (1 marker), 2A (1 marker), 2D (2 markers), 3A (4 markers), 3D (3 markers), 4B (1 marker), 5A (4 markers), 6A (6 markers), 6B (1 marker) and 7D (3 markers). Increased resistance in the SHW in comparison to the DW parents, along with the significant association of resistance with the A and B genome, supported the concept of activating epistasis interaction across the three wheat genomes. Candidate genes coding for F-box and cytochrome P450 proteins that play significant roles in biotic stress resistance were identified for the significant markers. The identified resistant SHW lines can be deployed in wheat breeding for tan spot resistance.
Collapse
Affiliation(s)
- Nerida Lozano-Ramírez
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, El Batán, Texcoco 56237, Mexico; (N.L.-R.); (C.P.S.); (X.H.); (M.K.)
- Colegio de Postgraduados (COLPOS), Montecillo 56264, Mexico; (S.S.I.); (P.P.-R.); (A.C.C.); (C.N.-D.)
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, El Batán, Texcoco 56237, Mexico; (N.L.-R.); (C.P.S.); (X.H.); (M.K.)
| | - Carolina P. Sansaloni
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, El Batán, Texcoco 56237, Mexico; (N.L.-R.); (C.P.S.); (X.H.); (M.K.)
| | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, El Batán, Texcoco 56237, Mexico; (N.L.-R.); (C.P.S.); (X.H.); (M.K.)
| | - Sergio Sandoval Islas
- Colegio de Postgraduados (COLPOS), Montecillo 56264, Mexico; (S.S.I.); (P.P.-R.); (A.C.C.); (C.N.-D.)
| | - Paulino Pérez-Rodríguez
- Colegio de Postgraduados (COLPOS), Montecillo 56264, Mexico; (S.S.I.); (P.P.-R.); (A.C.C.); (C.N.-D.)
| | - Aquiles Carballo Carballo
- Colegio de Postgraduados (COLPOS), Montecillo 56264, Mexico; (S.S.I.); (P.P.-R.); (A.C.C.); (C.N.-D.)
| | - Cristian Nava-Díaz
- Colegio de Postgraduados (COLPOS), Montecillo 56264, Mexico; (S.S.I.); (P.P.-R.); (A.C.C.); (C.N.-D.)
| | - Masahiro Kishii
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, El Batán, Texcoco 56237, Mexico; (N.L.-R.); (C.P.S.); (X.H.); (M.K.)
| | - Pawan K. Singh
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera México-Veracruz, El Batán, Texcoco 56237, Mexico; (N.L.-R.); (C.P.S.); (X.H.); (M.K.)
| |
Collapse
|
10
|
Katoch S, Sharma V, Sharma D, Salwan R, Rana SK. Biology and molecular interactions of Parastagonospora nodorum blotch of wheat. PLANTA 2021; 255:21. [PMID: 34914013 DOI: 10.1007/s00425-021-03796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Parastagonospora nodorum is one of the important necrotrophic pathogens of wheat which causes severe economical loss to crop yield. So far, a number of effectors of Parastagonospora nodorum origin and their target interacting genes on the host plant have been characterized. Since targeting effector-sensitive gene carefully can be helpful in breeding for resistance. Therefore, constant efforts are required to further characterize the effectors, their interacting genes, and underlying biochemical pathways. Furthermore, to develop effective counter-strategies against emerging diseases, continuous efforts are required to determine the qualitative resistance that demands to screen of diverse genotypes for host resistance. Stagonospora nodorum blotch also refers to as Stagonospora glume blotch and leaf is caused by Parastagonospora nodorum. The pathogen deploys necrotrophic effectors for the establishment and development on wheat plants. The necrotrophic effectors and their interaction with host receptors lead to the establishment of infection on leaves and extensive lesions formation which either results in host cell death or suppression/activation of host defence mechanisms. The wheat Stagonospora nodorum interaction involves a set of nine host gene-necrotrophic effector interactions. Out of these, Snn1-SnTox1, Tsn1-SnToxA and Snn-SnTox3 are one of the most studied interaction, due to its role in the suppression of reactive oxygen species production, regulating the cytokinin content through ethylene-dependent wayduring initial infection stage. Further, although the molecular basis is not fully unveiled, these effectors regulate the redox state and influence the ethylene biosynthesis in infected wheat plants. Here, we have discussed the biology of the wheat pathogen Parastagonospora nodorum, role of its necrotrophic effectors and their interacting sensitivity genes on the redox state, how they hijack the resistance mechanisms, hormonal regulated immunity and other signalling pathways in susceptible wheat plants. The information generated from effectors and their corresponding sensitivity genes and other biological processes could be utilized effectively for disease management strategies.
Collapse
Affiliation(s)
- Shabnam Katoch
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, 140413, Punjab, India.
| | - Devender Sharma
- Crop Improvement Division, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - Richa Salwan
- College of Horticulture and Forestry, Neri, Dr YS Parmar University of Horticulture and Forestry, Solan, Hamirpur, 177 001, India
| | - S K Rana
- Department of Plant Pathology, CSK HPKV Palampur, Palampur, 176062, Himachal Pradesh, India
| |
Collapse
|
11
|
Zenda T, Liu S, Dong A, Li J, Wang Y, Liu X, Wang N, Duan H. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value. FRONTIERS IN PLANT SCIENCE 2021; 12:774994. [PMID: 34925418 PMCID: PMC8672198 DOI: 10.3389/fpls.2021.774994] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 05/17/2023]
Abstract
Novel crop improvement approaches, including those that facilitate for the exploitation of crop wild relatives and underutilized species harboring the much-needed natural allelic variation are indispensable if we are to develop climate-smart crops with enhanced abiotic and biotic stress tolerance, higher nutritive value, and superior traits of agronomic importance. Top among these approaches are the "omics" technologies, including genomics, transcriptomics, proteomics, metabolomics, phenomics, and their integration, whose deployment has been vital in revealing several key genes, proteins and metabolic pathways underlying numerous traits of agronomic importance, and aiding marker-assisted breeding in major crop species. Here, citing several relevant examples, we appraise our understanding on the recent developments in omics technologies and how they are driving our quest to breed climate resilient crops. Large-scale genome resequencing, pan-genomes and genome-wide association studies are aiding the identification and analysis of species-level genome variations, whilst RNA-sequencing driven transcriptomics has provided unprecedented opportunities for conducting crop abiotic and biotic stress response studies. Meanwhile, single cell transcriptomics is slowly becoming an indispensable tool for decoding cell-specific stress responses, although several technical and experimental design challenges still need to be resolved. Additionally, the refinement of the conventional techniques and advent of modern, high-resolution proteomics technologies necessitated a gradual shift from the general descriptive studies of plant protein abundances to large scale analysis of protein-metabolite interactions. Especially, metabolomics is currently receiving special attention, owing to the role metabolites play as metabolic intermediates and close links to the phenotypic expression. Further, high throughput phenomics applications are driving the targeting of new research domains such as root system architecture analysis, and exploration of plant root-associated microbes for improved crop health and climate resilience. Overall, coupling these multi-omics technologies to modern plant breeding and genetic engineering methods ensures an all-encompassing approach to developing nutritionally-rich and climate-smart crops whose productivity can sustainably and sufficiently meet the current and future food, nutrition and energy demands.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Songtao Liu
- Academy of Agriculture and Forestry Sciences, Hebei North University, Zhangjiakou, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yafei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinyue Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
12
|
AlTameemi R, Gill HS, Ali S, Ayana G, Halder J, Sidhu JS, Gill US, Turnipseed B, Hernandez JLG, Sehgal SK. Genome-wide association analysis permits characterization of Stagonospora nodorum blotch (SNB) resistance in hard winter wheat. Sci Rep 2021; 11:12570. [PMID: 34131169 PMCID: PMC8206080 DOI: 10.1038/s41598-021-91515-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022] Open
Abstract
Stagonospora nodorum blotch (SNB) is an economically important wheat disease caused by the necrotrophic fungus Parastagonospora nodorum. SNB resistance in wheat is controlled by several quantitative trait loci (QTLs). Thus, identifying novel resistance/susceptibility QTLs is crucial for continuous improvement of the SNB resistance. Here, the hard winter wheat association mapping panel (HWWAMP) comprising accessions from breeding programs in the Great Plains region of the US, was evaluated for SNB resistance and necrotrophic effectors (NEs) sensitivity at the seedling stage. A genome-wide association study (GWAS) was performed to identify single‐nucleotide polymorphism (SNP) markers associated with SNB resistance and effectors sensitivity. We found seven significant associations for SNB resistance/susceptibility distributed over chromosomes 1B, 2AL, 2DS, 4AL, 5BL, 6BS, and 7AL. Two new QTLs for SNB resistance/susceptibility at the seedling stage were identified on chromosomes 6BS and 7AL, whereas five QTLs previously reported in diverse germplasms were validated. Allele stacking analysis at seven QTLs explained the additive and complex nature of SNB resistance. We identified accessions (‘Pioneer-2180’ and ‘Shocker’) with favorable alleles at five of the seven identified loci, exhibiting a high level of resistance against SNB. Further, GWAS for sensitivity to NEs uncovered significant associations for SnToxA and SnTox3, co-locating with previously identified host sensitivity genes (Tsn1 and Snn3). Candidate region analysis for SNB resistance revealed 35 genes of putative interest with plant defense response-related functions. The QTLs identified and validated in this study could be easily employed in breeding programs using the associated markers to enhance the SNB resistance in hard winter wheat.
Collapse
Affiliation(s)
- Rami AlTameemi
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Shaukat Ali
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Girma Ayana
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jagdeep S Sidhu
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Upinder S Gill
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Brent Turnipseed
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jose L Gonzalez Hernandez
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
13
|
Downie RC, Lin M, Corsi B, Ficke A, Lillemo M, Oliver RP, Phan HTT, Tan KC, Cockram J. Septoria Nodorum Blotch of Wheat: Disease Management and Resistance Breeding in the Face of Shifting Disease Dynamics and a Changing Environment. PHYTOPATHOLOGY 2021; 111:906-920. [PMID: 33245254 DOI: 10.1094/phyto-07-20-0280-rvw] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The fungus Parastagonospora nodorum is a narrow host range necrotrophic fungal pathogen that causes Septoria nodorum blotch (SNB) of cereals, most notably wheat (Triticum aestivum). Although commonly observed on wheat seedlings, P. nodorum infection has the greatest effect on the adult crop. It results in leaf blotch, which limits photosynthesis and thus crop growth and yield. It can also affect the wheat ear, resulting in glume blotch, which directly affects grain quality. Reports of P. nodorum fungicide resistance, the increasing use of reduced tillage agronomic practices, and high evolutionary potential of the pathogen, combined with changes in climate and agricultural environments, mean that genetic resistance to SNB remains a high priority in many regions of wheat cultivation. In this review, we summarize current information on P. nodorum population structure and its implication for improved SNB management. We then review recent advances in the genetics of host resistance to P. nodorum and the necrotrophic effectors it secretes during infection, integrating the genomic positions of these genetic loci by using the recently released wheat reference genome assembly. Finally, we discuss the genetic and genomic tools now available for SNB resistance breeding and consider future opportunities and challenges in crop health management by using the wheat-P. nodorum interaction as a model.
Collapse
Affiliation(s)
- Rowena C Downie
- John Bingham Laboratory, NIAB, Cambridge, CB3 0LE, United Kingdom
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Min Lin
- Norwegian University of Life Sciences, Ås NO-1432, Norway
| | - Beatrice Corsi
- John Bingham Laboratory, NIAB, Cambridge, CB3 0LE, United Kingdom
| | - Andrea Ficke
- Norwegian Institute for Bioeconomy Research, Ås NO-1432, Norway
| | - Morten Lillemo
- Norwegian University of Life Sciences, Ås NO-1432, Norway
| | | | - Huyen T T Phan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley 6102, Perth, WA, Australia
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley 6102, Perth, WA, Australia
| | - James Cockram
- John Bingham Laboratory, NIAB, Cambridge, CB3 0LE, United Kingdom
| |
Collapse
|
14
|
Muqaddasi QH, Kamal R, Mirdita V, Rodemann B, Ganal MW, Reif JC, Röder MS. Genome-Wide Association Studies and Prediction of Tan Spot ( Pyrenophora tritici-repentis) Infection in European Winter Wheat via Different Marker Platforms. Genes (Basel) 2021; 12:genes12040490. [PMID: 33801723 PMCID: PMC8103242 DOI: 10.3390/genes12040490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 11/22/2022] Open
Abstract
Tan spot, caused by the fungus Pyrenophoratritici-repentis (Ptr), is a severe foliar disease of wheat (Triticumaestivum L.). Improving genetic resistance is a durable strategy to reduce Ptr-related losses. Here, we dissected Ptr-infection’s genetic basis in 372 European wheat varieties via simple sequence repeats (SSRs) plus 35k and 90k single nucleotide polymorphism (SNP) marker platforms. In our phenotypic data analyses, Ptr infection showed a significant genotypic variance and a significant negative correlation with plant height. Genome-wide association studies revealed a highly quantitative nature of Ptr infection and identified two quantitative trait loci (QTL), viz., QTs.ipk-7A and QTs.ipk-7B, which imparted 21.23 and 5.84% of the genotypic variance, respectively. Besides, the Rht-D1 gene showed a strong allelic influence on the infection scores. Due to the complex genetic nature of the Ptr infection, the potential of genome-wide prediction (GP) was assessed via three different genetic models on individual and combined marker platforms. The GP results indicated that the marker density and marker platforms do not considerably impact prediction accuracy (~40–42%) and that higher-order epistatic interactions may not be highly pervasive. Our results provide a further understanding of Ptr-infection’s genetic nature, serve as a resource for marker-assisted breeding, and highlight the potential of genome-wide selection for improved Ptr resistance.
Collapse
Affiliation(s)
- Quddoos H. Muqaddasi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Stadt Seeland OT Gatersleben, Germany; (R.K.); (J.C.R.); (M.S.R.)
- European Wheat Breeding Center, BASF Agricultural Solutions GmbH, Am Schwabeplan 8, D-06466 Stadt Seeland OT Gatersleben, Germany;
- Correspondence:
| | - Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Stadt Seeland OT Gatersleben, Germany; (R.K.); (J.C.R.); (M.S.R.)
| | - Vilson Mirdita
- European Wheat Breeding Center, BASF Agricultural Solutions GmbH, Am Schwabeplan 8, D-06466 Stadt Seeland OT Gatersleben, Germany;
| | - Bernd Rodemann
- Julius-Kühn-Institute (JKI), D-38104 Braunschweig, Germany;
| | - Martin W. Ganal
- TraitGenetics GmbH, Am Schwabeplan 1b, D-06466 Stadt Seeland OT Gatersleben, Germany;
| | - Jochen C. Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Stadt Seeland OT Gatersleben, Germany; (R.K.); (J.C.R.); (M.S.R.)
| | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, D-06466 Stadt Seeland OT Gatersleben, Germany; (R.K.); (J.C.R.); (M.S.R.)
| |
Collapse
|
15
|
Kokhmetova A, Sehgal D, Ali S, Atishova M, Kumarbayeva M, Leonova I, Dreisigacker S. Genome-Wide Association Study of Tan Spot Resistance in a Hexaploid Wheat Collection From Kazakhstan. Front Genet 2021; 11:581214. [PMID: 33505423 PMCID: PMC7831376 DOI: 10.3389/fgene.2020.581214] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Tan spot, caused by Pyrenophora tritici-repentis, is a serious foliar disease of wheat in Kazakhstan with reported yield losses as high as 50% during epidemic years. Here, we report the evaluation of a collection of 191 hexaploid spring and winter wheat lines for tan spot resistance and its underlying genetic architecture using genome-wide association study (GWAS). Our wheat collection comprised candidate varieties from Kazakhstan, Russia, and CIMMYT. It was genotyped using the DArTseq technology and phenotyped for resistance to tan spot at seedling and adult plant stages in Kazakhstan. DArTseq SNPs revealed high genetic diversity (average polymorphic information content = 0.33) in the panel and genome-wide linkage disequilibrium decay at 22 Mb (threshold r2 = 0.1). Principal component analysis revealed a clear separation of Eurasian germplasm from CIMMYT and IWWIP lines. GWAS identified 34 marker-trait associations (MTA) for resistance to tan spot and the amount of phenotypic variation explained by these MTA ranged from 4% to 13.7%. Our results suggest the existence of novel valuable resistant alleles on chromosomes 3BS, and 5DL and 6AL for resistance to Race 1 and Race 5, respectively, in addition to known genes tsn1 and tsc2. On chromosome 6AL, a genomic region spanning 3 Mb was identified conferring resistance to both Race 1 and Race 5. Epistatic interaction of associated loci was revealed on chromosomes 1B, 5B, 7B, 5A, and 6A contributing to additional variation of 3.2–11.7%. Twenty-five lines with the best allele combinations of SNPs associated with resistance to both races have been identified as candidates for future variety release and breeding. The results of the present study will be further validated in other independent genetic backgrounds to be able to use markers in breeding.
Collapse
Affiliation(s)
- Alma Kokhmetova
- Laboratory of Breeding and Genetics, Institute of Plant Biology and Biotechnology (IPBB), Almaty, Kazakhstan.,Faculty of Agronomy, Kazakh National Agrarian University, Almaty, Kazakhstan
| | - Deepmala Sehgal
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Shaukat Ali
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Makpal Atishova
- Laboratory of Breeding and Genetics, Institute of Plant Biology and Biotechnology (IPBB), Almaty, Kazakhstan
| | - Madina Kumarbayeva
- Laboratory of Breeding and Genetics, Institute of Plant Biology and Biotechnology (IPBB), Almaty, Kazakhstan.,Faculty of Agronomy, Kazakh National Agrarian University, Almaty, Kazakhstan
| | - Irina Leonova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Susanne Dreisigacker
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
16
|
Lin M, Stadlmeier M, Mohler V, Tan KC, Ficke A, Cockram J, Lillemo M. Identification and cross-validation of genetic loci conferring resistance to Septoria nodorum blotch using a German multi-founder winter wheat population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:125-142. [PMID: 33047219 PMCID: PMC7813717 DOI: 10.1007/s00122-020-03686-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/12/2020] [Indexed: 05/12/2023]
Abstract
We identified allelic variation at two major loci, QSnb.nmbu-2A.1 and QSnb.nmbu-5A.1, showing consistent and additive effects on SNB field resistance. Validation of QSnb.nmbu-2A.1 across genetic backgrounds further highlights its usefulness for marker-assisted selection. Septoria nodorum blotch (SNB) is a disease of wheat (Triticum aestivum and T. durum) caused by the necrotrophic fungal pathogen Parastagonospora nodorum. SNB resistance is a typical quantitative trait, controlled by multiple quantitative trait loci (QTL) of minor effect. To achieve increased plant resistance, selection for resistance alleles and/or selection against susceptibility alleles must be undertaken. Here, we performed genetic analysis of SNB resistance using an eight-founder German Multiparent Advanced Generation Inter-Cross (MAGIC) population, termed BMWpop. Field trials and greenhouse testing were conducted over three seasons in Norway, with genetic analysis identifying ten SNB resistance QTL. Of these, two QTL were identified over two seasons: QSnb.nmbu-2A.1 on chromosome 2A and QSnb.nmbu-5A.1 on chromosome 5A. The chromosome 2A BMWpop QTL co-located with a robust SNB resistance QTL recently identified in an independent eight-founder MAGIC population constructed using varieties released in the United Kingdom (UK). The validation of this SNB resistance QTL in two independent multi-founder mapping populations, regardless of the differences in genetic background and agricultural environment, highlights the value of this locus in SNB resistance breeding. The second robust QTL identified in the BMWpop, QSnb.nmbu-5A.1, was not identified in the UK MAGIC population. Combining resistance alleles at both loci resulted in additive effects on SNB resistance. Therefore, using marker assisted selection to combine resistance alleles is a promising strategy for improving SNB resistance in wheat breeding. Indeed, the multi-locus haplotypes determined in this study provide markers for efficient tracking of these beneficial alleles in future wheat genetics and breeding activities.
Collapse
Affiliation(s)
- Min Lin
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, 1432, Ås, Norway
| | - Melanie Stadlmeier
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Volker Mohler
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Freising, Germany
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Andrea Ficke
- Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, 1433, Ås, Norway
| | - James Cockram
- John Bingham Laboratory, NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, 1432, Ås, Norway.
| |
Collapse
|
17
|
Guo J, Shi G, Kalil A, Friskop A, Elias E, Xu SS, Faris JD, Liu Z. Pyrenophora tritici-repentis Race 4 Isolates Cause Disease on Tetraploid Wheat. PHYTOPATHOLOGY 2020; 110:1781-1790. [PMID: 32567977 DOI: 10.1094/phyto-05-20-0179-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ascomycete fungus Pyrenophora tritici-repentis is the causal agent of tan spot of wheat. The disease can occur on both common wheat (Triticum aestivum) and durum wheat (T. turgidum ssp. durum) and has potential to cause significant yield and quality losses. The fungal pathogen is known to produce necrotrophic effectors (NEs) that act as important virulence factors. Based on the NE production and virulence on a set of four differentials, P. tritici-repentis isolates have been classified into eight races. Race 4 produces no known NEs and is avirulent on the differentials. From a fungal collection in North Dakota, we identified several isolates that were classified as race 4. These isolates caused no or little disease on all common wheat lines including the differentials; however, they were virulent on some durum cultivars and tetraploid wheat accessions. Using two segregating tetraploid wheat populations and quantitative trait locus mapping, we identified several genomic regions significantly associated with disease caused by two of these isolates, some of which have not been previously reported. This is the first report that race 4 is virulent on tetraploid wheat, likely utilizing unidentified NEs. Our findings further highlight the insufficiency of the current race classification system for P. tritici-repentis.
Collapse
Affiliation(s)
- Jingwei Guo
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Audrey Kalil
- Williston Research Extension Center, North Dakota State University, Williston, ND 58801
| | - Andrew Friskop
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| | - Elias Elias
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108
| | - Steven S Xu
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108
| |
Collapse
|
18
|
Liu Y, Salsman E, Wang R, Galagedara N, Zhang Q, Fiedler JD, Liu Z, Xu S, Faris JD, Li X. Meta-QTL analysis of tan spot resistance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2363-2375. [PMID: 32436020 DOI: 10.1007/s00122-020-03604-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/09/2020] [Indexed: 05/20/2023]
Abstract
A total of 19 meta-QTL conferring resistance to tan spot were identified from 104 initial QTL detected in 15 previous QTL mapping studies. Tan spot, caused by the fungal pathogen Pyrenophora tritici-repentis (Ptr), is a major foliar disease worldwide in both bread wheat and durum wheat and can reduce grain yield due to reduction in photosynthetic area of leaves. Developing and growing resistant cultivars is a cost-effective and environmentally friendly approach to mitigate negative effects of the disease. Understanding the genetic basis of tan spot resistance can enhance the development of resistant cultivars. With that goal, over 100 QTL associated with resistance to tan spot induced by a variety of Ptr races and isolates have been identified from previous QTL mapping studies. Meta-QTL analysis can identify redundant QTL among various studies and reveal major QTL for targeting in marker-assisted selection applications. In this study, we performed a meta-QTL analysis of tan spot resistance using the reported QTL from 15 previous QTL mapping studies. An integrated linkage map with a total length of 4080.5 cM containing 47,309 markers was assembled from 21 individual linkage maps and three previously published consensus maps. Nineteen meta-QTL were clustered from 104 initial QTL projected on the integrated map. Three of the 19 meta-QTL located on chromosomes 2A, 3B, and 5A show large genetic effects and confer resistance to multiple races in multiple bread wheat and durum wheat mapping populations. The integration of those race-nonspecific QTL is a promising strategy to provide high and stable resistance to tan spot in wheat.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Plant Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Evan Salsman
- Department of Plant Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Runhao Wang
- Department of Plant Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Nelomie Galagedara
- Department of Plant Pathology, North Dakota State University, Fargo, 58108, USA
| | - Qijun Zhang
- Department of Plant Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Jason D Fiedler
- Biosciences Research Laboratory, USDA-ARS Genotyping Laboratory, Fargo, ND, 58102, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, 58108, USA
| | - Steven Xu
- USDA-ARS Cereal Crops Research Unit, Northern Crop Science Laboratory, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Northern Crop Science Laboratory, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Xuehui Li
- Department of Plant Science, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
19
|
Galagedara N, Liu Y, Fiedler J, Shi G, Chiao S, Xu SS, Faris JD, Li X, Liu Z. Genome-wide association mapping of tan spot resistance in a worldwide collection of durum wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2227-2237. [PMID: 32300825 DOI: 10.1007/s00122-020-03593-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Resistance to tan spot in durum wheat involves race-nonspecific QTL and necrotrophic insensitivity gene. Tan spot, caused by the necrotrophic fungus Pyrenophoratritici-repentis, is a major foliar disease on all cultivated wheat crops worldwide. Compared to common wheat, much less work has been done to investigate the genetic basis of tan spot resistance in durum. Here, we conducted disease evaluations, necrotrophic effector (NE) sensitivity assays and a genome-wide association study using a collection of durum accessions. The durum panel segregated for the reaction to disease inoculations and NE infiltrations with eighteen accessions being highly resistant to all races and most of them insensitive to both PtrToxA and PtrToxB. Over 65,000SNP markers were developed from genotyping-by-sequencing for the association mapping. As expected, sensitivity to PtrToxA and PtrToxB was mapped to the chromosome arms 5BL and 2BS, respectively. For the fungal inoculations, a quantitative trait locus (QTL) on chromosome 3B was associated with resistance to all races and likely corresponds to the race-nonspecific resistance QTL previously identified in common wheat. The Tsn1locus was not significantly associated with tan spot caused by the PtrToxA-producing isolates Pti2 and 86-124, but the Tsc2 locus was significantly associated with tan spot caused by the PtrToxB-producing isolate DW5. Another QTL on chromosome arm 1AS was associated with tan spot caused by the PtrToxC-producing isolate Pti2 and likely corresponds to the Tsc1 locus. Additional QTL for specific races was identified on chromosome 1B and 3B. Our work highlights the complexity of genetic resistance to tan spot and further confirms that the Ptr ToxA-Tsn1 interaction plays no significant role in disease development in tetraploid wheat.
Collapse
Affiliation(s)
- Nelomie Galagedara
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Yuan Liu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Jason Fiedler
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Shiaoman Chiao
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Steven S Xu
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
20
|
Lin M, Corsi B, Ficke A, Tan KC, Cockram J, Lillemo M. Genetic mapping using a wheat multi-founder population reveals a locus on chromosome 2A controlling resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:785-808. [PMID: 31996971 PMCID: PMC7021668 DOI: 10.1007/s00122-019-03507-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/10/2019] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE A locus on wheat chromosome 2A was found to control field resistance to both leaf and glume blotch caused by the necrotrophic fungal pathogen Parastagonospora nodorum. The necrotrophic fungal pathogen Parastagonospora nodorum is the causal agent of Septoria nodorum leaf blotch and glume blotch, which are common wheat (Triticum aestivum L.) diseases in humid and temperate areas. Susceptibility to Septoria nodorum leaf blotch can partly be explained by sensitivity to corresponding P. nodorum necrotrophic effectors (NEs). Susceptibility to glume blotch is also quantitative; however, the underlying genetics have not been studied in detail. Here, we genetically map resistance/susceptibility loci to leaf and glume blotch using an eight-founder wheat multiparent advanced generation intercross population. The population was assessed in six field trials across two sites and 4 years. Seedling infiltration and inoculation assays using three P. nodorum isolates were also carried out, in order to compare quantitative trait loci (QTL) identified under controlled conditions with those identified in the field. Three significant field resistance QTL were identified on chromosomes 2A and 6A, while four significant seedling resistance QTL were detected on chromosomes 2D, 5B and 7D. Among these, QSnb.niab-2A.3 for field resistance to both leaf blotch and glume blotch was detected in Norway and the UK. Colocation with a QTL for seedling reactions against culture filtrate from a Norwegian P. nodorum isolate indicated the QTL could be caused by a novel NE sensitivity. The consistency of this QTL for leaf blotch at the seedling and adult plant stages and culture filtrate infiltration was confirmed by haplotype analysis. However, opposite effects for the leaf blotch and glume blotch reactions suggest that different genetic mechanisms may be involved.
Collapse
Affiliation(s)
- Min Lin
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, 1432, Ås, Norway
| | - Beatrice Corsi
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Andrea Ficke
- Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, 1433, Ås, Norway
| | - Kar-Chun Tan
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - James Cockram
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
| | - Morten Lillemo
- Department of Plant Sciences, Norwegian University of Life Sciences, Post Box 5003, 1432, Ås, Norway.
| |
Collapse
|
21
|
Liu Y, Zhang Q, Salsman E, Fiedler JD, Hegstad JB, Liu Z, Faris JD, Xu SS, Li X. QTL mapping of resistance to tan spot induced by race 2 of Pyrenophora tritici-repentis in tetraploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:433-442. [PMID: 31720702 DOI: 10.1007/s00122-019-03474-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/05/2019] [Indexed: 05/24/2023]
Abstract
A total of 12 QTL conferring resistance to tan spot induced by a race 2 isolate, 86-124, were identified in three tetraploid wheat mapping populations. Durum is a tetraploid species of wheat and an important food crop. Tan spot, caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr), is a major foliar disease of both tetraploid durum wheat and hexaploid bread wheat. Understanding the Ptr-wheat interaction and identifying major QTL can facilitate the development of resistant cultivars and effectively mitigate the negative effect of this disease. Over 100 QTL have already been discovered in hexaploid bread wheat, whereas few mapping studies have been conducted in durum wheat. Utilizing resistant resources and identifying novel resistant loci in tetraploid wheat will be beneficial for the development of tan spot-resistant durum varieties. In this study, we evaluated four interconnected tetraploid wheat populations for their reactions to the race 2 isolate 86-124, which produces Ptr ToxA. Tsn1, the wheat gene that confers sensitivity to Ptr ToxA, was not associated with tan spot severity in any of the four populations. We found a total of 12 tan spot-resistant QTL among the three mapping populations. The QTL located on chromosomes 3A and 5A were detected in multiple populations and co-localized with race-nonspecific QTL identified in other mapping studies. Together, these QTL can confer high levels of resistance and can be used for the improvement in tan spot resistance in both hexaploid bread and durum wheat breeding. Two QTL on chromosomes 1B and 7A, respectively, were found in one population when inoculated with a ToxA knockout strain 86-124ΔToxA only, indicating that their association with tan spot was induced by other unidentified necrotrophic effectors, but under the absence of Ptr ToxA. In addition to removal of the known dominant susceptibility genes, integrating major race-nonspecific resistance loci like the QTL identified on chromosome 3A and 5A in this study could confer high and stable tan spot resistance in durum wheat.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Plant Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Qijun Zhang
- Department of Plant Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Evan Salsman
- Department of Plant Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Jason D Fiedler
- Biosciences Research Laboratory, USDA-ARS Genotyping Laboratory, Fargo, ND, 58102, USA
| | - Justin B Hegstad
- Department of Plant Science, North Dakota State University, Fargo, ND, 58108, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, 58108, USA
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Northern Crop Science Laboratory, Fargo, ND, 58102, USA
| | - Steven S Xu
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Northern Crop Science Laboratory, Fargo, ND, 58102, USA
| | - Xuehui Li
- Department of Plant Science, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
22
|
Phuke RM, He X, Juliana P, Bishnoi SK, Singh GP, Kabir MR, Roy KK, Joshi AK, Singh RP, Singh PK. Association Mapping of Seedling Resistance to Tan Spot ( Pyrenophora tritici-repentis Race 1) in CIMMYT and South Asian Wheat Germplasm. FRONTIERS IN PLANT SCIENCE 2020; 11:1309. [PMID: 32983199 PMCID: PMC7483578 DOI: 10.3389/fpls.2020.01309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/11/2020] [Indexed: 05/08/2023]
Abstract
Tan spot caused by Pyrenophora tritici-repentis (Ptr) is an important disease of wheat in many wheat producing areas of the world. A genome wide association study (GWAS) was conducted using 11,401 SNP markers of the Illumina Infinium 15K Bead Chip with whole genome coverage to identify genomic regions associated with resistance to tan spot in a diverse panel of 184 wheat genotypes originating from South Asia and CIMMYT. The GWAS panel was phenotyped for seedling resistance to tan spot with Ptr race 1 in two greenhouse experiments. Besides CIMMYT germplasm, several lines from South Asia (India, Bangladesh and Nepal) showed good degree of resistance to tan spot. Association mapping was conducted separately for individual experiments and for pooled data using mixed linear model (MLM) and Fixed and random model Circulating Probability Unification (FarmCPU) model; no significant MTAs were recorded through the MLM model, whereas FarmCPU model reported nine significant MTAs located on chromosomes 1B, 2A, 2B, 3B, 4A, 5A, 5B, 6A, and 7D. The long arms of chromosomes 5A and 5B were consistent across both environments, in which the Vrn-A1 locus was found in identified region of chromosome 5A, and MTA at IACX9261 on 5BL appears to represent the resistance gene tsn 1. MTAs observed on chromosomes 1B, 2A, 2B, 3B, 4A, 6A, and 7D have not been reported previously and are likely novel.
Collapse
Affiliation(s)
| | - Xinyao He
- International Maize and Wheat Improvement Centre, Texcoco, Mexico
| | - Philomin Juliana
- International Maize and Wheat Improvement Centre, Texcoco, Mexico
| | | | | | | | | | - Arun Kumar Joshi
- CIMMYT-India, New Delhi, India
- Borlaug Institute for South Asia, New Delhi, India
| | | | - Pawan Kumar Singh
- International Maize and Wheat Improvement Centre, Texcoco, Mexico
- *Correspondence: Pawan Kumar Singh,
| |
Collapse
|
23
|
Halder J, Zhang J, Ali S, Sidhu JS, Gill HS, Talukder SK, Kleinjan J, Turnipseed B, Sehgal SK. Mining and genomic characterization of resistance to tan spot, Stagonospora nodorum blotch (SNB), and Fusarium head blight in Watkins core collection of wheat landraces. BMC PLANT BIOLOGY 2019; 19:480. [PMID: 31703626 PMCID: PMC6839225 DOI: 10.1186/s12870-019-2093-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/21/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND In the late 1920s, A. E. Watkins collected about 7000 landrace cultivars (LCs) of bread wheat (Triticum aestivum L.) from 32 different countries around the world. Among which 826 LCs remain viable and could be a valuable source of superior/favorable alleles to enhance disease resistance in wheat. In the present study, a core set of 121 LCs, which captures the majority of the genetic diversity of Watkins collection, was evaluated for identifying novel sources of resistance against tan spot, Stagonospora nodorum blotch (SNB), and Fusarium Head Blight (FHB). RESULTS A diverse response was observed in 121 LCs for all three diseases. The majority of LCs were moderately susceptible to susceptible to tan spot Ptr race 1 (84%) and FHB (96%) whereas a large number of LCs were resistant or moderately resistant against tan spot Ptr race 5 (95%) and SNB (54%). Thirteen LCs were identified in this study could be a valuable source for multiple resistance to tan spot Ptr races 1 and 5, and SNB, and another five LCs could be a potential source for FHB resistance. GWAS analysis was carried out using disease phenotyping score and 8807 SNPs data of 118 LCs, which identified 30 significant marker-trait associations (MTAs) with -log10 (p-value) > 3.0. Ten, five, and five genomic regions were found to be associated with resistance to tan spot Ptr race 1, race 5, and SNB, respectively in this study. In addition to Tsn1, several novel genomic regions Q.Ts1.sdsu-4BS and Q.Ts1.sdsu-5BS (tan spot Ptr race 1) and Q.Ts5.sdsu-1BL, Q.Ts5.sdsu-2DL, Q.Ts5.sdsu-3AL, and Q.Ts5.sdsu-6BL (tan spot Ptr race 5) were also identified. Our results indicate that these putative genomic regions contain several genes that play an important role in plant defense mechanisms. CONCLUSION Our results suggest the existence of valuable resistant alleles against leaf spot diseases in Watkins LCs. The single-nucleotide polymorphism (SNP) markers linked to the quantitative trait loci (QTLs) for tan spot and SNB resistance along with LCs harboring multiple disease resistance could be useful for future wheat breeding.
Collapse
Affiliation(s)
- Jyotirmoy Halder
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jinfeng Zhang
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Shaukat Ali
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jagdeep S Sidhu
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Harsimardeep S Gill
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Shyamal K Talukder
- California Cooperative Rice Research Foundation, Inc., Rice Experiment Station, Biggs, CA, 95917, USA
| | - Jonathan Kleinjan
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Brent Turnipseed
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| |
Collapse
|
24
|
Zhang W, Zhu X, Zhang M, Shi G, Liu Z, Cai X. Chromosome engineering-mediated introgression and molecular mapping of novel Aegilops speltoides-derived resistance genes for tan spot and Septoria nodorum blotch diseases in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2605-2614. [PMID: 31183521 DOI: 10.1007/s00122-019-03374-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
We identified, mapped and introduced novel Aegilops speltoides-derived resistance genes for tan spot and SNB diseases into wheat, enhancing understanding and utilization of host resistance to both diseases in wheat. Tan spot and Septoria nodorum blotch (SNB) are two important fungal diseases of wheat. Resistance to these diseases is often observed as the lack of sensitivity to the necrotrophic effectors (NE) produced by the fungal pathogens and thus exhibits a recessive inheritance pattern. In this study, we identified novel genes for resistance to tan spot and SNB on Aegilops speltoides (2n = 2x = 14, genome SS) chromosome 2S. These genes confer dominant resistance in the wheat background, indicating a distinct NE-independent mechanism of resistance. Ae. speltoides chromosome 2S was engineered for resistance gene introgression and molecular mapping by inducing meiotic homoeologous recombination with wheat chromosome 2B. Twenty representative 2B-2S recombinants were evaluated for reaction to tan spot and SNB and were delineated by genomic in situ hybridization and high-throughput wheat 90 K SNP assay. The resistance genes physically mapped to the sub-telomeric region (~ 8 Mb) on the short arm of chromosome 2S and designated TsrAes1 for tan spot resistance and SnbAes1 for SNB resistance. In addition, we developed SNP-derived PCR markers closely linked to TsrAes1/SnbAes1 for marker-assisted selection in wheat breeding. TsrAes1 and SnbAes1 are the first set of NE-independent tan spot, and SNB resistance genes are identified from Ae. speltoides. The 2SS-2BS·2BL recombinants with minimal amounts of Ae. speltoides chromatin containing TsrAes1/SnbAes1 were produced for germplasm development, making the wild species-derived resistance genes usable in wheat breeding. This will strengthen and diversify resistance of wheat to tan spot and SNB and facilitate understanding of resistance to these two diseases.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Xianwen Zhu
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Mingyi Zhang
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Xiwen Cai
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
25
|
Guo J, Shi G, Liu Z. Characterizing Virulence of the Pyrenophora tritici-repentis Isolates Lacking Both ToxA and ToxB Genes. Pathogens 2018; 7:E74. [PMID: 30213041 PMCID: PMC6161158 DOI: 10.3390/pathogens7030074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022] Open
Abstract
The fungus Pyrenophora tritici-repentis (Ptr) causes tan spot of wheat crops, which is an important disease worldwide. Based on the production of the three known necrotrophic effectors (NEs), the fungal isolates are classified into eight races with race 4 producing no known NEs. From a laboratory cross between 86⁻124 (race 2 carrying the ToxA gene for the production of Ptr ToxA) and DW5 (race 5 carrying the ToxB gene for the production of Ptr ToxB), we have obtained some Ptr isolates lacking both the ToxA and ToxB genes, which, by definition, should be classified as race 4. In this work, we characterized virulence of two of these isolates called B16 and B17 by inoculating them onto various common wheat (Triticum aestivum L.) and durum (T. turgidum L.) genotypes. It was found that the two isolates still caused disease on some genotypes of both common and durum wheat. Disease evaluations were also conducted in recombinant inbred line populations derived from two hard red winter wheat cultivars: Harry and Wesley. QTL mapping in this population revealed that three genomic regions were significantly associated with disease, which are different from the three known NE sensitivity loci. This result further indicates the existence of other NE-host sensitivity gene interactions in the wheat tan spot disease system.
Collapse
Affiliation(s)
- Jingwei Guo
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA.
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA.
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
26
|
Liu Z, Zurn JD, Kariyawasam G, Faris JD, Shi G, Hansen J, Rasmussen JB, Acevedo M. Inverse gene-for-gene interactions contribute additively to tan spot susceptibility in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1267-1276. [PMID: 28293708 DOI: 10.1007/s00122-017-2886-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Tan spot susceptibility is conferred by multiple interactions of necrotrophic effector and host sensitivity genes. Tan spot of wheat, caused by Pyrenophora tritici-repentis, is an important disease in almost all wheat-growing areas of the world. The disease system is known to involve at least three fungal-produced necrotrophic effectors (NEs) that interact with the corresponding host sensitivity (S) genes in an inverse gene-for-gene manner to induce disease. However, it is unknown if the effects of these NE-S gene interactions contribute additively to the development of tan spot. In this work, we conducted disease evaluations using different races and quantitative trait loci (QTL) analysis in a wheat recombinant inbred line (RIL) population derived from a cross between two susceptible genotypes, LMPG-6 and PI 626573. The two parental lines each harbored a single known NE sensitivity gene with LMPG-6 having the Ptr ToxC sensitivity gene Tsc1 and PI 626573 having the Ptr ToxA sensitivity gene Tsn1. Transgressive segregation was observed in the population for all races. QTL mapping revealed that both loci (Tsn1 and Tsc1) were significantly associated with susceptibility to race 1 isolates, which produce both Ptr ToxA and Ptr ToxC, and the two genes contributed additively to tan spot susceptibility. For isolates of races 2 and 3, which produce only Ptr ToxA and Ptr ToxC, only Tsn1 and Tsc1 were associated with tan spot susceptibility, respectively. This work clearly demonstrates that tan spot susceptibility in this population is due primarily to two NE-S interactions. Breeders should remove both sensitivity genes from wheat lines to obtain high levels of tan spot resistance.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA.
| | - Jason D Zurn
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Gayan Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, ND, 58102, USA
| | - Gongjun Shi
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Jana Hansen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Jack B Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Maricelis Acevedo
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
27
|
Kariyawasam GK, Carter AH, Rasmussen JB, Faris J, Xu SS, Mergoum M, Liu Z. Genetic relationships between race-nonspecific and race-specific interactions in the wheat-Pyrenophora tritici-repentis pathosystem. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:897-908. [PMID: 26796533 DOI: 10.1007/s00122-016-2670-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/09/2016] [Indexed: 05/15/2023]
Abstract
We identified a major QTL conferring race-nonspecific resistance and revealed its relationships with race-specific interactions in the wheat- Pyrenophora tritici-repentis pathosystem. Tan spot, caused by the fungus Pyrenophora tritici-repentis (Ptr), is a destructive disease of wheat worldwide. The disease system is known to include inverse gene-for-gene, race-specific interactions involving the recognition of fungal-produced necrotrophic effectors (NEs) by corresponding host sensitivity genes. However, quantitative trait loci (QTLs) conferring race-nonspecific resistance have also been identified. In this work, we identified a major race-nonspecific resistance QTL and characterized its genetic relationships with the NE-host gene interactions Ptr ToxA-Tsn1 and Ptr ToxC-Tsc1 in a recombinant inbred wheat population derived from the cross between 'Louise' and 'Penawawa.' Both parental lines were sensitive to Ptr ToxA, but Penawawa and Louise were highly resistant and susceptible, respectively, to conidial inoculations of all races. Resistance was predominantly governed by a major race-nonspecific QTL on chromosome arm 3BL for resistance to all races. Another significant QTL was detected at the distal end of chromosome arm 1AS for resistance to the Ptr ToxC-producing isolates, which corresponded to the known location of the Tsc1 locus. The effects of the 3B and 1A QTLs were largely additive, and the 3B resistance QTL was epistatic to the Ptr ToxA-Tsn1 interaction. Resistance to race 2 in F1 plants was completely dominant; however, race 3-inoculated F1 plants were only moderately resistant because they developed chlorosis presumably due to the Ptr ToxC-Tsc1 interaction. This work provides further understanding of genetic resistance in the wheat-tan spot system as well as important guidance for tan spot resistance breeding.
Collapse
Affiliation(s)
- Gayan K Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Arron H Carter
- Department of Crop and Soil Science, Washington State University, Pullman, WA, 99164-6420, USA
| | - Jack B Rasmussen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Justin Faris
- USDA-ARS Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, 58102, USA
| | - Steven S Xu
- USDA-ARS Cereal Crops Research Unit, Northern Crop Science Laboratory, Fargo, 58102, USA
| | - Mohamed Mergoum
- Department of Plant Science, North Dakota State University, Fargo, ND, 58108, USA
- Department of Crop and Soil Sciences, University of Georgia, 1109 Experiment St, Griffin, GA, 30223, USA
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|