1
|
Romero-Cuadrado L, Aguado A, Ruano-Rosa D, Capote N. Triplex real-time qPCR for the simultaneous detection of Botryosphaeriaceae species in woody crops and environmental samples. FRONTIERS IN PLANT SCIENCE 2024; 15:1435462. [PMID: 39464288 PMCID: PMC11502354 DOI: 10.3389/fpls.2024.1435462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024]
Abstract
Introduction Species of Botryosphaeriaceae fungi are relevant pathogens of almond causing trunk cankers, extensive gumming, necrosis of internal tissues and plant dieback and dead, threatening almond productivity. A novel triplex quantitative real-time PCR (qPCR) assay was designed for the simultaneous detection and quantification of Neofusicoccum parvum, Botryosphaeria dothidea and the Botryosphaeriaceae family. Material and methods The method was validated in symptomatic and asymptomatic almond, avocado, blueberry and grapevine plants and in environmental samples, such as cropping soil and rainwater and in artificially inoculated trapped spores, demonstrating the same performance on several matrices. Results and discussion The limit of detection of the triplex qPCR was 10 fg of genomic DNA for the three fungal targets, with high correlation coefficients (R2) and amplification efficiencies between 90 and 120%. Although the triplex qPCR demonstrated to be more sensitive and accurate than the traditional plate culturing and further sequencing method, a substantial agreement (kappa index = 0.8052 ± 0.0512) was found between the two detection methods. The highly sensitive qPCR assay allows for accurate diagnosis of symptomatic plants and early detection of Botryosphaeriaceae fungi in asymptomatic plants (rootstocks and grafting scions from almond nurseries). Furthermore, the triplex qPCR successfully detected Botryosphaeriaceae fungi in environmental samples, such as cropping soils and rainwater. It was also capable of detecting as few as 10 conidia in artificially inoculated tapes. Therefore, the triplex qPCR is a valuable tool for accurate diagnosis, aiding in the implementation of suitable control measures. It enables preventive detection in asymptomatic samples, helping to avoid the introduction and spread of these pathogens in production fields. Moreover, it assists in identifying inoculum sources and quantifying inoculum levels in crop environments, contributing to a precise phytosanitary application schedule, thereby reducing production costs and preserving the environment.
Collapse
Affiliation(s)
| | | | | | - Nieves Capote
- Department of Sustainable Crop Protection, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Seville, Spain
| |
Collapse
|
2
|
Ji T, Salotti I, Altieri V, Li M, Rossi V. Seasonal Periodicity of the Airborne Spores of Fungi Causing Grapevine Trunk Diseases: An Analysis of 247 Studies Published Worldwide. PLANT DISEASE 2024; 108:1501-1513. [PMID: 37874281 DOI: 10.1094/pdis-04-23-0709-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Grapevine trunk diseases (GTDs) are among the most devastating grapevine diseases globally. GTDs are caused by numerous fungi belonging to different taxa, which release spores into the vineyard and infect wood tissue, mainly through wounds caused by viticultural operations. The timing of operations to avoid infection is critical concerning the periodicity of GTD spores in vineyards, and many studies have been conducted in different grape-growing areas worldwide. However, these studies provide conflicting and fragmented information. To synthesize current knowledge, we conducted a systematic literature review, extracted quantitative data from published papers, and used these data to identify trends and knowledge gaps that need to be addressed in future studies. Our database included 26 papers covering 247 studies and 3,529 spore sampling records concerning a total of 29 fungal taxa responsible for Botryosphaeria dieback (BD), Esca complex (EC), and Eutypa dieback (ED). We found a clear seasonality in the presence and abundance of BD spores, with a peak from fall to spring, more in the northern hemisphere than in the southern hemisphere, but not for EC and ED. Spores of these fungi were present throughout the growing season in both hemispheres, possibly because of higher variability in spore types, sporulation conditions, and spore release mechanisms in EC and ED fungi than in BD. Our analysis has limitations because of knowledge gaps and data availability for some fungi (e.g., basidiomycetes, which cause EC). These limitations are discussed to facilitate further research.
Collapse
Affiliation(s)
- Tao Ji
- Department of Horticulture, Agricultural College of Shihezi University/Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi 832003, China
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| | - Irene Salotti
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| | - Valeria Altieri
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| | - Ming Li
- National Engineering Research Center for Information Technology in Agriculture (NERCITA)/Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Piacenza 29122, Italy
| |
Collapse
|
3
|
Hernandez M, Kc AN. Determining the Timing of Spore Release by Botryosphaeriaceae Species in Oregon Vineyards. PLANT DISEASE 2024; 108:1033-1040. [PMID: 37923978 DOI: 10.1094/pdis-07-23-1359-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Botryosphaeria dieback, caused by a group of pathogens in the Botryosphaeriaceae family, is one of the most common grapevine trunk disease complexes (GTDs) found in Oregon vineyards. To understand the period of spores released by Botryosphaeria spp. in Oregon vineyards, four Burkard 7-day recording volumetric spore traps were placed in vineyard blocks in northern and southern Oregon. Each trap was placed near a younger (<10 years) and older (>30 years) block in both regions. Spore traps were deployed at the beginning of December 2019 and continued until March 2021. Between these timeframes, 475 and 477 days of samples were collected from each spore trap in northern and southern Oregon, respectively. DNA extraction was performed from individual day samples and followed by qPCR analysis of Botryosphaeria spores trapped in each tape sample. Weather data such as temperature, precipitation, relative humidity (RH), and wind speed were collected from nearby weather stations. Association between these data and number of spores detected were analyzed using Pearson correlation analysis. In northern Oregon, the detection occurred between December and February, and the first spore detection occurred when cumulative growing degree day (GDD) totaled to 4,357 and 4,351 units (TBase = 0°C, biofix date = January 1) during the first and second seasons, respectively. Similarly, in southern Oregon, the detection occurred between November and January, and the first spore detection occurred when cumulative GDD was 4,405 units during the second season. Hours of continuous RH >86% was significantly associated with number of spores released (P = 0.026; r = 0.42). During the spore detected dates, the RH was >86% for at least 19 consecutive hours. These findings provide an important implication to manage Botryosphaeria dieback by protecting pruning wounds during the most-spore-released periods. Furthermore, the knowledge of weather variables and their possible association with spore detection provides important information towards developing predictive models in future studies.
Collapse
Affiliation(s)
- Monica Hernandez
- Southern Oregon Research and Extension Center, Oregon State University, Central Point, OR 97502
| | - Achala N Kc
- Southern Oregon Research and Extension Center, Oregon State University, Central Point, OR 97502
| |
Collapse
|
4
|
Hrycan J, Theilmann J, Mahovlic A, Boulé J, Úrbez-Torres JR. Health Status of Ready-to-Plant Grapevine Nursery Material in Canada Regarding Young Vine Decline Fungi. PLANT DISEASE 2023; 107:3708-3717. [PMID: 37436216 DOI: 10.1094/pdis-05-23-0900-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Young vine decline (YVD), caused by several taxonomically different fungi, results in the decline and death of grapevines within a few years after planting. Infection can occur in nursery mother blocks and/or at several stages in the nursery propagation process, but the final plant material may remain asymptomatic. Four nurseries that sell ready-to-plant grapevines in Canada were sampled to evaluate the health status with regard to YVD fungi, including Botryosphaeriaceae spp., Cadophora luteo-olivacea, Dactylonectria macrodidyma, Dactylonectria torresensis, Phaeoacremonium minimum, and Phaeomoniella chlamydospora. Plants representing three cultivars, 'Chardonnay', 'Merlot', and 'Pinot noir', either grafted onto '3309C' rootstock or self-rooted, were provided by the nurseries. Samples from the roots, base of the rootstock or self-rooted cultivar, graft-union, and scion were collected from each plant. DNA was extracted, and the total abundance of each fungus was quantified using Droplet Digital PCR. Results revealed that 99% of plants harbored at least one of the fungi studied, with a mean of three different fungal species that were present per grapevine. Droplet Digital PCR results showed that the abundance of the different fungi significantly varied between different sections of each plant, individual plants for each cultivar, and cultivars from the same nursery. Necrosis measurements were recorded from the base of the rootstock or self-rooted cultivars and did not correlate with fungal abundance recorded in that section for each grapevine, but necrosis was consistent across cultivars within nurseries. Five different rootstocks were compared from one nursery, and results showed no differences between rootstocks and their health status. Among all nurseries, C. luteo-olivacea was the most prevalent fungus (97% of the plants), while D. macrodidyma was the least commonly found (13% of the plants). This study shows that ready-to-plant nursery material sold in Canada is likely to be infected with several YVD fungi and that presence and abundance of fungi vary significantly among individual grapevines and nurseries.
Collapse
Affiliation(s)
- Jared Hrycan
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
- University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Jane Theilmann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
| | - April Mahovlic
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
- University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Julie Boulé
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
| | - José Ramón Úrbez-Torres
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada
| |
Collapse
|
5
|
Billones-Baaijens R, Liu M, Sosnowski MR, Ayres MR, Savocchia S. Molecular detection and identification of Diatrypaceous airborne spores in Australian vineyards revealed high species diversity between regions. PLoS One 2023; 18:e0286738. [PMID: 37267392 DOI: 10.1371/journal.pone.0286738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
The grapevine trunk disease, Eutypa dieback (ED), causes significant vine decline and yield reduction. For many years, the fungus Eutypa lata was considered the main pathogen causing ED of grapevines in Australia. Recent studies showed other Diatrypaceous fungi were also associated with vines exhibiting dieback symptoms but there is limited information on how these fungal pathogens spread in vineyards. Thus, information on the spore dispersal patterns of Diatrypaceous fungi in different wine regions will assist in identifying high-risk infection periods in vineyards. Using more than 6800 DNA samples from airborne spores collected from eight wine regions in south-eastern Australia over 8 years using a Burkard spore trap, this study investigated the diversity and abundance of Diatrypaceous species, using multi-faceted molecular tools. A multi-target quantitative PCR (qPCR) assay successfully detected and quantified Diatrypaceous spores from 30% of the total samples with spore numbers and frequency of detection varying between regions and years. The high-resolution melting analysis (HRMA) coupled with DNA sequencing identified seven species, with E. lata being present in seven regions and the most prevalent species in the Adelaide Hills, Barossa Valley and McLaren Vale. Cryptovalsa ampelina and Diatrype stigma were the predominant species in the Clare Valley and Coonawarra, respectively while Eutypella citricola and Eu. microtheca dominated in the Hunter Valley and the Riverina regions. This study represents the first report of D. stigma and Cryptosphaeria multicontinentalis in Australian vineyards. This study further showed rainfall as a primary factor that triggers spore release, however, other weather factors that may influence the spore release in different climatic regions of Australia still requires further investigation.
Collapse
Affiliation(s)
| | - Meifang Liu
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Mark R Sosnowski
- South Australian Research and Development Institute, Adelaide, SA, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Matthew R Ayres
- South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Sandra Savocchia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW, Australia
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
6
|
Romero-Cuadrado L, López-Herrera CJ, Aguado A, Capote N. Duplex Real-Time PCR Assays for the Simultaneous Detection and Quantification of Botryosphaeriaceae Species Causing Canker Diseases in Woody Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:2205. [PMID: 37299184 PMCID: PMC10255876 DOI: 10.3390/plants12112205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Woody canker diseases caused by fungi of the Botryosphaeriaceae family are producing increasing losses in many economically important woody crops, including almond. To develop a molecular tool for the detection and quantification of the most aggressive and threatening species is of main importance. This will help to prevent the introduction of these pathogens in new orchards and to conveniently apply the appropriate control measures. Three reliable, sensitive and specific duplex qPCR assays using TaqMan probes have been designed for the detection and quantification of (a) Neofusicoccum parvum and the Neofusicoccum genus, (b) N. parvum and the Botryosphaeriaceae family and (c) Botryosphaeria dothidea and the Botryosphaeriaceae family. The multiplex qPCR protocols have been validated on artificially and naturally infected plants. Direct systems to process plant materials, without DNA purification, allowed high-throughput detection of Botryosphaeriaceae targets even in asymptomatic tissues. These results validate the qPCR using the direct sample preparation method as a valuable tool for Botryosphaeria dieback diagnosis allowing a large-scale analysis and the preventive detection of latent infection.
Collapse
Affiliation(s)
- Laura Romero-Cuadrado
- Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Center Las TorresAlcalá del Río, 41200 Seville, Spain; (L.R.-C.); (A.A.)
| | | | - Ana Aguado
- Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Center Las TorresAlcalá del Río, 41200 Seville, Spain; (L.R.-C.); (A.A.)
| | - Nieves Capote
- Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Center Las TorresAlcalá del Río, 41200 Seville, Spain; (L.R.-C.); (A.A.)
| |
Collapse
|
7
|
Niem JM, Billones-Baaijens R, Stodart BJ, Reveglia P, Savocchia S. Biocontrol Potential of an Endophytic Pseudomonas poae Strain against the Grapevine Trunk Disease Pathogen Neofusicoccum luteum and Its Mechanism of Action. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112132. [PMID: 37299111 DOI: 10.3390/plants12112132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
Grapevine trunk diseases (GTDs) impact the sustainability of vineyards worldwide and management options are currently limited. Biological control agents (BCAs) may offer a viable alternative for disease control. With an aim to develop an effective biocontrol strategy against the GTD pathogen Neofusicoccum luteum, this study investigated the following: (1) the efficacy of the strains in suppressing the BD pathogen N. luteum in detached canes and potted vines; (2) the ability of a strain of Pseudomonas poae (BCA17) to colonize and persist within grapevine tissues; and (3) the mode of action of BCA17 to antagonize N. luteum. Co-inoculations of the antagonistic bacterial strains with N. luteum revealed that one strain of P. poae (BCA17) suppressed infection by 100% and 80% in detached canes and potted vines, respectively. Stem inoculations of a laboratory-generated rifampicin-resistant strain of BCA17 in potted vines (cv. Shiraz) indicated the bacterial strain could colonize and persist in the grapevine tissues, potentially providing some protection against GTDs for up to 6 months. The bioactive diffusible compounds secreted by BCA17 significantly reduced the spore germination and fungal biomass of N. luteum and the other representative GTD pathogens. Complementary analysis via MALDI-TOF revealed the presence of an unknown cyclic lipopeptide in the bioactive diffusible compounds, which was absent in a non-antagonistic strain of P. poae (JMN13), suggesting this novel lipopeptide may be responsible for the biocontrol activity of the BCA17. Our study provided evidence that P. poae BCA17 is a potential BCA to combat N. luteum, with a potential novel mode of action.
Collapse
Affiliation(s)
- Jennifer Millera Niem
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Faculty of Science and Health, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- UPLB Museum of Natural History, University of the Philippines Los Baños, College, Los Baños 4031, Laguna, Philippines
- Institute of Weed Science, Entomology, and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Los Baños 4031, Laguna, Philippines
| | | | - Benjamin J Stodart
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Faculty of Science and Health, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| | - Pierluigi Reveglia
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Faculty of Science and Health, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Institute for Sustainable Agriculture, CSIC, 14004 Córdoba, Spain
| | - Sandra Savocchia
- Gulbali Institute, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
- Faculty of Science and Health, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia
| |
Collapse
|
8
|
Hernandez MN, Kc AN. A Systematic Survey on Prevalence of Grapevine Trunk Disease Pathogens in Oregon Vineyards. PLANT DISEASE 2023:PDIS05221220RE. [PMID: 36089679 DOI: 10.1094/pdis-05-22-1220-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Grapevine trunk diseases (GTDs) are found in vineyards worldwide and can be caused by different fungal pathogens. To characterize types of GTDs in Oregon vineyards, and how the GTD pathogens' prevalence is affected by two geographical regions, a survey was conducted in which grapevine trunk samples were collected from 15 and 14 wine grape (Vitis vinifera) vineyards in southern and northern Oregon, respectively. Fungal species were identified through culture and PCR-based methods. GTD pathogens that were identified included Botryosphaeriaceae spp. and Phaeoacremonium spp. from 72 and 21% of the surveyed vineyards, respectively; Phaeomoniella chlamydospora, Cryptovalsa ampelina, Truncatella angustata, Seimatosporium lichenicola, Hormonema viticola from 7% of the surveyed vineyards; and Dactylonectria macrodidyma, and Pestaloptiopsis sp. from 3% of the surveyed vineyards. Pathogens were identified in both regions and in young and mature vineyards. The presence of GTD from the Botryosphaeria dieback complex was significantly affected by regions (P = 0.021), with pathogens being significantly more abundant in Willamette Valley (northern region) compared with Rogue Valley (southern region) vineyards. Some differences among other tested variables such as vineyard age, cultivars, rootstocks, and pruning methods were observed for all disease complexes; however, the differences were not statistically significant. Our study summarizes that Botryosphaeria dieback and Esca disease complexes are the most prevalent diseases infecting grapevines in Oregon vineyards and management practices need to be geared toward these economically important diseases. In addition, pathogens from other disease complexes are also present, suggesting a need for regular disease monitoring and following practices to limit the spread of these pathogens.
Collapse
Affiliation(s)
- Monica N Hernandez
- Southern Oregon Research and Extension Center, Oregon State University, Central Point, OR 97502
| | - Achala N Kc
- Southern Oregon Research and Extension Center, Oregon State University, Central Point, OR 97502
| |
Collapse
|
9
|
Azevedo-Nogueira F, Rego C, Gonçalves HMR, Fortes AM, Gramaje D, Martins-Lopes P. The road to molecular identification and detection of fungal grapevine trunk diseases. FRONTIERS IN PLANT SCIENCE 2022; 13:960289. [PMID: 36092443 PMCID: PMC9459133 DOI: 10.3389/fpls.2022.960289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Grapevine is regarded as a highly profitable culture, being well spread worldwide and mostly directed to the wine-producing industry. Practices to maintain the vineyard in healthy conditions are tenuous and are exacerbated due to abiotic and biotic stresses, where fungal grapevine trunk diseases (GTDs) play a major role. The abolishment of chemical treatments and the intensification of several management practices led to an uprise in GTD outbreaks. Symptomatology of GTDs is very similar among diseases, leading to underdevelopment of the vines and death in extreme scenarios. Disease progression is widely affected by biotic and abiotic factors, and the prevalence of the pathogens varies with country and region. In this review, the state-of-the-art regarding identification and detection of GTDs is vastly analyzed. Methods and protocols used for the identification of GTDs, which are currently rather limited, are highlighted. The main conclusion is the utter need for the development of new technologies to easily and precisely detect the presence of the pathogens related to GTDs, allowing to readily take phytosanitary measures and/or proceed to plant removal in order to establish better vineyard management practices. Moreover, new practices and methods of detection, identification, and quantification of infectious material would allow imposing greater control on nurseries and plant exportation, limiting the movement of infected vines and thus avoiding the propagation of fungal inoculum throughout wine regions.
Collapse
Affiliation(s)
- Filipe Azevedo-Nogueira
- DNA & RNA Sensing Lab, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília Rego
- LEAF - Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | | | - Ana Margarida Fortes
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - David Gramaje
- Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC), University of La Rioja and Government of La Rioja, Logroño, Spain
| | - Paula Martins-Lopes
- DNA & RNA Sensing Lab, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Avenot HF, Jaime-Frias R, Travadon R, Holland LA, Lawrence DP, Trouillas FP. Development of PCR-Based Assays for Rapid and Reliable Detection and Identification of Canker-Causing Pathogens from Symptomatic Almond Trees. PHYTOPATHOLOGY 2022; 112:1710-1722. [PMID: 35240867 DOI: 10.1094/phyto-08-21-0351-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Trunk and scaffold canker diseases (TSCDs) of almond cause significant yield and tree losses and reduce the lifespan of orchards. In California, several pathogens cause TSCDs, including Botryosphaeriaceae, Ceratocystis destructans, Eutypa lata, Collophorina hispanica, Pallidophorina paarla, Cytospora, Diaporthe, and Phytophthora spp. Field diagnosis of TSCDs is challenging because symptom delineation among the diseases is not clear. Accurate diagnosis of the causal species requires detailed examination of symptoms and subsequent isolation on medium and identification using morphological criteria and subsequent confirmation using molecular tools. The process is time-consuming and difficult, particularly as morphological characteristics are variable and overlap among species. To facilitate diagnosis of TSCD, we developed PCR assays using 23 species-specific primers designed by exploiting sequence differences in the translation elongation factor, β-tubulin, or internal transcribed spacer gene. Using genomic DNA from pure cultures of each fungal and oomycete species, each primer pair successfully amplified a single DNA fragment from the target pathogen but not from selected nontarget pathogens or common endophytes. Although 10-fold serial dilution of fungal DNA extracted from either pure cultures or infected wood samples detected as little as 0.1 pg of DNA sample, consistent detection required 10 ng of pathogen DNA from mycelial samples or from wood chips or drill shavings from artificially or naturally infected almond wood samples with visible symptoms. The new PCR assay represents an improved tool for diagnostic laboratories and will be critical to implement effective disease surveillance and control measures.
Collapse
Affiliation(s)
- Herve F Avenot
- Kearney Agricultural Research & Extension Center, Parlier, CA 93648
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Rosa Jaime-Frias
- Kearney Agricultural Research & Extension Center, Parlier, CA 93648
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Leslie A Holland
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706
| | - Daniel P Lawrence
- Department of Plant Pathology, University of California, Davis, CA 95616
| | - Florent P Trouillas
- Kearney Agricultural Research & Extension Center, Parlier, CA 93648
- Department of Plant Pathology, University of California, Davis, CA 95616
| |
Collapse
|
11
|
Jiménez Luna I, Doll D, Ashworth VETM, Trouillas FP, Rolshausen PE. Comparative Profiling of Wood Canker Pathogens from Spore Traps and Symptomatic Plant Samples Within California Almond and Walnut Orchards. PLANT DISEASE 2022; 106:2182-2190. [PMID: 35077222 DOI: 10.1094/pdis-05-21-1057-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungi causing wood canker diseases are major factors limiting productivity and longevity of almond and walnut orchards. The goal of this study was to compare pathogen profiles from spore traps with those of plant samples collected from symptomatic almond and walnut trees and assess if profiles could be influenced by orchard type and age, rainfall amount and frequency, and/or neighboring trees. Three almond orchards and one walnut orchard with different characteristics were selected for this study. Fungal inoculum was captured weekly from nine trees per orchard using a passive spore-trapping device, during a 30-week period in the rainy season (October to April) and for two consecutive years. Fungal taxa identified from spore traps were compared with a collection of fungal isolates obtained from 61 symptomatic wood samples collected from the orchards. Using a culture-dependent approach coupled with molecular identification, we identified 18 known pathogenic species from 10 fungal genera (Ceratocystis destructans, Collophorina hispanica, Cytospora eucalypti, Diaporthe ampelina, Diaporthe chamaeropis/rhusicola, Diaporthe eres, Diaporthe novem, Diplodia corticola, Diplodia mutila, Diplodia seriata, Dothiorella iberica, Dothiorella sarmentorum, Dothiorella viticola, Eutypa lata, Neofusicoccum mediterraneum, Neofusicoccum parvum, Neoscytalidium dimidiatum, and Pleurostoma richardsiae), plus two unidentified Cytospora and Diaporthe species. However, only four species were identified with both methods (Diplodia mutila, Diplodia seriata, Dothiorella Iberica, and E. lata), albeit not consistently across orchards. Our results demonstrate a clear disparity between the two diagnostic methods and caution against using passive spore traps to predict disease risks. In particular, the spore trap approach failed to capture: insect-vectored pathogens such as Ceratocystis destructans that were often recovered from almond trunk and scaffold; Diaporthe chamaeropis/rhusicola commonly isolated from wood samples likely because Diaporthe species have a spatially restricted dispersal mechanism, as spores are exuded in a cirrus; and pathogenic species with low incidence in wood samples such as P. richardsiae and Collophorina hispanica. We propose that orchard inoculum is composed of both endemic taxa that are characterized by frequent and repeated trapping events from the same trees and isolated from plant samples, as well as immigrant taxa characterized by rare trapping events. We hypothesize that host type, orchard age, precipitation, and alternative hosts at the periphery of orchards are factors that could affect pathogen profile. We discuss the limitations and benefits of our methodology and experimental design to develop guidelines and prediction tools for fungal wood canker diseases in California orchards.
Collapse
Affiliation(s)
- Israel Jiménez Luna
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92521
| | - David Doll
- University of California Agricultural and Natural Resources, Merced, CA 95343
| | - Vanessa E T M Ashworth
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92521
| | - Florent P Trouillas
- Department of Plant Pathology, University of California-Davis, Davis, CA 95616
- Kearney Agricultural Research and Extension Center, Parlier, CA 93648
| | - Philippe E Rolshausen
- Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92521
| |
Collapse
|
12
|
Kenfaoui J, Radouane N, Mennani M, Tahiri A, El Ghadraoui L, Belabess Z, Fontaine F, El Hamss H, Amiri S, Lahlali R, Barka EA. A Panoramic View on Grapevine Trunk Diseases Threats: Case of Eutypa Dieback, Botryosphaeria Dieback, and Esca Disease. J Fungi (Basel) 2022; 8:jof8060595. [PMID: 35736078 PMCID: PMC9224927 DOI: 10.3390/jof8060595] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Grapevine trunk diseases (GTD) are currently one of the most devastating and challenging diseases in viticulture, leading to considerable yield losses and a remarkable decline in grapevine quality. The identification of the causal agents is the cornerstone of an efficient approach to fighting against fungal diseases in a sustainable, non-chemical manner. This review attempts to describe and expose the symptoms of each pathology related to GTD, the modes of transmission, and the harmfulness of recently reported agents. Special attention was given to new diagnostic tests and technologies, grapevine defense mechanisms, molecular mechanisms of endophytes fungal colonization, and management strategies used to control these threats. The present extended review is, therefore, an updated state-of-the-art report on the progress in the management of vineyards.
Collapse
Affiliation(s)
- Jihane Kenfaoui
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (J.K.); (N.R.); (M.M.); (A.T.); (H.E.H.); (S.A.)
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30500, Morocco;
| | - Nabil Radouane
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (J.K.); (N.R.); (M.M.); (A.T.); (H.E.H.); (S.A.)
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30500, Morocco;
| | - Mohammed Mennani
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (J.K.); (N.R.); (M.M.); (A.T.); (H.E.H.); (S.A.)
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (J.K.); (N.R.); (M.M.); (A.T.); (H.E.H.); (S.A.)
| | - Lahsen El Ghadraoui
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Route d’Imouzzer, Fez 30500, Morocco;
| | - Zineb Belabess
- Plant Protection Laboratory, Regional Center of Agricultural Research of Oujda, National Institute of Agricultural Research, Avenue Mohamed VI, BP428 Oujda, Oujda 60000, Morocco;
| | - Florence Fontaine
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707 USC INRAE 1488, Université de Reims Champagne-Ardenne, 51100 Reims, France;
| | - Hajar El Hamss
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (J.K.); (N.R.); (M.M.); (A.T.); (H.E.H.); (S.A.)
| | - Said Amiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (J.K.); (N.R.); (M.M.); (A.T.); (H.E.H.); (S.A.)
| | - Rachid Lahlali
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, Km10, Rte Haj Kaddour, BP S/40, Meknes 50001, Morocco; (J.K.); (N.R.); (M.M.); (A.T.); (H.E.H.); (S.A.)
- Correspondence: (R.L.); (E.A.B.); Tel.: +212-55-30-02-39 (R.L.); +33-3-2691-3441 (E.A.B.)
| | - Essaid Ait Barka
- Unité de Recherche Résistance Induite et Bio-Protection des Plantes-EA 4707 USC INRAE 1488, Université de Reims Champagne-Ardenne, 51100 Reims, France;
- Correspondence: (R.L.); (E.A.B.); Tel.: +212-55-30-02-39 (R.L.); +33-3-2691-3441 (E.A.B.)
| |
Collapse
|
13
|
Pollard-Flamand J, Boulé J, Hart M, Úrbez-Torres JR. Biocontrol Activity of Trichoderma Species Isolated from Grapevines in British Columbia against Botryosphaeria Dieback Fungal Pathogens. J Fungi (Basel) 2022; 8:409. [PMID: 35448640 PMCID: PMC9030288 DOI: 10.3390/jof8040409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 01/27/2023] Open
Abstract
Botryosphaeria dieback (BD) is a grapevine trunk disease (GTD) causing significant yield losses and limiting the lifespan of vineyards worldwide. Fungi responsible for BD infect grapevines primarily through pruning wounds, and thus pruning wound protection, using either synthetic chemicals or biological control agents (BCAs), is the main available management strategy. However, no products to control GTDs are currently registered in Canada. With a focus on more sustainable grapevine production, there is an increasing demand for alternatives to chemical products to manage GTDs. Accordingly, the objective of this study was to identify Trichoderma species from grapevines in British Columbia (BC) and evaluate their potential biocontrol activity against BD fungi Diplodia seriata and Neofusicoccum parvum. Phylogenetic analyses identified seven species, including T. asperelloides, T. atroviride, T. harzianum, T. koningii, T. tomentosum, and two novel species, T. canadense and T. viticola. In vitro dual culture antagonistic assays showed several isolates to inhibit fungal pathogen mycelial growth by up to 75%. In planta detached cane assays under controlled greenhouse conditions identified T. asperelloides, T. atroviride and T. canadense isolates from BC as providing 70% to 100% pruning wound protection against BD fungi for up to 21 days after treatment. In addition, these isolates were shown to provide similar or better control when compared against commercial chemical and biocontrol products. This study demonstrates the potential that locally sourced Trichoderma species can have for pruning wound protection against BD fungi, and further supports the evaluation of these isolates under natural field conditions.
Collapse
Affiliation(s)
- Jinxz Pollard-Flamand
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, Summerland, BC V0H 1Z0, Canada; (J.P.-F.); (J.B.)
- Department of Biology, The University of British Columbia Okanagan, 3187 University Way, Kelowna, BC V1V 1V7, Canada;
| | - Julie Boulé
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, Summerland, BC V0H 1Z0, Canada; (J.P.-F.); (J.B.)
| | - Miranda Hart
- Department of Biology, The University of British Columbia Okanagan, 3187 University Way, Kelowna, BC V1V 1V7, Canada;
| | - José Ramón Úrbez-Torres
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, Summerland, BC V0H 1Z0, Canada; (J.P.-F.); (J.B.)
| |
Collapse
|
14
|
Arkam M, Alves A, Lopes A, Čechová J, Pokluda R, Eichmeier A, Zitouni A, Mahamedi AE, Berraf-Tebbal A. Diversity of Botryosphaeriaceae causing grapevine trunk diseases and their spatial distribution under different climatic conditions in Algeria. EUROPEAN JOURNAL OF PLANT PATHOLOGY 2021; 161:933-952. [PMID: 0 DOI: 10.1007/s10658-021-02377-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 05/23/2023]
|
15
|
Fujiyoshi PT, Lawrence DP, Travadon R, Baumgartner K. DNA-based detection of grapevine trunk-disease pathogens from environmental spore samples. MethodsX 2021; 8:101494. [PMID: 34754765 PMCID: PMC8563471 DOI: 10.1016/j.mex.2021.101494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/18/2021] [Indexed: 11/30/2022] Open
Abstract
In California vineyards, spore dispersal of fungi that cause grapevine trunk diseases Botryosphaeria dieback and Eutypa dieback occurs with winter rains. Spores infect through pruning wounds made to the woody structure of the vine in winter. Better timing of preventative practices that minimize infection may benefit from routine spore-trapping, which could pinpoint site-specific time frames of spore dispersal. To speed pathogen detection from environmental spore samples, we identified species-specific PCR primers and protocols. Then we compared the traditional culture-based method versus our new DNA-based method.PCR primers for Botryosphaeria-dieback pathogen Neofusicoccum parvum and Eutypa-dieback pathogen Eutypa lata were confirmed species-specific, through extensive testing of related species (in families Botryosphaeriaceae and Diatrypaceae, respectively), other trunk-disease pathogens, and saprophytic fungi that sporulate in vineyards. Consistent detection of N. parvum was achieved from spore suspensions used fresh or stored at -20°C, whereas consistent detection of E. lata was achieved only with a new spore-lysis method, using zirconia/silica beads in a FastPrep homogenizer (MP Biomedicals; Solon, Ohio, USA), and only from spore suspensions used fresh. Freezing E. lata spores at -20°C made detection inconsistent. From environmental samples, spores of E. lata were detected only via PCR, whereas spores of N. parvum were detected both via PCR and in culture.
Collapse
Affiliation(s)
- Phillip T. Fujiyoshi
- United States Department of Agriculture-Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, CA 95616, U.S.A
| | - Daniel P. Lawrence
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Kendra Baumgartner
- United States Department of Agriculture-Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, CA 95616, U.S.A
- Corresponding author's.
| |
Collapse
|
16
|
Reveglia P, Billones-Baaijens R, Millera Niem J, Masi M, Cimmino A, Evidente A, Savocchia S. Production of Phytotoxic Metabolites by Botryosphaeriaceae in Naturally Infected and Artificially Inoculated Grapevines. PLANTS (BASEL, SWITZERLAND) 2021; 10:802. [PMID: 33921820 PMCID: PMC8073839 DOI: 10.3390/plants10040802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022]
Abstract
Grapevine trunk diseases (GTDs) are considered a serious problem to viticulture worldwide. Several GTD fungal pathogens produce phytotoxic metabolites (PMs) that were hypothesized to migrate to the foliage where they cause distinct symptoms. The role of PMs in the expression of Botryosphaeria dieback (BD) symptoms in naturally infected and artificially inoculated wood using molecular and analytical chemistry techniques was investigated. Wood samples from field vines naturally infected with BD and one-year-old vines inoculated with Diplodia seriata, Spencermartinsia viticola and Dothiorella vidmadera were analysed by cultural isolations, quantitative PCR (qPCR) and targeted LC-MS/MS to detect three PMs: (R)-mellein, protocatechuic acid and spencertoxin. (R)-mellein was detected in symptomatic naturally infected wood and vines artificially inoculated with D. seriata but was absent in all non-symptomatic wood. The amount of (R)-mellein detected was correlated with the amount of pathogen DNA detected by qPCR. Protocatechuic acid and spencertoxin were absent in all inoculated wood samples. (R)-mellein may be produced by the pathogen during infection to break down the wood, however it was not translocated into other parts of the vine. The foliar symptoms previously reported in vineyards may be due to a combination of PMs produced and climatic and physiological factors that require further investigation.
Collapse
Affiliation(s)
- Pierluigi Reveglia
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (R.B.-B.); (J.M.N.); (S.S.)
- Dipartimento di Scienze Chimiche, Universita’ di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy; (M.M.); (A.C.); (A.E.)
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71121 Foggia, Italy
| | - Regina Billones-Baaijens
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (R.B.-B.); (J.M.N.); (S.S.)
| | - Jennifer Millera Niem
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (R.B.-B.); (J.M.N.); (S.S.)
- UPLB Museum of Natural History, University of the Philippines—Los Baños, College, Laguna 4031, Philippines
| | - Marco Masi
- Dipartimento di Scienze Chimiche, Universita’ di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy; (M.M.); (A.C.); (A.E.)
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Universita’ di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy; (M.M.); (A.C.); (A.E.)
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Universita’ di Napoli Federico II, Complesso Universitario Monte Sant’Angelo, Via Cintia 4, 80126 Napoli, Italy; (M.M.); (A.C.); (A.E.)
| | - Sandra Savocchia
- National Wine and Grape Industry Centre, School of Agricultural and Wine Sciences, Charles Sturt University, Locked Bag 588, Wagga Wagga, NSW 2678, Australia; (R.B.-B.); (J.M.N.); (S.S.)
| |
Collapse
|
17
|
Martínez-Diz MDP, Eichmeier A, Spetik M, Bujanda R, Díaz-Fernández Á, Díaz-Losada E, Gramaje D. Grapevine pruning time affects natural wound colonization by wood-invading fungi. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Úrbez-Torres JR, Lawrence DP, Hand FP, Trouillas FP. Olive Twig and Branch Dieback in California Caused by Cytospora oleicola and the Newly Described Species Cytospora olivarum sp. nov. PLANT DISEASE 2020; 104:1908-1917. [PMID: 32432982 DOI: 10.1094/pdis-09-19-1979-re] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Field surveys conducted throughout California olive-growing regions in 2008 and 2009 resulted in a collection of 101 Cytospora-like isolates from olive twig and branch dieback symptoms. Cytospora isolates were isolated from multiple cvs. in different olive orchards in Fresno, Madera, Merced, Napa, Riverside, Santa Barbara, Sonoma, Tulare, and Ventura counties. Taxonomic studies of macro- and microscopic structures along with multigene phylogenetic analyses of the internal transcribed spacer region, including the 5.8S rDNA (ITS1-5.8S-ITS2), and fragments of the translation elongation factor 1-α, beta-tubulin, and actin genes identified two species, Cytospora oleicola and C. olivarum sp. nov. Pathogenicity studies conducted in mature olive trees cvs. Manzanillo and Sevillano showed both species to be pathogenic and able to cause vascular necrosis and cankers in olive branches. This study adds to the current knowledge on the etiology of olive twig and branch dieback and provides new important information for the development of effective control strategies against canker diseases affecting olive in California.
Collapse
Affiliation(s)
- José Ramón Úrbez-Torres
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC V0H 1Z0, Canada
| | - Daniel P Lawrence
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | | | - Florent P Trouillas
- Department of Plant Pathology, University of California, Davis and Kearney Agricultural Research and Extension Centre, Parlier, CA 93648, U.S.A
| |
Collapse
|
19
|
González-Domínguez E, Berlanas C, Gramaje D, Armengol J, Rossi V, Berbegal M. Temporal Dispersal Patterns of Phaeomoniella chlamydospora, Causal Agent of Petri Disease and Esca, in Vineyards. PHYTOPATHOLOGY 2020; 110:1216-1225. [PMID: 32129711 DOI: 10.1094/phyto-10-19-0400-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although the fungus Phaeomoniella chlamydospora is the most commonly detected causal agent of Petri disease and esca, two important fungal grapevine trunk diseases, little is known about the dispersal patterns of P. chlamydospora inoculum. In this work, we studied the dispersal of P. chlamydospora airborne inoculum from 2016 to 2018 in two viticultural areas of eastern (Ontinyent) and northern (Logroño) Spain. The vineyards were monitored weekly from November to April using microscope slide traps, and P. chlamydospora was detected and quantified by a specific real-time quantitative (qPCR) method set up in this work. The method was found to be sensitive, and a good correlation was observed between numbers of P. chlamydospora conidia (counted by microscope) and DNA copy numbers (quantified by qPCR). We consistently detected DNA of P. chlamydospora at both locations and in all seasons but in different quantities. In most cases, DNA was first detected in the last half of November, and most of the DNA was detected from December to early April. When rain was used as a predictor of P. chlamydospora DNA detection in traps, false-negative detections were observed, but these involved only 4% of the total. The dispersal pattern of P. chlamydospora DNA over time was best described (R2 = 0.765 and concordance correlation coefficient = 0.870) by a Gompertz equation, with time expressed as hydrothermal time (a physiological time accounting for the effects of temperature and rain). This equation could be used to predict periods with a high risk of dispersal of P. chlamydospora.
Collapse
Affiliation(s)
| | - Carmen Berlanas
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas-Universidad de la Rioja-Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain
| | - David Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas-Universidad de la Rioja-Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain
| | - Josep Armengol
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DIPROVES), Facoltà di Scienze Agrarie, Alimentari e Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Mónica Berbegal
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
20
|
Niem JM, Billones-Baaijens R, Stodart B, Savocchia S. Diversity Profiling of Grapevine Microbial Endosphere and Antagonistic Potential of Endophytic Pseudomonas Against Grapevine Trunk Diseases. Front Microbiol 2020; 11:477. [PMID: 32273871 PMCID: PMC7113392 DOI: 10.3389/fmicb.2020.00477] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/04/2020] [Indexed: 02/01/2023] Open
Abstract
Grapevine trunk diseases (GTDs) are a serious problem of grapevines worldwide. The microbiota of the grapevine endosphere comprises prokaryotic and eukaryotic endophytes, which may form varied relationships with the host plant from symbiotic to pathogenic. To explore the interaction between grapevine endophytic bacteria and GTDs, the endomicrobiome associated with grapevine wood was characterized using next-generation Illumina sequencing. Wood samples were collected from grapevine trunks with and without external symptoms of GTD (cankers) from two vineyards in the Hunter Valley and Hilltops, NSW, Australia and metagenomic characterization of the endophytic community was conducted using the 16S rRNA gene (341F/806R) and ITS (1F/2R) sequences. Among the important GTD pathogens, Phaeomoniella, Phaeoacremonium, Diplodia and Cryptovalsa species were found to be abundant in both symptomatic and asymptomatic grapevines from both vineyards. Eutypa lata and Neofusicoccum parvum, two important GTD pathogens, were detected in low numbers in Hilltops and the Hunter Valley, respectively. Interestingly, Pseudomonas dominated the bacterial community in canker-free grapevine tissues in both locations, comprising 56-74% of the total bacterial population. In contrast, the Pseudomonas population in grapevines with cankers was significantly lower, representing 29 and 2% of the bacterial community in Hilltops and the Hunter Valley, respectively. The presence of Pseudomonas in healthy grapevine tissues indicates its ability to colonize and survive in the grapevine. The potential of Pseudomonas spp. as biocontrol agents against GTD pathogens was also explored. Dual culture tests with isolated fluorescent Pseudomonas against mycelial discs of nine Botryosphaeria dieback, three Eutypa dieback, and two Esca/Petri disease pathogens, revealed antagonistic activity for 10 Pseudomonas strains. These results suggest the potential of Pseudomonas species from grapevine wood to be used as biocontrol agents to manage certain GTD pathogens.
Collapse
Affiliation(s)
- Jennifer Millera Niem
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | | | - Benjamin Stodart
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
- Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Sandra Savocchia
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| |
Collapse
|
21
|
Carrillo JD, Mayorquin JS, Stajich JE, Eskalen A. Probe-Based Multiplex Real-Time PCR as a Diagnostic Tool to Distinguish Distinct Fungal Symbionts Associated With Euwallacea kuroshio and Euwallacea whitfordiodendrus in California. PLANT DISEASE 2020; 104:227-238. [PMID: 31647694 DOI: 10.1094/pdis-01-19-0201-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
California has been invaded by two distinct Euwallacea spp. that vector unique plant pathogenic symbiotic fungi on multiple hosts and cause Fusarium dieback. The objective of this study was to develop multiplex real-time quantitative PCR assays using hydrolysis probes targeting the β-tubulin gene to detect, distinguish, and quantify fungi associated with the polyphagous shot hole borer (PSHB; Euwallacea whitfordiodendrus, Fusarium euwallaceae, Graphium euwallaceae, and Paracremonium pembeum) as well as the Kuroshio shot hole borer (KSHB; Euwallacea kuroshio, Fusarium kuroshium, and Graphium kuroshium) from various sample types. Absolute quantification reaction efficiencies ranged from 88.2 to 104.3%, with a coefficient of determination >0.992 and a limit of detection of 100 copies µl-1 for all targets across both assays. Qualitative detection using the real-time assays on artificially inoculated avocado shoot extracts showed more sensitivity compared with conventional fungal isolation from wood. All symbiotic fungi, except P. pembeum, from PSHB and KSHB female heads were detectable and quantified. Field samples from symptomatic Platanus racemosa, Populus spp., and Salix spp. across 17 of 26 city parks were positively identified as PSHB and KSHB through detection of their symbiotic fungi, and both were found occurring together on five trees from three different park locations. The molecular assays presented here can be utilized to accurately identify fungi associated with these invasive pests in California.
Collapse
Affiliation(s)
- Joseph D Carrillo
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - Joey S Mayorquin
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521
| | - Akif Eskalen
- Department of Plant Pathology, University of California, Davis, CA 95616
| |
Collapse
|
22
|
Campos MD, Zellama MS, Varanda C, Materatski P, Peixe A, Chaouachi M, Félix MDR. Establishment of a Sensitive qPCR Methodology for Detection of the Olive-Infecting Viruses in Portuguese and Tunisian Orchards. FRONTIERS IN PLANT SCIENCE 2019; 10:694. [PMID: 31191591 PMCID: PMC6549245 DOI: 10.3389/fpls.2019.00694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Sensitive detection of viruses in olive orchards is actually of main importance since these pathogenic agents cannot be treated, their dissemination is quite easy, and they can have eventual negative effects on olive oil quality. The work presented here describes the development and application of a new SYBR® Green-based real-time quantitative PCR (qPCR) analysis for specific and reliable quantification of highly spread olive tree viruses: Olive latent virus 1 (OLV-1), Tobacco necrosis virus D (TNV-D), Olive mild mosaic virus (OMMV), and Olive leaf yellowing-associated virus (OLYaV). qPCR methodology revealed high specificity and sensitivity, estimated in the range of 0.8-8 copies of the virus genome, for the studied viruses. For validation of the method, total RNA and double strand RNA (dsRNA) from naturally infected trees were used. In a first trial, dsRNAs from trees of cv. "Galega vulgar" from a Portuguese orchard, were subjected to qPCR and from the 30 samples tested, 26 were TNV-D and/or OMMV-positive and 25 were OLV-1 positive. In a second trial, total RNA from trees of different cultivars from Tunisian orchards, were here tested by qPCR and all viruses were detected. From the 33 samples studied, the most prevalent virus detected in Tunisia orchards was OLV-1 (31 samples diagnosed), followed by OLYaV (20 samples diagnosed), and finally the combination in last TNV-D and/or OMMV (12 samples diagnosed). In both trials, qPCR demonstrated to be effective and sensitive, even when using total RNA as template. qPCR through the use of a SYBR® Green methodology enabled, for the first time, a reliable, sensitive, and reproducible estimation of virus accumulation in infected olive trees, in which viruses are usually in low titres, that will allow gaining new insights in virus biology essential for disease control and give an important contribution for establishment of sanitary certification of olive propagative material.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Mohamed Salem Zellama
- Laboratoire de Recherche “Bioressources: Biologie Intégrative & Valorisation," Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Carla Varanda
- ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Patrick Materatski
- ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Évora, Portugal
| | - Augusto Peixe
- Departamento de Fitotecnia, ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| | - Maher Chaouachi
- Laboratoire de Recherche “Bioressources: Biologie Intégrative & Valorisation," Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Monastir, Tunisia
| | - Maria do Rosário Félix
- Departamento de Fitotecnia, ICAAM – Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| |
Collapse
|
23
|
Morales-Cruz A, Figueroa-Balderas R, García JF, Tran E, Rolshausen PE, Baumgartner K, Cantu D. Profiling grapevine trunk pathogens in planta: a case for community-targeted DNA metabarcoding. BMC Microbiol 2018; 18:214. [PMID: 30547761 PMCID: PMC6295080 DOI: 10.1186/s12866-018-1343-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND DNA metabarcoding, commonly used in exploratory microbial ecology studies, is a promising method for the simultaneous in planta-detection of multiple pathogens associated with disease complexes, such as the grapevine trunk diseases. Profiling of pathogen communities associated with grapevine trunk diseases is particularly challenging, due to the presence within an individual wood lesion of multiple co-infecting trunk pathogens and other wood-colonizing fungi, which span a broad range of taxa in the fungal kingdom. As such, we designed metabarcoding primers, using as template the ribosomal internal transcribed spacer of grapevine trunk-associated ascomycete fungi (GTAA) and compared them to two universal primer widely used in microbial ecology. RESULTS We first performed in silico simulations and then tested the primers by high-throughput amplicon sequencing of (i) multiple combinations of mock communities, (ii) time-course experiments with controlled inoculations, and (iii) diseased field samples from vineyards under natural levels of infection. All analyses showed that GTAA had greater affinity and sensitivity, compared to those of the universal primers. Importantly, with GTAA, profiling of mock communities and comparisons with shotgun-sequencing metagenomics of field samples gave an accurate representation of genera of important trunk pathogens, namely Phaeomoniella, Phaeoacremonium, and Eutypa, the abundances of which were over- or under-estimated with universal primers. CONCLUSIONS Overall, our findings not only demonstrate that DNA metabarcoding gives qualitatively and quantitatively accurate results when applied to grapevine trunk diseases, but also that primer customization and testing are crucial to ensure the validity of DNA metabarcoding results.
Collapse
Affiliation(s)
- Abraham Morales-Cruz
- Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Rosa Figueroa-Balderas
- Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Jadran F. García
- Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Eric Tran
- Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| | - Philippe E. Rolshausen
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521 USA
| | - Kendra Baumgartner
- United States Department of Agriculture, Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, CA 95616 USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California Davis, One Shields Ave, Davis, CA 95616 USA
| |
Collapse
|