1
|
de Novais DPS, Batista TM, Costa EA, Pirovani CP. Genomic and Pathogenicity Mechanisms of the Main Theobroma cacao L. Eukaryotic Pathogens: A Systematic Review. Microorganisms 2023; 11:1567. [PMID: 37375069 DOI: 10.3390/microorganisms11061567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
A set of diseases caused by fungi and oomycetes are responsible for large losses in annual world cocoa production. Managing the impact caused by these diseases is very complex because a common solution has yet to be found for different pathogens. In this context, the systematic knowledge of Theobroma cacao L. pathogens' molecular characteristics may help researchers understand the possibilities and limitations of cocoa disease management strategies. This work systematically organized and summarized the main findings of omics studies of T. cacao eukaryotic pathogens, focusing on the plant-pathogen interaction and production dynamics. Using the PRISMA protocol and a semiautomated process, we selected papers from the Scopus and Web of Science databases and collected data from the selected papers. From the initial 3169 studies, 149 were selected. The first author's affiliations were mostly from two countries, Brazil (55%) and the USA (22%). The most frequent genera were Moniliophthora (105 studies), Phytophthora (59 studies) and Ceratocystis (13 studies). The systematic review database includes papers reporting the whole-genome sequence from six cocoa pathogens and evidence of some necrosis-inducing-like proteins, which are common in T. cacao pathogen genomes. This review contributes to the knowledge about T. cacao diseases, providing an integrated discussion of T. cacao pathogens' molecular characteristics, common mechanisms of pathogenicity and how this knowledge is produced worldwide.
Collapse
Affiliation(s)
- Diogo Pereira Silva de Novais
- Department of Biological Sciences, Center for Biotechnology and Genetics, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
- Bahia Federal Institute of Education, Science and Technology (IFBA), Porto Seguro 45810-000, BA, Brazil
| | - Thiago Mafra Batista
- Environmental Science Training Center, Federal University of Southern Bahia (UFSB), Porto Seguro 45810-000, BA, Brazil
| | - Eduardo Almeida Costa
- Department of Biological Sciences, Center for Biotechnology and Genetics, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, Center for Biotechnology and Genetics, State University of Santa Cruz (UESC), Ilhéus 45662-900, BA, Brazil
| |
Collapse
|
2
|
Jaimes-Suárez YY, Carvajal-Rivera AS, Galvis-Neira DA, Carvalho FEL, Rojas-Molina J. Cacao agroforestry systems beyond the stigmas: Biotic and abiotic stress incidence impact. FRONTIERS IN PLANT SCIENCE 2022; 13:921469. [PMID: 35968107 PMCID: PMC9366013 DOI: 10.3389/fpls.2022.921469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Low technological knowledge in production chains, global climate change, and misinformation are concrete threats to food security. In addition, these combined threats also trigger ecological instability in megadiverse areas of the world, especially in some cacao-producing countries in South America, where this crop plays an important socio-economic role, even being used to replace illicit crops. Accordingly, the use of agroforestry systems approaches has emerged as a good alternative to maintain productivity, add high-value commodities to producers, and provide important ecosystem services for sustainable agriculture. However, limitations associated with the competition for resources between the species composing the system, and the higher incidence of some diseases, have led many producers to abandon this strategy, opting for monoculture. In this review, we seek to gather the main information available in the literature, aiming to answer the question: what is the real scientific evidence that supports the benefits and harms of adopting agroforestry systems in cacao production? We seek to make critical scrutiny of the possible negative effects of certain associations of the agroforestry system with biotic and abiotic stress in cacao. Here, we review the possible competition for light and nutrients and discuss the main characteristics to be sought in cacao genotypes to optimize these inter-specific relationships. In addition, we review the research advances that show the behavior of the main cacao diseases (Witch's broom disease, frosty pod rot, black pod rot) in models of agroforestry systems contrasted with monoculture, as well as the optimization of agronomic practices to reduce some of these stresses. This compendium, therefore, sheds light on a major gap in establishing truly sustainable agriculture, which has been treated much more from the perspective of negative stigma than from the real technological advantages that can be combined to the benefit of a balanced ecosystem with generating income for farmers.
Collapse
|
3
|
Jaimes Y, Gonzalez C, Rojas J, Rivera JJ, Cilas C, Argout X. Population Structure of Moniliophthora perniciosa in the Main Cacao Producing Departments of Colombia. PLANT DISEASE 2022; 106:1492-1501. [PMID: 34879729 DOI: 10.1094/pdis-12-20-2679-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The witches' broom (Moniliophthora perniciosa) is considered as one of the main threats for cacao production and, consequently, for chocolate production worldwide. In this work, the genetic diversity and population structure of M. perniciosa were analyzed for 59 isolates collected in five departments of Colombia and using 10 microsatellite markers. Analyses revealed 35 multilocus genotypes and clonal populations structure according to linkage disequilibrium analysis. One of the objectives of this study was to determine whether populations were differentiated by geographic origin or Theobroma cacao host genotype. Analysis of molecular variance, discriminant analysis of principal components, and Bruvo genetic distance suggested that the genetic structure was driven by geographic origin and not by T. cacao genotype. The results of this study were consistent with previous findings obtained in other cocoa-producing countries. Important insights were discussed regarding the dispersal patterns of the pathogen in Colombia and the genetic change of its populations because of different environmental conditions.
Collapse
Affiliation(s)
- Yeirme Jaimes
- Corporación Colombiana de Investigación Agropecuaria - Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación La Suiza, Rionegro, Santander 687511, Colombia
| | - Carolina Gonzalez
- Corporación Colombiana de Investigación Agropecuaria - Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Tibaitatá, Bogotá, Cundinamarca 0130, Colombia
| | - Jairo Rojas
- Corporación Colombiana de Investigación Agropecuaria - Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación La Suiza, Rionegro, Santander 687511, Colombia
| | - Jessica Johana Rivera
- Corporación Colombiana de Investigación Agropecuaria - Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación La Suiza, Rionegro, Santander 687511, Colombia
| | - Christian Cilas
- French Agricultural Research Centre for International Development (CIRAD), Deputy Director General for Research and Strategy, Université Félix Houphouët-Boigny, Cocody, 01 BP 6483 Abidjan, Côte d'Ivoire
| | - Xavier Argout
- Corporación Colombiana de Investigación Agropecuaria - Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Palmira, Palmira, Valle del Cauca 763531, Colombia
- French Agricultural Research Centre for International Development (CIRAD), UMR AGAP, Palmira 763532, Colombia
- AGAP, French Agricultural Research Centre for International Development (CIRAD), the French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Université Montpellier, 34398 Montpellier, France
| |
Collapse
|
4
|
Genome-Wide Association Study Reveals Novel Candidate Genes Associated with Productivity and Disease Resistance to Moniliophthora spp. in Cacao ( Theobroma cacao L.). G3-GENES GENOMES GENETICS 2020; 10:1713-1725. [PMID: 32169867 PMCID: PMC7202020 DOI: 10.1534/g3.120.401153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cacao (Theobroma cacao L.), the source of chocolate, is one of the most important commodity products worldwide that helps improve the economic livelihood of farmers. Diseases like frosty pod rot caused by Moniliophthora roreri and witches’ broom caused by Moniliophthora perniciosa limit the cacao productivity, this can be solved by using resistant varieties. In the current study, we sequenced 229 cacao accessions using genotyping-by-sequencing to examine the genetic diversity and population structure employing 9,003 and 8,131 single nucleotide polymorphisms recovered by mapping against two cacao genomes (Criollo B97-61/B2 v2 and Matina 1-6 v1.1). In the phenotypic evaluation, three promising accessions for productivity and 10 with good tolerance to the frosty pod rot and witches’ broom diseases were found. A genome-wide association study was performed on 102 accessions, discovering two genes associated with productivity and seven to disease resistance. The results enriched the knowledge of the genetic regions associated with important cacao traits that can have significant implications for conservation and breeding strategies like marker-assisted selection.
Collapse
|
5
|
Jaimes YY, Ribeyre F, Gonzalez C, Rojas J, Furtado EL, Cilas C. Factors Affecting the Dynamics of Frosty Pod Rot in the Main Cocoa Areas of Santander State, Colombia. PLANT DISEASE 2019; 103:1665-1673. [PMID: 31094657 DOI: 10.1094/pdis-10-18-1761-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Frosty pod rot (FPR) caused by Moniliophthora roreri is the primary disease affecting cacao production in the major producing countries of the Americas and is one of the major threats to cacao worldwide. The incidence of FPR on clones with different levels of resistance was investigated in four localities of Santander State, Colombia, between July 2013 and May 2015. Dynamics of diseased pods were modeled using boosted regression trees, a machine learning technique that allows regressions to be performed without prior statistical assumptions. The results suggested that FPR epidemics varied according to plot location, clone, weeks of observation, and total pods produced. Dynamics in the phenology of pods had an effect on the epidemics, and this dynamic could partially explain the difference in resistance among clones. Although not total, partial resistance of ICS 95 was confirmed. An important wilt effect was observed, particularly in the resistant clones; consequently, differences in harvested pods were not significant among clones. Pod stripping remains a good practice for the management of the disease and this practice could also have an effect on the pod dynamics and wilt phenomenon.
Collapse
Affiliation(s)
- Yeirme Y Jaimes
- 1 AGROSAVIA, Research Center La Suiza, Rionegro-Santander, Colombia
| | - Fabienne Ribeyre
- 2 CIRAD, UPR Bioagresseurs, F-34398 Montpellier, France. Bioagresseurs, Univ Montpellier, CIRAD, Montpellier, France
| | | | - Jairo Rojas
- 1 AGROSAVIA, Research Center La Suiza, Rionegro-Santander, Colombia
| | - Edson L Furtado
- 4 Plant Protection Department, Faculty of Agricultural Sciences, São Paulo State University, Botucatu, SP, Brasil
| | - Christian Cilas
- 2 CIRAD, UPR Bioagresseurs, F-34398 Montpellier, France. Bioagresseurs, Univ Montpellier, CIRAD, Montpellier, France
| |
Collapse
|
6
|
Bailey BA, Evans HC, Phillips‐Mora W, Ali SS, Meinhardt LW. Moniliophthora roreri, causal agent of cacao frosty pod rot. MOLECULAR PLANT PATHOLOGY 2018; 19:1580-1594. [PMID: 29194910 PMCID: PMC6638017 DOI: 10.1111/mpp.12648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Taxonomy: Moniliophthora roreri (Cif.) H.C. Evans et al. ; Phylum Basidiomycota; Class Agaricomycetes; Order Agaricales; Family Marasmiaceae; Genus Moniliophthora. Biology: Moniliophthora roreri attacks Theobroma and Herrania species causing frosty pod rot. Theobroma cacao (cacao) is the host of major economic concern. Moniliophthora roreri is a hemibiotroph with a long biotrophic phase (45-90 days). Spore masses, of apparent asexual origin, are produced on the pod surface after initiation of the necrotrophic phase. Spores are spread by wind, rain and human activity. Symptoms of the biotrophic phase can include necrotic flecks and, in some cases, pod malformation, but pods otherwise remain asymptomatic. Relationship to Moniliophthora perniciosa: Moniliophthora roreri and Moniliophthora perniciosa, causal agent of witches' broom disease of cacao, are closely related. Their genomes are similar, including many of the genes they carry which are considered to be important in the disease process. Moniliophthora perniciosa, also a hemibiotroph, has a typical basidiomycete lifestyle and morphology, forming clamp connections and producing mushrooms. Basidiospores infect meristematic tissues including flower cushions, stem tips and pods. Moniliophthora roreri does not form clamp connections or mushrooms and infects pods only. Both pathogens are limited to the Western Hemisphere and are a threat to cacao production around the world. Agronomic importance: Disease losses caused by frosty pod rot can reach 90% and result in field abandonment. Moniliophthora roreri remains in the invasive phase in the Western Hemisphere, not having reached Brazil, some islands within the Caribbean and a few specific regions within otherwise invaded countries. DISEASE MANAGEMENT The disease can be managed by a combination of cultural (for example, maintenance of tree height and removal of infected pods) and chemical methods. These methods benefit from regional application, but can be cost prohibitive. Breeding for disease resistance offers the greatest potential for frosty pod rot management and new tolerant materials are becoming available.
Collapse
Affiliation(s)
- Bryan A. Bailey
- Sustainable Perennial Crops Laboratory, United States Department of AgricultureAgricultural Research ServiceBeltsvilleMD 20705USA
| | | | - Wilbert Phillips‐Mora
- Tropical Agricultural Research and Higher Education Center (CATIE)Turrialba 7170Costa Rica
| | - Shahin S. Ali
- Sustainable Perennial Crops Laboratory, United States Department of AgricultureAgricultural Research ServiceBeltsvilleMD 20705USA
| | - Lyndel W. Meinhardt
- Sustainable Perennial Crops Laboratory, United States Department of AgricultureAgricultural Research ServiceBeltsvilleMD 20705USA
| |
Collapse
|