1
|
Kwon KM, Masonbrink RE, Maier TR, Gardner MN, Severin AJ, Baum TJ, Mitchum MG. Comparative Transcriptomic Analysis of Soybean Cyst Nematode Inbred Populations Non-adapted or Adapted on Soybean rhg1-a/ Rhg4-Mediated Resistance. PHYTOPATHOLOGY 2024; 114:2341-2350. [PMID: 38976643 DOI: 10.1094/phyto-03-24-0095-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Soybean cyst nematode (SCN, Heterodera glycines) is most effectively managed through planting resistant soybean cultivars, but the repeated use of the same resistance sources has led to a widespread emergence of virulent SCN populations that can overcome soybean resistance. Resistance to SCN HG type 0 (Race 3) in soybean cultivar Forrest is mediated by an epistatic interaction between the soybean resistance genes rhg1-a and Rhg4. We previously developed two SCN inbred populations by mass-selecting SCN HG type 0 (Race 3) on susceptible and resistant recombinant inbred lines, derived from a cross between Forrest and the SCN-susceptible cultivar Essex, which differ for Rhg4. To identify SCN genes potentially involved in overcoming rhg1-a/Rhg4-mediated resistance, we conducted RNA sequencing on early parasitic juveniles of these two SCN inbred populations infecting their respective hosts, only to discover a handful of differentially expressed genes (DEGs). However, in a comparison with early parasitic juveniles of an avirulent SCN inbred population infecting a resistant host, we discovered 59 and 171 DEGs uniquely up- or downregulated in virulent parasitic juveniles adapted on the resistant host. Interestingly, the proteins coded by these 59 DEGs included vitamin B-associated proteins (reduced folate carrier, biotin synthase, and thiamine transporter) and nematode effectors known to play roles in plant defense suppression, suggesting that virulent SCN may exert a heightened transcriptional response to cope with enhanced plant defenses and an altered nutritional status of a resistant soybean host. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Khee Man Kwon
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602
| | - Rick E Masonbrink
- Genome Informatics Facility, Iowa State University, Ames, IA 50011
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011
| | - Thomas R Maier
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011
| | - Michael N Gardner
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211
| | - Andrew J Severin
- Genome Informatics Facility, Iowa State University, Ames, IA 50011
| | - Thomas J Baum
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211
| |
Collapse
|
2
|
Kwon KM, Viana JPG, Walden KKO, Usovsky M, Scaboo AM, Hudson ME, Mitchum MG. Genome scans for selection signatures identify candidate virulence genes for adaptation of the soybean cyst nematode to host resistance. Mol Ecol 2024; 33:e17490. [PMID: 39135406 DOI: 10.1111/mec.17490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Plant pathogens are constantly under selection pressure for host resistance adaptation. Soybean cyst nematode (SCN, Heterodera glycines) is a major pest of soybean primarily managed through resistant cultivars; however, SCN populations have evolved virulence in response to selection pressures driven by repeated monoculture of the same genetic resistance. Resistance to SCN is mediated by multiple epistatic interactions between Rhg (for resistance to H. glycines) genes. However, the identity of SCN virulence genes that confer the ability to overcome resistance remains unknown. To identify candidate genomic regions showing signatures of selection for increased virulence, we conducted whole genome resequencing of pooled individuals (Pool-Seq) from two pairs of SCN populations adapted on soybeans with Peking-type (rhg1-a, rhg2, and Rhg4) resistance. Population differentiation and principal component analysis-based approaches identified approximately 0.72-0.79 million SNPs, the frequency of which showed potential selection signatures across multiple genomic regions. Chromosomes 3 and 6 between population pairs showed the greatest density of outlier SNPs with high population differentiation. Conducting multiple outlier detection tests to identify overlapping SNPs resulted in a total of 966 significantly differentiated SNPs, of which 285 exon SNPs were mapped to 97 genes. Of these, six genes encoded members of known stylet-secreted effector protein families potentially involved in host defence modulation including venom-allergen-like, annexin, glutathione synthetase, SPRYSEC, chitinase, and CLE effector proteins. Further functional analysis of identified candidate genes will provide new insights into the genetic mechanisms by which SCN overcomes soybean resistance and inform the development of molecular markers for rapidly screening the virulence profile of an SCN-infested field.
Collapse
Affiliation(s)
- Khee Man Kwon
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia, USA
| | - João P G Viana
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kimberly K O Walden
- Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - Andrew M Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - Matthew E Hudson
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Melissa G Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Harris W, Kim S, Vӧlz R, Lee YH. Nuclear effectors of plant pathogens: Distinct strategies to be one step ahead. MOLECULAR PLANT PATHOLOGY 2023; 24:637-650. [PMID: 36942744 DOI: 10.1111/mpp.13315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 05/18/2023]
Abstract
Nuclear effector proteins released by bacteria, oomycete, nematode, and fungi burden the global environment and crop yield. Microbial effectors are key weapons in the evolutionary arms race between plants and pathogens, vital in determining the success of pathogenic colonization. Secreted effectors undermine a multitude of host cellular processes depending on their target destination. Effectors are classified by their localization as either extracellular (apoplastic) or intracellular. Intracellular effectors can be further subclassified by their compartment such as the nucleus, cytoplasm or chloroplast. Nuclear effectors bring into question the role of the plant nucleus' intrinsic defence strategies and their vulnerability to effector-based manipulation. Nuclear effectors interfere with multiple nuclear processes including the epigenetic regulation of the host chromatin, the impairment of the trans-kingdom antifungal RNAi machinery, and diverse classes of immunity-associated host proteins. These effector-targeted pathways are widely conserved among different hosts and regulate a broad array of plant cellular processes. Thus, these nuclear sites constitute meaningful targets for effectors to subvert the plant defence system and acquire resources for pathogenic propagation. This review provides an extensive and comparative compilation of diverse plant microbe nuclear effector libraries, thereby highlighting the distinct and conserved mechanisms these effectors employ to modulate plant cellular processes for the pathogen's profit.
Collapse
Affiliation(s)
- William Harris
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Seongbeom Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Ronny Vӧlz
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Fungal Genetic Resources, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Center for Plant Microbiome Research, Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Ste-Croix DT, Bélanger RR, Mimee B. Single Nematode Transcriptomic Analysis, Using Long-Read Technology, Reveals Two Novel Virulence Gene Candidates in the Soybean Cyst Nematode, Heterodera glycines. Int J Mol Sci 2023; 24:ijms24119440. [PMID: 37298400 DOI: 10.3390/ijms24119440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The soybean cyst nematode (Heterodera glycines, SCN), is the most damaging disease of soybean in North America. While management of this pest using resistant soybean is generally still effective, prolonged exposure to cultivars derived from the same source of resistance (PI 88788) has led to the emergence of virulence. Currently, the underlying mechanisms responsible for resistance breakdown remain unknown. In this study, we combined a single nematode transcriptomic profiling approach with long-read sequencing to reannotate the SCN genome. This resulted in the annotation of 1932 novel transcripts and 281 novel gene features. Using a transcript-level quantification approach, we identified eight novel effector candidates overexpressed in PI 88788 virulent nematodes in the late infection stage. Among these were the novel gene Hg-CPZ-1 and a pioneer effector transcript generated through the alternative splicing of the non-effector gene Hetgly21698. While our results demonstrate that alternative splicing in effectors does occur, we found limited evidence of direct involvement in the breakdown of resistance. However, our analysis highlighted a distinct pattern of effector upregulation in response to PI 88788 resistance indicative of a possible adaptation process by SCN to host resistance.
Collapse
Affiliation(s)
- Dave T Ste-Croix
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Richard R Bélanger
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
| | - Benjamin Mimee
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|
5
|
van Steenbrugge JJM, van den Elsen S, Holterman M, Lozano‐Torres J, Putker V, Thorpe P, Goverse A, Sterken M, Smant G, Helder J. Comparative genomics among cyst nematodes reveals distinct evolutionary histories among effector families and an irregular distribution of effector-associated promoter motifs. Mol Ecol 2023; 32:1515-1529. [PMID: 35560992 PMCID: PMC10946958 DOI: 10.1111/mec.16505] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
Potato cyst nematodes (PCNs), an umbrella term used for two species, Globodera pallida and G. rostochiensis, belong worldwide to the most harmful pathogens of potato. Pathotype-specific host plant resistances are essential for PCN control. However, the poor delineation of G. pallida pathotypes has hampered the efficient use of available host plant resistances. Long-read sequencing technology allowed us to generate a new reference genome of G. pallida population D383 and, as compared to the current reference, the new genome assembly is 42 times less fragmented. For comparison of diversification patterns of six effector families between G. pallida and G. rostochiensis, an additional reference genome was generated for an outgroup, the beet cyst nematode Heterodera schachtii (IRS population). Large evolutionary contrasts in effector family topologies were observed. While VAPs (venom allergen-like proteins) diversified before the split between the three cyst nematode species, the families GLAND5 and GLAND13 only expanded in PCNs after their separation from the genus Heterodera. Although DNA motifs in the promoter regions thought to be involved in the orchestration of effector expression ("DOG boxes") were present in all three cyst nematode species, their presence is not a necessity for dorsal gland-produced effectors. Notably, DOG box dosage was only loosely correlated with the expression level of individual effector variants. Comparison of the G. pallida genome with those of two other cyst nematodes underlined the fundamental differences in evolutionary history between effector families. Resequencing of PCN populations with different virulence characteristics will allow for the linking of these characteristics to the composition of the effector repertoire as well as for the mapping of PCN diversification patterns resulting from extreme anthropogenic range expansion.
Collapse
Affiliation(s)
| | - Sven van den Elsen
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Martijn Holterman
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
- SolyntaWageningenThe Netherlands
| | | | - Vera Putker
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Peter Thorpe
- School of Medicine, Medical & Biological SciencesUniversity of St. AndrewsSt AndrewsUK
| | - Aska Goverse
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Mark G. Sterken
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Geert Smant
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Johannes Helder
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
6
|
Ste-Croix DT, Bélanger RR, Mimee B. Characterization of microRNAs in the cyst nematode Heterodera glycines identifies possible candidates involved in cross-kingdom interactions with its host Glycine max. RNA Biol 2023; 20:614-628. [PMID: 37599428 PMCID: PMC10443972 DOI: 10.1080/15476286.2023.2244790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023] Open
Abstract
The soybean cyst nematode (SCN - Heterodera glycines) is one of the most damaging pests to the cultivated soybean worldwide. Using a wide array of stylet-secreted effector proteins, this nematode can restructure its host cells into a complex and highly active feeding structure called the syncytium. Tight regulation of these proteins is thought to be essential to the successful formation of this syncytium. To date, multiple mechanisms have been proposed to regulate the expression of these proteins including through post-transcriptional regulation. MicroRNAs (miRNAs) are a class of small, roughly 22-nucleotide-long, non-coding RNA shown to regulate gene expression through its interaction with the 3' untranslated region of genes. These same small RNAs have also been hypothesized to be able to cross over kingdom barriers and regulate genes in other species in a process called cross-kingdom interactions. In this study, we characterized the miRNome of the SCN via sequencing of small-RNAs isolated from whole nematodes and exosomes representing all developmental stages. We identified 121 miRNA loci encoding 96 distinct miRNA families including multiple lineage- and species-specific candidates. Using a combination of plant- and animal-specific miRNA target predictors, we generated a unique repertoire of miRNA:mRNA interacting partners in the nematode and its host plant leading to the identification of a set of nine probable cross-kingdom miRNA candidates.
Collapse
Affiliation(s)
- Dave T. Ste-Croix
- Saint-Jean-Sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-Sur-Richelieu, Canada
- Département de Phytologie, Université Laval, Québec, Canada
| | - Richard R. Bélanger
- Département de Phytologie, Université Laval, Québec, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, Canada
| | - Benjamin Mimee
- Saint-Jean-Sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-Sur-Richelieu, Canada
| |
Collapse
|
7
|
Verma A, Lin M, Smith D, Walker JC, Hewezi T, Davis EL, Hussey RS, Baum TJ, Mitchum MG. A novel sugar beet cyst nematode effector 2D01 targets the Arabidopsis HAESA receptor-like kinase. MOLECULAR PLANT PATHOLOGY 2022; 23:1765-1782. [PMID: 36069343 PMCID: PMC9644282 DOI: 10.1111/mpp.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Plant-parasitic cyst nematodes use a stylet to deliver effector proteins produced in oesophageal gland cells into root cells to cause disease in plants. These effectors are deployed to modulate plant defence responses and developmental programmes for the formation of a specialized feeding site called a syncytium. The Hg2D01 effector gene, coding for a novel 185-amino-acid secreted protein, was previously shown to be up-regulated in the dorsal gland of parasitic juveniles of the soybean cyst nematode Heterodera glycines, but its function has remained unknown. Genome analyses revealed that Hg2D01 belongs to a highly diversified effector gene family in the genomes of H. glycines and the sugar beet cyst nematode Heterodera schachtii. For functional studies using the model Arabidopsis thaliana-H. schachtii pathosystem, we cloned the orthologous Hs2D01 sequence from H. schachtii. We demonstrate that Hs2D01 is a cytoplasmic effector that interacts with the intracellular kinase domain of HAESA (HAE), a cell surface-associated leucine-rich repeat (LRR) receptor-like kinase (RLK) involved in signalling the activation of cell wall-remodelling enzymes important for cell separation during abscission and lateral root emergence. Furthermore, we show that AtHAE is expressed in the syncytium and, therefore, could serve as a viable host target for Hs2D01. Infective juveniles effectively penetrated the roots of HAE and HAESA-LIKE2 (HSL2) double mutant plants; however, fewer nematodes developed on the roots, consistent with a role for this receptor family in nematode infection. Taken together, our results suggest that the Hs2D01-AtHAE interaction may play an important role in sugar beet cyst nematode parasitism.
Collapse
Affiliation(s)
- Anju Verma
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
| | - Marriam Lin
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
- Boyle Frederickson Intellectual Property LawMilwaukeeWisconsinUSA
| | - Dante Smith
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
- Conagra Brands, Inc., Corporate Microbiology, Research and DevelopmentOmahaNebraskaUSA
| | - John C. Walker
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Eric L. Davis
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Richard S. Hussey
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
| | - Thomas J. Baum
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowaUSA
| | - Melissa G. Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
8
|
Zhang Y, Zhao Q, Zhang J, Niu L, Yang J, Liu X, Xing G, Zhong X, Yang X. Enhanced resistance to soybean cyst nematode in transgenic soybean via host-induced silencing of vital Heterodera glycines genes. Transgenic Res 2022; 31:239-248. [PMID: 35133563 DOI: 10.1007/s11248-022-00298-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/26/2022] [Indexed: 12/16/2022]
Abstract
Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is the most economically damaging pathogen affecting soybean production worldwide. Host-induced gene silencing provides a promising approach to confer resistance to plant parasitic nematodes. In the present study, we produced stable transgenic soybean plants individually harboring the inverted repeats of three essential H. glycines genes, Hg-rps23, Hg-snb1, and Hg-cpn1, and evaluated their resistance to SCN infection. Molecular characterization confirmed the stable integration of the hairpin double stranded (ds) RNA in host plants. Inoculation assays with SCN race 3 showed significant reduction of female index (FI, 11.84 ~ 17.47%) on the roots of T4 transgenic plants, with 73.29 ~ 81.90% reduction for the three RNA interference (RNAi) constructs, compared to non-transformed plants (NT, 65.43%). Enhanced resistance to SCN race 3 was further confirmed in subsequent generations (T5) of transgenic soybean. Moreover, when inoculated with SCN race 4 which was considered highly virulent to most of soybean germplasms and varieties, transgenic soybean plants also exhibited reduced FIs (9.96 ~ 23.67%) and increased resistance, relative to the NT plants (46.46%). Consistently, significant down-regulation in transcript levels of the Hg-rps23, Hg-snb1, Hg-cpn1 genes were observed in the nematodes feeding on the transgenic roots, suggesting a broad-spectrum resistance mediated by the host-mediated silencing of vital H. glycines genes. There were no significant differences in morphological traits between transgenic and NT soybean plants under conditions with negligible SCN infection. In summary, our results demonstrate the effectiveness of host-induced silencing of essential H. glycines genes to enhance broad-spectrum SCN resistance in stable transgenic soybean plants, without negative consequences on the agronomic performance.
Collapse
Affiliation(s)
- Yuanyu Zhang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qianqian Zhao
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jinhua Zhang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiaomei Liu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Guojie Xing
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiaofang Zhong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
9
|
Handayani ND, Lestari P, van As W, Holterman M, van den Elsen S, Dikin A, Bert W, Helder J, Van Steenbrugge JJM. Genomic Reconstruction of the Introduction and Diversification of Golden Potato Cyst Nematode Populations in Indonesia. PHYTOPATHOLOGY 2022; 112:396-403. [PMID: 34129357 DOI: 10.1094/phyto-04-21-0150-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potato cyst nematodes (PCNs), the umbrella term for Globodera rostochiensis and G. pallida, coevolved with their Solanaceous hosts in the Andean Mountain region. From there, PCN proliferated worldwide to virtually all potato production areas. PCN is a major factor limiting the potato production in Indonesia. In our survey, only G. rostochiensis was found. Fourteen field populations were collected on Java and Sumatra, and unique variants were called by mapping resequencing data on a G. rostochiensis reference genome. A phylogenetic tree based on 1.4 million unique variants showed a genotypic separation between the outgroup, a Scottish Ro1 population, and all Indonesian populations. This separation was comparable in size with the genotypic distinction between the Javanese and the Sumatran PCN populations. Next, variants within PCN effector gene families SPRYSEC, 1106, 4D06, and venom allergen-like protein (VAL) that all interfere with the host innate immune system were compared. Distinct selective pressures acted on these effector families; while SPRYSECs (4,341 single-nucleotide polymorphisms [SNPs]/insertions or deletions of bases [indels]) behaved like neutral genes, the phylogenetic trees of 1106, 4D06, and VAL proteins (235, 790, and 150 SNPs/indels, respectively) showed deviating topologies. Our data suggest that PCN was introduced on Java not too long after the introduction of potato in the middle of the eighteenth century. Soon thereafter, the pathogen established on Sumatra and started to diversify independently. This scenario was corroborated by diversification patterns of the effector families 1106, 4D06, and VAL. Our data demonstrate how genome resequencing data from a nonindigenous pathogen can be used to reconstruct the introduction and diversification process.
Collapse
Affiliation(s)
- Nurul Dwi Handayani
- Indonesian Agricultural Quarantine Agency, Ministry of Agriculture, Ragunan, Jakarta 12550, Indonesia
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Nematology Research Unit, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Prabowo Lestari
- Indonesian Agricultural Quarantine Agency, Ministry of Agriculture, Ragunan, Jakarta 12550, Indonesia
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Nematology Research Unit, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Wouter van As
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Martijn Holterman
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Solynta, 6703 HA Wageningen, The Netherlands
| | - Sven van den Elsen
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Antarjo Dikin
- Directorate General of Estate Crops, Ministry of Agriculture, Ragunan, Jakarta 12550, Indonesia
| | - Wim Bert
- Nematology Research Unit, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | | |
Collapse
|
10
|
Kud J, Pillai SS, Raber G, Caplan A, Kuhl JC, Xiao F, Dandurand LM. Belowground Chemical Interactions: An Insight Into Host-Specific Behavior of Globodera spp. Hatched in Root Exudates From Potato and Its Wild Relative, Solanum sisymbriifolium. FRONTIERS IN PLANT SCIENCE 2022; 12:802622. [PMID: 35095973 PMCID: PMC8791010 DOI: 10.3389/fpls.2021.802622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Understanding belowground chemical interactions between plant roots and plant-parasitic nematodes is immensely important for sustainable crop production and soilborne pest management. Due to metabolic diversity and ever-changing dynamics of root exudate composition, the impact of only certain molecules, such as nematode hatching factors, repellents, and attractants, has been examined in detail. Root exudates are a rich source of biologically active compounds, which plants use to shape their ecological interactions. However, the impact of these compounds on nematode parasitic behavior is poorly understood. In this study, we specifically address this knowledge gap in two cyst nematodes, Globodera pallida, a potato cyst nematode and the newly described species, Globodera ellingtonae. Globodera pallida is a devastating pest of potato (Solanum tuberosum) worldwide, whereas potato is a host for G. ellingtonae, but its pathogenicity remains to be determined. We compared the behavior of juveniles (J2s) hatched in response to root exudates from a susceptible potato cv. Desirée, a resistant potato cv. Innovator, and an immune trap crop Solanum sisymbriifolium (litchi tomato - a wild potato relative). Root secretions from S. sisymbriifolium greatly reduced the infection rate on a susceptible host for both Globodera spp. Juvenile motility was also significantly influenced in a host-dependent manner. However, reproduction on a susceptible host from juveniles hatched in S. sisymbriifolium root exudates was not affected, nor was the number of encysted eggs from progeny cysts. Transcriptome analysis by using RNA-sequencing (RNA-seq) revealed the molecular basis of root exudate-mediated modulation of nematode behavior. Differentially expressed genes are grouped into two major categories: genes showing characteristics of effectors and genes involved in stress responses and xenobiotic metabolism. To our knowledge, this is the first study that shows genome-wide root exudate-specific transcriptional changes in hatched preparasitic juveniles of plant-parasitic nematodes. This research provides a better understanding of the correlation between exudates from different plants and their impact on nematode behavior prior to the root invasion and supports the hypothesis that root exudates play an important role in plant-nematode interactions.
Collapse
Affiliation(s)
- Joanna Kud
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | | | - Gabriel Raber
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Allan Caplan
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States
| | - Joseph C. Kuhl
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States
| | - Fangming Xiao
- Department of Plant Sciences, University of Idaho, Moscow, ID, United States
| | - Louise-Marie Dandurand
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| |
Collapse
|
11
|
Masonbrink RE, Maier TR, Hudson M, Severin A, Baum T. A chromosomal assembly of the soybean cyst nematode genome. Mol Ecol Resour 2021; 21:2407-2422. [PMID: 34036752 DOI: 10.1111/1755-0998.13432] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 01/02/2023]
Abstract
The soybean cyst nematode (Heterodera glycines) is a sedentary plant parasite that exceeds billion USD annually in yield losses. This problem is exacerbated by H. glycines populations overcoming the limited sources of natural resistance in soybean and by the lack of effective and safe alternative treatments. Although there are genetic determinants that render soybeans resistant to nematode genotypes, resistant soybeans are increasingly ineffective because their multiyear usage has selected for virulent H. glycines populations. Successful H. glycines infection relies on the comprehensive re-engineering of soybean root cells into a syncytium, as well as the long-term suppression of host defences to ensure syncytial viability. At the forefront of these complex molecular interactions are effectors, the proteins secreted by H. glycines into host root tissues. The mechanisms that control genomic effector acquisition, diversification, and selection are important insights needed for the development of essential novel control strategies. As a foundation to obtain this understanding, we created a nine-scaffold, 158 Mb pseudomolecule assembly of the H. glycines genome using PacBio, Chicago, and Hi-C sequencing. A Mikado consensus gene prediction produced an annotation of 22,465 genes using short- and long-read expression data. To evaluate assembly and annotation quality, we cross-examined synteny among H. glycines assemblies, and compared BUSCO across related species. To describe the predicted proteins involved in H. glycines' secretory pathway, we contrasted expression between preparasitic and parasitic stages with functional gene information. Here, we present the results from our assembly and annotation of the H. glycines genome and contribute this resource to the scientific community.
Collapse
Affiliation(s)
- Rick E Masonbrink
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, USA
| | - Tom R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Matthew Hudson
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Andrew Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, USA
| | - Thomas Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| |
Collapse
|
12
|
Maier TR, Masonbrink RE, Vijayapalani P, Gardner M, Howland AD, Mitchum MG, Baum TJ. Esophageal Gland RNA-Seq Resource of a Virulent and Avirulent Population of the Soybean Cyst Nematode Heterodera glycines. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1084-1087. [PMID: 33900122 DOI: 10.1094/mpmi-03-21-0051-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The soybean cyst nematode Heterodera glycines is the most economically devastating pathogen of soybean in the United States and threatens to become even more damaging through the selection of virulent nematode populations in the field that can overcome natural resistance mechanisms in soybean cultivars. This pathogen, therefore, demands intense transcriptomic/genomic research inquiries into the biology of its parasitic mechanisms. H. glycines delivers effector proteins that are produced in specialized gland cells into the soybean root to enable infection. The study of effector proteins, thus, is particularly promising when exploring novel management options against this pathogen. Here, we announce the availability of a gland cell-specific RNA-seq resource. These data represent an expression snapshot of gland cell activity during early soybean infection of a virulent and an avirulent H. glycines population, providing a unique and highly valuable resource for scientists examining effector biology and nematode virulence.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Tom R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - Rick E Masonbrink
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
- Genome Informatics Facility, Iowa State University, Ames, IA 50011, U.S.A
| | | | - Michael Gardner
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
| | - Amanda D Howland
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, U.S.A
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA 30602, U.S.A
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| |
Collapse
|
13
|
van Steenbrugge JJM, van den Elsen S, Holterman M, Sterken MG, Thorpe P, Goverse A, Smant G, Helder J. Comparative genomics of two inbred lines of the potato cyst nematode Globodera rostochiensis reveals disparate effector family-specific diversification patterns. BMC Genomics 2021; 22:611. [PMID: 34380421 PMCID: PMC8359618 DOI: 10.1186/s12864-021-07914-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Potato cyst nematodes belong to the most harmful pathogens in potato, and durable management of these parasites largely depends on host-plant resistances. These resistances are pathotype specific. The current Globodera rostochiensis pathotype scheme that defines five pathotypes (Ro1 - Ro5) is both fundamentally and practically of limited value. Hence, resistant potato varieties are used worldwide in a poorly informed manner. RESULTS We generated two novel reference genomes of G. rostochiensis inbred lines derived from a Ro1 and a Ro5 population. These genome sequences comprise 173 and 189 scaffolds respectively, marking a ≈ 24-fold reduction in fragmentation as compared to the current reference genome. We provide copy number variations for 19 effector families. Four dorsal gland effector families were investigated in more detail. SPRYSECs, known to be implicated in plant defence suppression, constitute by far the most diversified family studied herein with 60 and 99 variants in Ro1 and Ro5 distributed over 18 and 26 scaffolds. In contrast, CLEs, effectors involved in feeding site induction, show strong physical clustering. The 10 and 16 variants cluster on respectively 2 and 1 scaffolds. Given that pathotypes are defined by their effectoromes, we pinpoint the disparate nature of the contributing effector families in terms of sequence diversification and loss and gain of variants. CONCLUSIONS Two novel reference genomes allow for nearly complete inventories of effector diversification and physical organisation within and between pathotypes. Combined with insights we provide on effector family-specific diversification patterns, this constitutes a basis for an effectorome-based virulence scheme for this notorious pathogen.
Collapse
Affiliation(s)
| | - Sven van den Elsen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Martijn Holterman
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands.,Solynta, Dreijenlaan 2, 6703 HA, Wageningen, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter Thorpe
- School of Medicine, Medical & Biological Sciences, University of St. Andrews, North Haugh, St Andrews, United Kingdom
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
14
|
Khanna K, Ohri P, Bhardwaj R. Genetic toolbox and regulatory circuits of plant-nematode associations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:137-146. [PMID: 34038810 DOI: 10.1016/j.plaphy.2021.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Plant-nematode associations are the most imperative area of study that forms the basis to understand their regulatory networks and coordinated functional aspects. Nematodes are highly parasitic organisms known so far, to cause relentless damage towards agricultural crops on a global scale. They pierce the roots of host plants and form neo-plastic feeding structures to extract out resources for their functional development. Moreover, they undergo re-differentiation within plant cells to form giant multi-nucleate feeding structures or syncytium. All these processes are facilitated by numerous transcriptomic, proteomic, metabolomic and epigenetic modifications, that regulate different biological attractions among plants and nematodes. Nevertheless, these mechanisms are quite remarkable and have been explored in the present review. Here, we have shed light on genomic as well as genetic approaches to acquire an effective understanding regarding plant-nematode associations. Transcriptomics have revealed an extensive network to unravel feeding mechanism of nematodes through gene-expression programming of target genes. Also, the regulatory circuits of epigenetic alterations through DNA-methylation, non-coding RNAs and histone modifications very well explain epigenetic profiling within plants. Since decades, research have observed many intricacies to elucidate the dynamic nature of epigenetic modulations in plant-nematode attractions. By this review, we have highlighted the functional aspects of small RNAs in inducing plant-nematode parasitism along with the putative role of miRNAs. These RNAs act as chief genetic elements to mediate the expressional changes in plants through post-transcriptional silencing of various effector proteins as well as transcriptional factors. A pragmatic role of miRNAs in modulating gene expression in nematode infection and feeding site development have also been reviewed. Hence, they have been considered master regulators for functional reprogramming the expression during establishment of feeding sites. We have also encapsulated the advancement of genome-broadened DNA-methylation and untangled the nematode mediated dynamic alterations within plant methylome along with assessing transcriptional activities of various genes and transposons. In particular, we have highlighted the role of effector proteins in stimulating epigenetic changes. Finally, we have emerged towards a molecular-based core understanding about plant-nematode associations.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
15
|
Pogorelko G, Wang J, Juvale PS, Mitchum MG, Baum TJ. Screening soybean cyst nematode effectors for their ability to suppress plant immunity. MOLECULAR PLANT PATHOLOGY 2020; 21:1240-1247. [PMID: 32672422 PMCID: PMC7411561 DOI: 10.1111/mpp.12972] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/15/2020] [Accepted: 06/05/2020] [Indexed: 05/19/2023]
Abstract
The soybean cyst nematode (SCN), Heterodera glycines, is one of the most destructive pathogens of soybeans. SCN is an obligate and sedentary parasite that transforms host plant root cells into an elaborate permanent feeding site, a syncytium. Formation and maintenance of a viable syncytium is an absolute requirement for nematode growth and reproduction. In turn, sensing pathogen attack, plants activate defence responses and may trigger programmed cell death at the sites of infection. For successful parasitism, H. glycines must suppress these host defence responses to establish and maintain viable syncytia. Similar to other pathogens, H. glycines engages in these molecular interactions with its host via effector proteins. The goal of this study was to conduct a comprehensive screen to identify H. glycines effectors that interfere with plant immune responses. We used Nicotiana benthamiana plants infected by Pseudomonas syringae and Pseudomonas fluorescens strains. Using these pathosystems, we screened 51 H. glycines effectors to identify candidates that could inhibit effector-triggered immunity (ETI) and/or pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). We identified three effectors as ETI suppressors and seven effectors as PTI suppressors. We also assessed expression modulation of plant immune marker genes as a function of these suppressors.
Collapse
Affiliation(s)
- Gennady Pogorelko
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Jianying Wang
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
| | - Parijat S. Juvale
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Melissa G. Mitchum
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGAUSA
| | - Thomas J. Baum
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| |
Collapse
|
16
|
Wang J, Yeckel G, Kandoth PK, Wasala L, Hussey RS, Davis EL, Baum TJ, Mitchum MG. Targeted suppression of soybean BAG6-induced cell death in yeast by soybean cyst nematode effectors. MOLECULAR PLANT PATHOLOGY 2020; 21:1227-1239. [PMID: 32686295 PMCID: PMC7411569 DOI: 10.1111/mpp.12970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 05/29/2023]
Abstract
While numerous effectors that suppress plant immunity have been identified from bacteria, fungi, and oomycete pathogens, relatively little is known for nematode effectors. Several dozen effectors have been reported from the soybean cyst nematode (SCN). Previous studies suggest that a hypersensitive response-like programmed cell death is triggered at nematode feeding sites in soybean during an incompatible interaction. However, virulent SCN populations overcome this incompatibility using unknown mechanisms. A soybean BAG6 (Bcl-2 associated anthanogene 6) gene previously reported by us to be highly up-regulated in degenerating feeding sites induced by SCN in a resistant soybean line was attenuated in response to a virulent SCN population. We show that GmBAG6-1 induces cell death in yeast like its Arabidopsis homolog AtBAG6 and also in soybean. This led us to hypothesize that virulent SCN may target GmBAG6-1 as part of their strategy to overcome soybean defence responses during infection. Thus, we used a yeast viability assay to screen SCN effector candidates for their ability to specifically suppress GmBAG6-1-induced cell death. We identified several effectors that strongly suppressed cell death mediated by GmBAG6-1. Two effectors identified as suppressors showed direct interaction with GmBAG6-1 in yeast, suggesting that one mechanism of cell death suppression may occur through an interaction with this host protein.
Collapse
Affiliation(s)
- Jianying Wang
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
| | - Greg Yeckel
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Present address:
Corteva AgriscienceJohnstonIAUSA
| | - Pramod K. Kandoth
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Present address:
National Agri‐food Biotechnology InstituteMohaliIndia
| | - Lakmini Wasala
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Present address:
Department of Veterinary PathobiologyUniversity of MissouriColumbiaMOUSA
| | | | - Eric L. Davis
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | - Thomas J. Baum
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Melissa G. Mitchum
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMOUSA
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and GenomicsUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
17
|
Abstract
Epigenetic mechanisms play fundamental roles in regulating numerous biological processes in various developmental and environmental contexts. Three highly interconnected epigenetic control mechanisms, including small noncoding RNAs, DNA methylation, and histone modifications, contribute to the establishment of plant epigenetic profiles. During the past decade, a growing body of experimental work has revealed the intricate, diverse, and dynamic roles that epigenetic modifications play in plant-nematode interactions. In this review, I summarize recent progress regarding the functions of small RNAs in mediating plant responses to infection by cyst and root-knot nematodes, with a focus on the functions of microRNAs. I also recapitulate recent advances in genome-wide DNA methylation analysis and discuss how cyst nematodes induce extensive and dynamic changes in the plant methylome that impact the transcriptional activity of genes and transposable elements. Finally, the potential role of nematode effector proteins in triggering such epigenome changes is discussed.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA;
| |
Collapse
|
18
|
Roth MG, Jacobs JL, Napieralski S, Byrne AM, Stouffer-Hopkins A, Warner F, Chilvers MI. Fluopyram Suppresses Population Densities of Heterodera glycines in Field and Greenhouse Studies in Michigan. PLANT DISEASE 2020; 104:1305-1311. [PMID: 32155114 DOI: 10.1094/pdis-04-19-0874-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The soybean cyst nematode (SCN), Heterodera glycines Ichinohe, causes significant damage to soybean production annually. Fluopyram is a fungicide commonly used in soybean seed treatments intended to control soilborne fungal pathogens; however, recent studies have also suggested inhibitory effects on SCN. We examined the effects of a fluopyram seed treatment, ILeVO, on SCN reproduction, sudden death syndrome (SDS) development, and yield in a 3-year field study. Overall, fluopyram had a significant effect on yield (P = 0.046) and end-of-season SCN eggs and second-stage juveniles (Pf, P = 0.033) but no significant effect on SCN reproduction (Rf) or SDS disease index (P > 0.05). Post hoc tests indicated that fluopyram increased yield and suppressed SCN quantities. However, Rf was consistently greater than 1 whether or not the seed was treated with fluopyram, indicating that SCN populations were still increasing in the presence of fluopyram. A follow-up greenhouse study indicated that fluopyram reduced SCN relative to nontreated controls, as observed in the field, but only reduced SCN DNA within roots of a susceptible cultivar. These results indicate that fluopyram can suppress SCN quantities relative to nontreated seed but may not successfully reduce nematode populations without the use of additional management strategies.
Collapse
Affiliation(s)
- M G Roth
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
- Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, U.S.A
| | - J L Jacobs
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - S Napieralski
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, U.S.A
| | - A M Byrne
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - A Stouffer-Hopkins
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - F Warner
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - M I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
- Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
19
|
Hu Y, You J, Li C, Pan F, Wang C. The Heterodera glycines effector Hg16B09 is required for nematode parasitism and suppresses plant defense response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110271. [PMID: 31623793 DOI: 10.1016/j.plantsci.2019.110271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Soybean cyst nematode (Heterodera glycines Ichinohe) is a sedentary root endoparasite that causes serious yield losses on soybean (Glycine max) worldwide. H. glycines secrets effector proteins into host cells to facilitate the success of parasitism. Nowadays, a large number of candidate effectors were identified from the genome sequence of H. glycines. However, the precise functions of these effectors in the nematode-host plant interaction are unknown. Here, an effector gene of dorsal gland protein Hg16B09 from H. glycines was cloned and functionally characterized through generating the transgenic soybean hairy roots. In situ hybridization assay and qRT-PCR analysis indicated Hg16B09 is exclusively expressed in the dorsal esophageal cells and up-regulated in the parasitic-stage juveniles. The constitutive expression of Hg16B09 in soybean hairy roots caused an enhanced susceptibility to H. glycines. In contrast, in planta silencing of Hg16B09 exhibited that nematode reproduction in hairy roots was decreased compared to the empty vector control. In addition, Hg16B09 also suppressed the expression of soybean defense-related genes induced by the pathogen-associated molecular pattern flg22. These data indicate that the effector Hg16B09 might aid H. glycines parasitism through suppressing plant basal defenses in the early parasitic stages.
Collapse
Affiliation(s)
- Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Jia You
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China; University of Chinese Academy of Science, Beijing, PR China
| | - Chunjie Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Fengjuan Pan
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China
| | - Congli Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, PR China.
| |
Collapse
|
20
|
Neupane S, Purintun JM, Mathew FM, Varenhorst AJ, Nepal MP. Molecular Basis of Soybean Resistance to Soybean Aphids and Soybean Cyst Nematodes. PLANTS 2019; 8:plants8100374. [PMID: 31561499 PMCID: PMC6843664 DOI: 10.3390/plants8100374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/05/2019] [Accepted: 09/17/2019] [Indexed: 01/25/2023]
Abstract
Soybean aphid (SBA; Aphis glycines Matsumura) and soybean cyst nematode (SCN; Heterodera glycines Ichninohe) are major pests of the soybean (Glycine max [L.] Merr.). Substantial progress has been made in identifying the genetic basis of limiting these pests in both model and non-model plant systems. Classical linkage mapping and genome-wide association studies (GWAS) have identified major and minor quantitative trait loci (QTLs) in soybean. Studies on interactions of SBA and SCN effectors with host proteins have identified molecular cues in various signaling pathways, including those involved in plant disease resistance and phytohormone regulations. In this paper, we review the molecular basis of soybean resistance to SBA and SCN, and we provide a synthesis of recent studies of soybean QTLs/genes that could mitigate the effects of virulent SBA and SCN populations. We also review relevant studies of aphid–nematode interactions, particularly in the soybean–SBA–SCN system.
Collapse
Affiliation(s)
- Surendra Neupane
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Jordan M Purintun
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| | - Febina M Mathew
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Adam J Varenhorst
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
21
|
Mejias J, Truong NM, Abad P, Favery B, Quentin M. Plant Proteins and Processes Targeted by Parasitic Nematode Effectors. FRONTIERS IN PLANT SCIENCE 2019; 10:970. [PMID: 31417587 PMCID: PMC6682612 DOI: 10.3389/fpls.2019.00970] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/11/2019] [Indexed: 05/17/2023]
Abstract
Sedentary endoparasitic nematodes, such as root-knot nematodes (RKN; Meloidogyne spp.) and cyst nematodes (CN; Heterodera spp. and Globodera spp.) cause considerable damage to agricultural crops. RKN and CN spend most of their life cycle in plant roots, in which they induce the formation of multinucleate hypertrophied feeding cells, called "giant cells" and "syncytia," respectively. The giant cells result from nuclear divisions of vascular cells without cytokinesis. They are surrounded by small dividing cells and they form a new organ within the root known as a root knot or gall. CN infection leads to the fusion of several root cells into a unique syncytium. These dramatically modified host cells act as metabolic sinks from which the nematode withdraws nutrients throughout its life, and they are thus essential for nematode development. Both RKN and CN secrete effector proteins that are synthesized in the oesophageal glands and delivered to the appropriate cell in the host plant via a syringe-like stylet, triggering the ontogenesis of the feeding structures. Within the plant cell or in the apoplast, effectors associate with specific host proteins, enabling them to hijack important processes for cell morphogenesis and physiology or immunity. Here, we review recent findings on the identification and functional characterization of plant targets of RKN and CN effectors. A better understanding of the molecular determinants of these biotrophic relationships would enable us to improve the yields of crops infected with parasitic nematodes and to expand our comprehension of root development.
Collapse
Affiliation(s)
| | | | | | | | - Michaël Quentin
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut Sophia Agrobiotech, Université Côte d’Azur, Sophia Antipolis, France
| |
Collapse
|
22
|
Yang S, Pan L, Chen Y, Yang D, Liu Q, Jian H. Heterodera avenae GLAND5 Effector Interacts With Pyruvate Dehydrogenase Subunit of Plant to Promote Nematode Parasitism. Front Microbiol 2019; 10:1241. [PMID: 31214156 PMCID: PMC6558007 DOI: 10.3389/fmicb.2019.01241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/17/2019] [Indexed: 01/04/2023] Open
Abstract
Heterodera avenae mainly infects cereal crops and causes severe economic losses. Many studies have shown that parasitic nematodes can secrete effector proteins to suppress plant immune responses and then promote parasitism. In this study, we showed that HaGland5, a novel effector of H. avenae, was exclusively expressed in dorsal esophageal gland cell of nematode, and up-regulated in the early parasitic stage. Transgenic Arabidopsis thaliana lines expressing HaGland5 were significantly more susceptible to H. schachtii than wild-type control plants. Conversely, silencing of HaGland5 through barley stripe mosaic virus-medicated host-induced gene silencing technique substantially reduced the infection of H. avenae in wheat. Moreover, HaGland5 could suppress the plant defense responses, including the repression of plant defense-related genes, reducing deposition of cell wall callose and the burst of reactive oxygen species. Mass spectrometry, co-immunoprecipitation, and firefly luciferase complementation imaging assays confirmed that HaGland5 interacted specifically with Arabidopsis pyruvate dehydrogenase subunit (AtEMB3003).
Collapse
Affiliation(s)
- Shanshan Yang
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Lingling Pan
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Yongpan Chen
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Dan Yang
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Qian Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | - Heng Jian
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| |
Collapse
|
23
|
Pogorelko GV, Juvale PS, Rutter WB, Hütten M, Maier TR, Hewezi T, Paulus J, van der Hoorn RA, Grundler FM, Siddique S, Lionetti V, Zabotina OA, Baum TJ. Re-targeting of a plant defense protease by a cyst nematode effector. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:1000-1014. [PMID: 30801789 DOI: 10.1111/tpj.14295] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 05/29/2023]
Abstract
Plants mount defense responses during pathogen attacks, and robust host defense suppression by pathogen effector proteins is essential for infection success. 4E02 is an effector of the sugar beet cyst nematode Heterodera schachtii. Arabidopsis thaliana lines expressing the effector-coding sequence showed altered expression levels of defense response genes, as well as higher susceptibility to both the biotroph H. schachtii and the necrotroph Botrytis cinerea, indicating a potential suppression of defenses by 4E02. Yeast two-hybrid analyses showed that 4E02 targets A. thaliana vacuolar papain-like cysteine protease (PLCP) 'Responsive to Dehydration 21A' (RD21A), which has been shown to function in the plant defense response. Activity-based protein profiling analyses documented that the in planta presence of 4E02 does not impede enzymatic activity of RD21A. Instead, 4E02 mediates a re-localization of this protease from the vacuole to the nucleus and cytoplasm, which is likely to prevent the protease from performing its defense function and at the same time, brings it in contact with novel substrates. Yeast two-hybrid analyses showed that RD21A interacts with multiple host proteins including enzymes involved in defense responses as well as carbohydrate metabolism. In support of a role in carbohydrate metabolism of RD21A after its effector-mediated re-localization, we observed cell wall compositional changes in 4E02 expressing A. thaliana lines. Collectively, our study shows that 4E02 removes RD21A from its defense-inducing pathway and repurposes this enzyme by targeting the active protease to different cell compartments.
Collapse
Affiliation(s)
- Gennady V Pogorelko
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Parijat S Juvale
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - William B Rutter
- USDA-ARS, US Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC, 29414, USA
| | - Marion Hütten
- Rheinische Friedrich-Wilhelms-University Bonn, INRES - Molecular Phytomedicine, Bonn, Germany
| | - Thomas R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Judith Paulus
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, UK
| | | | - Florian Mw Grundler
- Rheinische Friedrich-Wilhelms-University Bonn, INRES - Molecular Phytomedicine, Bonn, Germany
| | - Shahid Siddique
- Rheinische Friedrich-Wilhelms-University Bonn, INRES - Molecular Phytomedicine, Bonn, Germany
| | - Vincenzo Lionetti
- Dipartimento di Biologia e Biotecnologie, Charles Darwin, Sapienza Università di Roma, 00185, Rome, Italy
| | - Olga A Zabotina
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
24
|
Yang S, Dai Y, Chen Y, Yang J, Yang D, Liu Q, Jian H. A Novel G16B09-Like Effector From Heterodera avenae Suppresses Plant Defenses and Promotes Parasitism. FRONTIERS IN PLANT SCIENCE 2019; 10:66. [PMID: 30800135 PMCID: PMC6376208 DOI: 10.3389/fpls.2019.00066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/16/2019] [Indexed: 05/08/2023]
Abstract
Plant parasitic nematodes secrete effectors into host plant tissues to facilitate parasitism. In this study, we identified a G16B09-like effector protein family from the transcriptome of Heterodera avenae, and then verified that most of the members could suppress programmed cell death triggered by BAX in Nicotiana benthamiana. Ha18764, the most homologous to G16B09, was further characterized for its function. Our experimental evidence suggested that Ha18764 was specifically expressed in the dorsal gland and was dramatically upregulated in the J4 stage of nematode development. A Magnaporthe oryzae secretion system in barley showed that the signal peptide of Ha18764 had secretion activity to deliver mCherry into plant cells. Arabidopsis thaliana overexpressing Ha18764 or Hs18764 was more susceptible to Heterodera schachtii. In contrast, BSMV-based host-induced gene silencing (HIGS) targeting Ha18764 attenuated H. avenae parasitism and its reproduction in wheat plants. Transient expression of Ha18764 suppressed PsojNIP, Avr3a/R3a, RBP-1/Gpa2, and MAPK kinases (MKK1 and NPK1Nt)-related cell death in Nicotiana benthamiana. Co-expression assays indicated that Ha18764 also suppressed cell death triggered by four H. avenae putative cell-death-inducing effectors. Moreover, Ha18764 was also shown strong PTI suppression such as reducing the expression of plant defense-related genes, the burst of reactive oxygen species, and the deposition of cell wall callose. Together, our results indicate that Ha18764 promotes parasitism, probably by suppressing plant PTI and ETI signaling in the parasitic stages of H. avenae.
Collapse
Affiliation(s)
| | | | | | | | | | - Qian Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | | |
Collapse
|
25
|
Masonbrink R, Maier TR, Muppirala U, Seetharam AS, Lord E, Juvale PS, Schmutz J, Johnson NT, Korkin D, Mitchum MG, Mimee B, den Akker SEV, Hudson M, Severin AJ, Baum TJ. The genome of the soybean cyst nematode (Heterodera glycines) reveals complex patterns of duplications involved in the evolution of parasitism genes. BMC Genomics 2019; 20:119. [PMID: 30732586 PMCID: PMC6367775 DOI: 10.1186/s12864-019-5485-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/28/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Heterodera glycines, commonly referred to as the soybean cyst nematode (SCN), is an obligatory and sedentary plant parasite that causes over a billion-dollar yield loss to soybean production annually. Although there are genetic determinants that render soybean plants resistant to certain nematode genotypes, resistant soybean cultivars are increasingly ineffective because their multi-year usage has selected for virulent H. glycines populations. The parasitic success of H. glycines relies on the comprehensive re-engineering of an infection site into a syncytium, as well as the long-term suppression of host defense to ensure syncytial viability. At the forefront of these complex molecular interactions are effectors, the proteins secreted by H. glycines into host root tissues. The mechanisms of effector acquisition, diversification, and selection need to be understood before effective control strategies can be developed, but the lack of an annotated genome has been a major roadblock. RESULTS Here, we use PacBio long-read technology to assemble a H. glycines genome of 738 contigs into 123 Mb with annotations for 29,769 genes. The genome contains significant numbers of repeats (34%), tandem duplicates (18.7 Mb), and horizontal gene transfer events (151 genes). A large number of putative effectors (431 genes) were identified in the genome, many of which were found in transposons. CONCLUSIONS This advance provides a glimpse into the host and parasite interplay by revealing a diversity of mechanisms that give rise to virulence genes in the soybean cyst nematode, including: tandem duplications containing over a fifth of the total gene count, virulence genes hitchhiking in transposons, and 107 horizontal gene transfers not reported in other plant parasitic nematodes thus far. Through extensive characterization of the H. glycines genome, we provide new insights into H. glycines biology and shed light onto the mystery underlying complex host-parasite interactions. This genome sequence is an important prerequisite to enable work towards generating new resistance or control measures against H. glycines.
Collapse
Affiliation(s)
- Rick Masonbrink
- Department of Plant Pathology, Iowa State University, Ames, IA USA
- Genome Informatics Facility, Iowa State University, Ames, IA USA
| | - Tom R. Maier
- Department of Plant Pathology, Iowa State University, Ames, IA USA
| | - Usha Muppirala
- Department of Plant Pathology, Iowa State University, Ames, IA USA
- Genome Informatics Facility, Iowa State University, Ames, IA USA
| | - Arun S. Seetharam
- Department of Plant Pathology, Iowa State University, Ames, IA USA
- Genome Informatics Facility, Iowa State University, Ames, IA USA
| | - Etienne Lord
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC Canada
| | | | - Jeremy Schmutz
- Department of Energy, Joint Genome Institute, Walnut Creek, CA USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Nathan T. Johnson
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA USA
| | - Dmitry Korkin
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA USA
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA USA
| | | | - Benjamin Mimee
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC Canada
| | | | - Matthew Hudson
- Department of Crop Sciences University of Illinois, Urbana, IL USA
| | | | - Thomas J. Baum
- Department of Plant Pathology, Iowa State University, Ames, IA USA
| |
Collapse
|
26
|
Masonbrink R, Maier TR, Seetharam AS, Juvale PS, Baber L, Baum TJ, Severin AJ. SCNBase: a genomics portal for the soybean cyst nematode (Heterodera glycines). Database (Oxford) 2019; 2019:baz111. [PMID: 31680133 PMCID: PMC6853641 DOI: 10.1093/database/baz111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/22/2019] [Accepted: 08/09/2019] [Indexed: 11/25/2022]
Abstract
Soybean is an important worldwide crop, and farmers continue to experience significant yield loss due to the soybean cyst nematode (SCN), Heterodera glycines. This soil-borne roundworm parasite is rated the most important pathogen problem in soybean production. The infective nematodes enter into complex interactions with their host plant by inducing the development of specialized plant feeding cells that provide the parasites with nourishment. Addressing the SCN problem will require the development of genomic resources and a global collaboration of scientists to analyze and use these resources. SCNBase.org was designed as a collaborative hub for the SCN genome. All data and analyses are downloadable and can be analyzed with three integrated genomic tools: JBrowse, Feature Search and BLAST. At the time of this writing, a number of genomic and transcriptomic data sets are already available, with 43 JBrowse tracks and 21 category pages describing SCN genomic analyses on gene predictions, transcriptome and read alignments, effector-like genes, expansion and contraction of genomic repeats, orthology and synteny with related nematode species, Single Nucleotide Polymorphism (SNPs) from 15 SCN populations and novel splice sites. Standard functional gene annotations were supplemented with orthologous gene annotations using a comparison to nine related plant-parasitic nematodes, thereby enabling functional annotations for 85% of genes. These annotations led to a greater grasp on the SCN effectorome, which include over 3324 putative effector genes. By designing SCNBase as a hub, future research findings and genomic resources can easily be uploaded and made available for use by others with minimal needs for further curation. By providing these resources to nematode research community, scientists will be empowered to develop novel, more effective SCN management tools.
Collapse
Affiliation(s)
- Rick Masonbrink
- Genome Informatics Facility, Iowa State University, Osborne Dr, Ames, IA 50011, USA
| | - Tom R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Pammel Dr, Ames, IA 50011, USA
| | - Arun S Seetharam
- Genome Informatics Facility, Iowa State University, Osborne Dr, Ames, IA 50011, USA
| | - Parijat S Juvale
- Department of Plant Pathology and Microbiology, Iowa State University, Pammel Dr, Ames, IA 50011, USA
| | - Levi Baber
- Research IT, Iowa State University, Osborne Dr, Ames, IA 50011, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Pammel Dr, Ames, IA 50011, USA
| | - Andrew J Severin
- Genome Informatics Facility, Iowa State University, Osborne Dr, Ames, IA 50011, USA
| |
Collapse
|
27
|
Barnes SN, Wram CL, Mitchum MG, Baum TJ. The plant-parasitic cyst nematode effector GLAND4 is a DNA-binding protein. MOLECULAR PLANT PATHOLOGY 2018; 19:2263-2276. [PMID: 29719112 PMCID: PMC6637993 DOI: 10.1111/mpp.12697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/23/2018] [Accepted: 04/30/2018] [Indexed: 05/24/2023]
Abstract
Cyst nematodes are plant pathogens that infect a wide range of economically important crops. One parasitic mechanism employed by cyst nematodes is the production and in planta delivery of effector proteins to modify plant cells and suppress defences to favour parasitism. This study focuses on GLAND4, an effector of Heterodera glycines and H. schachtii, the soybean and sugar beet cyst nematodes, respectively. We show that GLAND4 is recognized by the plant cellular machinery and is transported to the plant nucleus, an organelle for which little is known about plant nematode effector functions. We show that GLAND4 has DNA-binding ability and represses reporter gene expression in a plant transcriptional assay. One DNA fragment that binds to GLAND4 is localized in an Arabidopsis chromosomal region associated with the promoters of two lipid transfer protein genes (LTP). These LTPs have known defence functions and are down-regulated in the nematode feeding site. When expressed in Arabidopsis, the presence of GLAND4 causes the down-regulation of the two LTP genes in question, which is also associated with increased susceptibility to the plant-pathogenic bacterium Pseudomonas syringae. Furthermore, overexpression of one of the LTP genes reduces plant susceptibility to H. schachtii and P. syringae, confirming that LTP repression probably suppresses plant defences. This study makes GLAND4 one of a small subset of characterized plant nematode nuclear effectors and identifies GLAND4 as the first DNA-binding, plant-parasitic nematode effector.
Collapse
Affiliation(s)
- Stacey N. Barnes
- Plant Pathology & Microbiology DepartmentIowa State UniversityAmesIA 50011USA
| | - Catherine L. Wram
- Plant Pathology & Microbiology DepartmentIowa State UniversityAmesIA 50011USA
- Present address:
Department of Botany and Plant PathologyOregon State UniversityCorvallisOR 97330USA
| | - Melissa G. Mitchum
- Division of Plant Sciences and Bond Life Sciences CenterUniversity of MissouriColumbiaMO 65211USA
| | - Thomas J. Baum
- Plant Pathology & Microbiology DepartmentIowa State UniversityAmesIA 50011USA
| |
Collapse
|
28
|
Gardner M, Dhroso A, Johnson N, Davis EL, Baum TJ, Korkin D, Mitchum MG. Novel global effector mining from the transcriptome of early life stages of the soybean cyst nematode Heterodera glycines. Sci Rep 2018; 8:2505. [PMID: 29410430 PMCID: PMC5802810 DOI: 10.1038/s41598-018-20536-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/12/2018] [Indexed: 11/08/2022] Open
Abstract
Soybean cyst nematode (SCN) Heterodera glycines is an obligate parasite that relies on the secretion of effector proteins to manipulate host cellular processes that favor the formation of a feeding site within host roots to ensure its survival. The sequence complexity and co-evolutionary forces acting upon these effectors remain unknown. Here we generated a de novo transcriptome assembly representing the early life stages of SCN in both a compatible and an incompatible host interaction to facilitate global effector mining efforts in the absence of an available annotated SCN genome. We then employed a dual effector prediction strategy coupling a newly developed nematode effector prediction tool, N-Preffector, with a traditional secreted protein prediction pipeline to uncover a suite of novel effector candidates. Our analysis distinguished between effectors that co-evolve with the host genotype and those conserved by the pathogen to maintain a core function in parasitism and demonstrated that alternative splicing is one mechanism used to diversify the effector pool. In addition, we confirmed the presence of viral and microbial inhabitants with molecular sequence information. This transcriptome represents the most comprehensive whole-nematode sequence currently available for SCN and can be used as a tool for annotation of expected genome assemblies.
Collapse
Affiliation(s)
- Michael Gardner
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, USA
| | - Andi Dhroso
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA
| | - Nathan Johnson
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA
| | - Eric L Davis
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, USA
| | - Dmitry Korkin
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA.
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, USA.
| |
Collapse
|
29
|
Affiliation(s)
- Parijat S. Juvale
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Thomas J. Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
30
|
Kikuchi T, Eves-van den Akker S, Jones JT. Genome Evolution of Plant-Parasitic Nematodes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:333-354. [PMID: 28590877 DOI: 10.1146/annurev-phyto-080516-035434] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plant parasitism has evolved independently on at least four separate occasions in the phylum Nematoda. The application of next-generation sequencing (NGS) to plant-parasitic nematodes has allowed a wide range of genome- or transcriptome-level comparisons, and these have identified genome adaptations that enable parasitism of plants. Current genome data suggest that horizontal gene transfer, gene family expansions, evolution of new genes that mediate interactions with the host, and parasitism-specific gene regulation are important adaptations that allow nematodes to parasitize plants. Sequencing of a larger number of nematode genomes, including plant parasites that show different modes of parasitism or that have evolved in currently unsampled clades, and using free-living taxa as comparators would allow more detailed analysis and a better understanding of the organization of key genes within the genomes. This would facilitate a more complete understanding of the way in which parasitism has shaped the genomes of plant-parasitic nematodes.
Collapse
Affiliation(s)
- Taisei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| | - Sebastian Eves-van den Akker
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
- Department of Biological Chemistry, The John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - John T Jones
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom
- School of Biology, University of St. Andrews, North Haugh, St. Andrews, KY16 9TZ, United Kingdom
| |
Collapse
|
31
|
Mantelin S, Thorpe P, Jones JT. Translational biology of nematode effectors. Or, to put it another way, functional analysis of effectors – what’s the point? NEMATOLOGY 2017. [DOI: 10.1163/15685411-00003048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There has been a huge amount of work put into identifying and characterising effectors from plant-parasitic nematodes in recent years. Although this work has provided insights into the mechanisms by which nematodes can infect plants, the potential translational outputs of much of this research are not always clear. This short article will summarise how developments in effector biology have allowed, or will allow, new control strategies to be developed, drawing on examples from nematology and from other pathosystems.
Collapse
Affiliation(s)
- Sophie Mantelin
- Dundee Effector Consortium, Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Peter Thorpe
- Dundee Effector Consortium, Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - John T. Jones
- Dundee Effector Consortium, Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Biology Department, University of St Andrews, St Andrews, Fife KY16 9TZ, UK
| |
Collapse
|
32
|
Noon JB, Qi M, Sill DN, Muppirala U, Eves-van den Akker S, Maier TR, Dobbs D, Mitchum MG, Hewezi T, Baum TJ. A Plasmodium-like virulence effector of the soybean cyst nematode suppresses plant innate immunity. THE NEW PHYTOLOGIST 2016; 212:444-60. [PMID: 27265684 DOI: 10.1111/nph.14047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/04/2016] [Indexed: 05/19/2023]
Abstract
Heterodera glycines, the soybean cyst nematode, delivers effector proteins into soybean roots to initiate and maintain an obligate parasitic relationship. HgGLAND18 encodes a candidate H. glycines effector and is expressed throughout the infection process. We used a combination of molecular, genetic, bioinformatic and phylogenetic analyses to determine the role of HgGLAND18 during H. glycines infection. HgGLAND18 is necessary for pathogenicity in compatible interactions with soybean. The encoded effector strongly suppresses both basal and hypersensitive cell death innate immune responses, and immunosuppression requires the presence and coordination between multiple protein domains. The N-terminal domain in HgGLAND18 contains unique sequence similarity to domains of an immunosuppressive effector of Plasmodium spp., the malaria parasites. The Plasmodium effector domains functionally complement the loss of the N-terminal domain from HgGLAND18. In-depth sequence searches and phylogenetic analyses demonstrate convergent evolution between effectors from divergent parasites of plants and animals as the cause of sequence and functional similarity.
Collapse
Affiliation(s)
- Jason B Noon
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Mingsheng Qi
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Danielle N Sill
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Usha Muppirala
- Genome Informatics Facility, Iowa State University, Ames, IA, 50011, USA
| | | | - Thomas R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Drena Dobbs
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
33
|
Whitham SA, Qi M, Innes RW, Ma W, Lopes-Caitar V, Hewezi T. Molecular Soybean-Pathogen Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:443-68. [PMID: 27359370 DOI: 10.1146/annurev-phyto-080615-100156] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Soybean hosts a wide variety of pathogens that cause significant yield losses. The importance of soybean as a major oilseed crop has led to research focused on its interactions with pathogens, such as Soybean mosaic virus, Pseudomonas syringae, Phytophthora sojae, Phakopsora pachyrhizi, and Heterodera glycines. Pioneering work on soybean's interactions with these organisms, which represent the five major pathogen groups (viruses, bacteria, oomycetes, fungi, and nematodes), has contributed to our understanding of the molecular mechanisms underlying virulence and immunity. These mechanisms involve conserved and unique features that validate the need for research in both soybean and homologous model systems. In this review, we discuss identification of effectors and their functions as well as resistance gene-mediated recognition and signaling. We also point out areas in which model systems and recent advances in resources and tools have provided opportunities to gain deeper insights into soybean-pathogen interactions.
Collapse
Affiliation(s)
- Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011; ,
| | - Mingsheng Qi
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011; ,
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405;
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521;
| | - Valéria Lopes-Caitar
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996; ,
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996; ,
| |
Collapse
|
34
|
Pogorelko G, Juvale PS, Rutter WB, Hewezi T, Hussey R, Davis EL, Mitchum MG, Baum TJ. A cyst nematode effector binds to diverse plant proteins, increases nematode susceptibility and affects root morphology. MOLECULAR PLANT PATHOLOGY 2016; 17:832-44. [PMID: 26575318 PMCID: PMC6638508 DOI: 10.1111/mpp.12330] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 05/20/2023]
Abstract
Cyst nematodes are plant-parasitic roundworms that are of significance in many cropping systems around the world. Cyst nematode infection is facilitated by effector proteins secreted from the nematode into the plant host. The cDNAs of the 25A01-like effector family are novel sequences that were isolated from the oesophageal gland cells of the soybean cyst nematode (Heterodera glycines). To aid functional characterization, we identified an orthologous member of this protein family (Hs25A01) from the closely related sugar beet cyst nematode H. schachtii, which infects Arabidopsis. Constitutive expression of the Hs25A01 CDS in Arabidopsis plants caused a small increase in root length, accompanied by up to a 22% increase in susceptibility to H. schachtii. A plant-expressed RNA interference (RNAi) construct targeting Hs25A01 transcripts in invading nematodes significantly reduced host susceptibility to H. schachtii. These data document that Hs25A01 has physiological functions in planta and a role in cyst nematode parasitism. In vivo and in vitro binding assays confirmed the specific interactions of Hs25A01 with an Arabidopsis F-box-containing protein, a chalcone synthase and the translation initiation factor eIF-2 β subunit (eIF-2bs), making these proteins probable candidates for involvement in the observed changes in plant growth and parasitism. A role of eIF-2bs in the mediation of Hs25A01 virulence function is further supported by the observation that two independent eIF-2bs Arabidopsis knock-out lines were significantly more susceptible to H. schachtii.
Collapse
Affiliation(s)
- Gennady Pogorelko
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Parijat S Juvale
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - William B Rutter
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66505, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Richard Hussey
- Department of Plant Pathology, The University of Georgia, Athens, GA, 30602, USA
| | - Eric L Davis
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Melissa G Mitchum
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
35
|
Eves-van den Akker S, Laetsch DR, Thorpe P, Lilley CJ, Danchin EGJ, Da Rocha M, Rancurel C, Holroyd NE, Cotton JA, Szitenberg A, Grenier E, Montarry J, Mimee B, Duceppe MO, Boyes I, Marvin JMC, Jones LM, Yusup HB, Lafond-Lapalme J, Esquibet M, Sabeh M, Rott M, Overmars H, Finkers-Tomczak A, Smant G, Koutsovoulos G, Blok V, Mantelin S, Cock PJA, Phillips W, Henrissat B, Urwin PE, Blaxter M, Jones JT. The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence. Genome Biol 2016; 17:124. [PMID: 27286965 PMCID: PMC4901422 DOI: 10.1186/s13059-016-0985-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/12/2016] [Indexed: 11/23/2022] Open
Abstract
Background The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. Results We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative ‘effector islands’ in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. Conclusions These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0985-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Peter Thorpe
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, DD2 5DA, UK
| | | | - Etienne G J Danchin
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Martine Da Rocha
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Corinne Rancurel
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Nancy E Holroyd
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK
| | - James A Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK
| | - Amir Szitenberg
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Eric Grenier
- INRA, UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection), 35653, Le Rheu, France
| | - Josselin Montarry
- INRA, UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection), 35653, Le Rheu, France
| | - Benjamin Mimee
- Agriculture and Agri-food Canada, Horticulture Research and Development Centre, 430 Bboul. Gouin, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| | - Marc-Olivier Duceppe
- Agriculture and Agri-food Canada, Horticulture Research and Development Centre, 430 Bboul. Gouin, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| | - Ian Boyes
- Sidney Laboratory, Canadian Food Inspection Agency (CFIA), 8801 East Saanich Rd, Sidney, BC, V8L 1H3, Canada
| | | | - Laura M Jones
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Hazijah B Yusup
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Joël Lafond-Lapalme
- Agriculture and Agri-food Canada, Horticulture Research and Development Centre, 430 Bboul. Gouin, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| | - Magali Esquibet
- INRA, UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection), 35653, Le Rheu, France
| | - Michael Sabeh
- Agriculture and Agri-food Canada, Horticulture Research and Development Centre, 430 Bboul. Gouin, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| | - Michael Rott
- Sidney Laboratory, Canadian Food Inspection Agency (CFIA), 8801 East Saanich Rd, Sidney, BC, V8L 1H3, Canada
| | - Hein Overmars
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Anna Finkers-Tomczak
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | | | - Vivian Blok
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Sophie Mantelin
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Peter J A Cock
- Information and Computational Sciences Group, James Hutton Institute, Dundee, UK
| | - Wendy Phillips
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Bernard Henrissat
- CNRS UMR 7257, INRA, USC 1408, Aix-Marseille University, AFMB, 13288, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - John T Jones
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, DD2 5DA, UK.,School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| |
Collapse
|
36
|
Genetic Engineering and Sustainable Crop Disease Management: Opportunities for Case-by-Case Decision-Making. SUSTAINABILITY 2016. [DOI: 10.3390/su8050495] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
37
|
Noon JB, Baum TJ. Horizontal gene transfer of acetyltransferases, invertases and chorismate mutases from different bacteria to diverse recipients. BMC Evol Biol 2016; 16:74. [PMID: 27068610 PMCID: PMC4828791 DOI: 10.1186/s12862-016-0651-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/05/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hoplolaimina plant-parasitic nematodes (PPN) are a lineage of animals with many documented cases of horizontal gene transfer (HGT). In a recent study, we reported on three likely HGT candidate genes in the soybean cyst nematode Heterodera glycines, all of which encode secreted candidate effectors with putative functions in the host plant. Hg-GLAND1 is a putative GCN5-related N-acetyltransferase (GNAT), Hg-GLAND13 is a putative invertase (INV), and Hg-GLAND16 is a putative chorismate mutase (CM), and blastp searches of the non-redundant database resulted in highest similarity to bacterial sequences. Here, we searched nematode and non-nematode sequence databases to identify all the nematodes possible that contain these three genes, and to formulate hypotheses about when they most likely appeared in the phylum Nematoda. We then performed phylogenetic analyses combined with model selection tests of alternative models of sequence evolution to determine whether these genes were horizontally acquired from bacteria. RESULTS Mining of nematode sequence databases determined that GNATs appeared in Hoplolaimina PPN late in evolution, while both INVs and CMs appeared before the radiation of the Hoplolaimina suborder. Also, Hoplolaimina GNATs, INVs and CMs formed well-supported clusters with different rhizosphere bacteria in the phylogenetic trees, and the model selection tests greatly supported models of HGT over descent via common ancestry. Surprisingly, the phylogenetic trees also revealed additional, well-supported clusters of bacterial GNATs, INVs and CMs with diverse eukaryotes and archaea. There were at least eleven and eight well-supported clusters of GNATs and INVs, respectively, from different bacteria with diverse eukaryotes and archaea. Though less frequent, CMs from different bacteria formed supported clusters with multiple different eukaryotes. Moreover, almost all individual clusters containing bacteria and eukaryotes or archaea contained species that inhabit very similar niches. CONCLUSIONS GNATs were horizontally acquired late in Hoplolaimina PPN evolution from bacteria most similar to the saprophytic and plant-pathogenic actinomycetes. INVs and CMs were horizontally acquired from bacteria most similar to rhizobacteria and Burkholderia soil bacteria, respectively, before the radiation of Hoplolaimina. Also, these three gene groups appear to have been frequent subjects of HGT from different bacteria to numerous, diverse lineages of eukaryotes and archaea, which suggests that these genes may confer important evolutionary advantages to many taxa. In the case of Hoplolaimina PPN, this advantage likely was an improved ability to parasitize plants.
Collapse
Affiliation(s)
- Jason B. Noon
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011 USA
| | - Thomas J. Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
38
|
Danchin EGJ, Guzeeva EA, Mantelin S, Berepiki A, Jones JT. Horizontal Gene Transfer from Bacteria Has Enabled the Plant-Parasitic Nematode Globodera pallida to Feed on Host-Derived Sucrose. Mol Biol Evol 2016; 33:1571-9. [PMID: 26915958 DOI: 10.1093/molbev/msw041] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The evolution of plant-parasitic nematodes (PPN) is unusual in that these organisms have acquired a range of genes from bacteria via horizontal gene transfer (HGT). The proteins encoded by most of these genes are involved in metabolism of various components of the plant cell wall during invasion of the host. Recent genome sequencing projects for PPN have shown that Glycosyl Hydrolase Family 32 (GH32) sequences are present in several PPN species. These sequences are absent from almost all other animals. Here, we show that the GH32 sequences from an economically important cyst nematode species, Globodera pallida are functional invertases, are expressed during feeding and are restricted in expression to the nematode digestive system. These data are consistent with a role in metabolizing host-derived sucrose. In addition, a detailed phylogenetic analysis shows that the GH32 sequences from PPN and those present in some insect species have distinct bacterial origins and do not therefore derive from a gene present in the last common ancestor of ecdysozoan species. HGT has therefore played at least two critical roles in the evolution of PPN, enabling both invasion of the host and feeding on the main translocation carbohydrate of the plant.
Collapse
Affiliation(s)
- Etienne G J Danchin
- Institut Sophia Agrobiotech, INRA, Univ. Nice Sophia Antipolis, CNRS, 06903, Sophia Antipolis, France
| | - Elena A Guzeeva
- Dundee Effector Consortium, The James Hutton Institute, Dundee, United Kingdom Centre of Parasitology of the A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Sophie Mantelin
- Dundee Effector Consortium, The James Hutton Institute, Dundee, United Kingdom
| | - Adokiye Berepiki
- Dundee Effector Consortium, The James Hutton Institute, Dundee, United Kingdom
| | - John T Jones
- Dundee Effector Consortium, The James Hutton Institute, Dundee, United Kingdom Biology Department, University of St Andrews, St Andrews, Fife, United Kingdom
| |
Collapse
|
39
|
Fosu-Nyarko J, Nicol P, Naz F, Gill R, Jones MGK. Analysis of the Transcriptome of the Infective Stage of the Beet Cyst Nematode, H. schachtii. PLoS One 2016; 11:e0147511. [PMID: 26824923 PMCID: PMC4733053 DOI: 10.1371/journal.pone.0147511] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/05/2016] [Indexed: 01/08/2023] Open
Abstract
The beet cyst nematode, Heterodera schachtii, is a major root pest that significantly impacts the yield of sugar beet, brassicas and related species. There has been limited molecular characterisation of this important plant pathogen: to identify target genes for its control the transcriptome of the pre-parasitic J2 stage of H. schachtii was sequenced using Roche GS FLX. Ninety seven percent of reads (i.e., 387,668) with an average PHRED score > 22 were assembled with CAP3 and CLC Genomics Workbench into 37,345 and 47,263 contigs, respectively. The transcripts were annotated by comparing with gene and genomic sequences of other nematodes and annotated proteins on public databases. The annotated transcripts were much more similar to sequences of Heterodera glycines than to those of Globodera pallida and root knot nematodes (Meloidogyne spp.). Analysis of these transcripts showed that a subset of 2,918 transcripts was common to free-living and plant parasitic nematodes suggesting that this subset is involved in general nematode metabolism and development. A set of 148 contigs and 183 singletons encoding putative homologues of effectors previously characterised for plant parasitic nematodes were also identified: these are known to be important for parasitism of host plants during migration through tissues or feeding from cells or are thought to be involved in evasion or modulation of host defences. In addition, the presence of sequences from a nematode virus is suggested. The sequencing and annotation of this transcriptome significantly adds to the genetic data available for H. schachtii, and identifies genes primed to undertake required roles in the critical pre-parasitic and early post-parasitic J2 stages. These data provide new information for identifying potential gene targets for future protection of susceptible crops against H. schachtii.
Collapse
Affiliation(s)
- John Fosu-Nyarko
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
- NemGenix Pty Ltd, Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Australia
- * E-mail: ; (JFN); (MGKJ)
| | - Paul Nicol
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Fareeha Naz
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Reetinder Gill
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Michael G. K. Jones
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
- * E-mail: ; (JFN); (MGKJ)
| |
Collapse
|
40
|
Hewezi T. Cellular Signaling Pathways and Posttranslational Modifications Mediated by Nematode Effector Proteins. PLANT PHYSIOLOGY 2015; 169:1018-26. [PMID: 26315856 PMCID: PMC4587465 DOI: 10.1104/pp.15.00923] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/27/2015] [Indexed: 05/19/2023]
Abstract
Plant-parasitic cyst and root-knot nematodes synthesize and secrete a suite of effector proteins into infected host cells and tissues. These effectors are the major virulence determinants mediating the transformation of normal root cells into specialized feeding structures. Compelling evidence indicates that these effectors directly hijack or manipulate refined host physiological processes to promote the successful parasitism of host plants. Here, we provide an update on recent progress in elucidating the molecular functions of nematode effectors. In particular, we emphasize how nematode effectors modify plant cell wall structure, mimic the activity of host proteins, alter auxin signaling, and subvert defense signaling and immune responses. In addition, we discuss the emerging evidence suggesting that nematode effectors target and recruit various components of host posttranslational machinery in order to perturb the host signaling networks required for immunity and to regulate their own activity and subcellular localization.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|