1
|
Bugingo C, Brelsford M, Burrows M. Fungicide Sensitivity of Fusarium oxysporum f. sp. lentis and Fusarium acuminatum Affecting Lentil in the Northern Great Plains. PLANT DISEASE 2024; 108:286-290. [PMID: 37606958 DOI: 10.1094/pdis-07-23-1440-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Fusarium oxysporum f. sp. lentis and F. acuminatum cause wilting and root rot in pulse crops including lentil. Fungicide seed treatments are widely used, but information about Fusarium spp. sensitivity in lentils is limited. Here, 30 F. oxysporum f. sp. lentis and 30 F. acuminatum isolates from Montana, southern Canada, North Dakota, and Washington were identified, tested for pathogenicity, and assayed for in vitro sensitivity to pyraclostrobin, prothioconazole, ipconazole, and thiophanate-methyl. F. oxysporum f. sp. lentis and F. acuminatum differed in their sensitivity to all fungicides. No resistant isolates were identified, but F. oxysporum f. sp. lentis had lower EC50 values in pyraclostrobin (averaging 0.47 μg a.i./ml) than F. acuminatum (averaging 0.89 μg a.i./ml) for mycelia assays. Both species had lower EC50 values in prothioconazole, averaging EC50 0.23 in F. oxysporum f. sp. lentis and 0.53 μg a.i./ml in F. acuminatum. F. oxysporum f. sp. lentis isolates had the lowest EC50 values on ipconazole compared to F. acuminatum (0.78 and 1.49 μg a.i./ml). The pathogens were least sensitive to thiophanate-methyl (1.74 μg a.i./ml for F. oxysporum f. sp. lentis and 1.91 μg a.i./ml for F. acuminatum). Overall sensitivity to the fungicides was higher in F. oxysporum f. sp. lentis than F. acuminatum. This study provides reference EC50 values while pointing to the possibility of differential fungicide efficacies on Fusarium spp. This will be helpful to monitor shifts in sensitivity of Fusarium spp. and devise robust root rot/wilt management approaches.
Collapse
Affiliation(s)
| | - Monica Brelsford
- Plant Science and Plant Pathology Department, Montana State University, Bozeman, MT 59717
| | - Mary Burrows
- College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
2
|
Heaven T, Armitage AD, Xu X, Goddard MR, Cockerton HM. Dose-Dependent Genetic Resistance to Azole Fungicides Found in the Apple Scab Pathogen. J Fungi (Basel) 2023; 9:1136. [PMID: 38132737 PMCID: PMC10744243 DOI: 10.3390/jof9121136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
The evolution of azole resistance in fungal pathogens presents a major challenge in both crop production and human health. Apple orchards across the world are faced with the emergence of azole fungicide resistance in the apple scab pathogen Venturia inaequalis. Target site point mutations observed in this fungus to date cannot fully explain the reduction in sensitivity to azole fungicides. Here, polygenic resistance to tebuconazole was studied across a population of V. inaequalis. Genotyping by sequencing allowed Quantitative Trait Loci (QTLs) mapping to identify the genetic components controlling this fungicide resistance. Dose-dependent genetic resistance was identified, with distinct genetic components contributing to fungicide resistance at different exposure levels. A QTL within linkage group seven explained 65% of the variation in the effective dose required to reduce growth by 50% (ED50). This locus was also involved in resistance at lower fungicide doses (ED10). A second QTL in linkage group one was associated with dose-dependent resistance, explaining 34% of variation at low fungicide doses (ED10), but did not contribute to resistance at higher doses (ED50 and ED90). Within QTL regions, non-synonymous mutations were observed in several ATP-Binding Cassette and Major Facilitator SuperFamily transporter genes. These findings provide insight into the mechanisms of fungicide resistance that have evolved in horticultural pathogens. Identification of resistance gene candidates supports the development of molecular diagnostics to inform management practices.
Collapse
Affiliation(s)
- Thomas Heaven
- National Institute of Agricultural Botany, New Road, East Malling, West Malling, Kent ME19 6BJ, UK;
- The School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7DL, UK;
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Xiangming Xu
- National Institute of Agricultural Botany, New Road, East Malling, West Malling, Kent ME19 6BJ, UK;
| | - Matthew R. Goddard
- The School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7DL, UK;
| | | |
Collapse
|
3
|
Nasonov AI, Yakuba GV, Astapchuk IL. Sensitivity of Krasnodar Venturia inaequalis Populations to the Sterol Demethylation Inhibitor Difenoconazole. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2022; 507:463-472. [PMID: 36781541 DOI: 10.1134/s001249662206014x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 02/15/2023]
Abstract
Difenoconazole sensitivity was assessed in three populations of the apple scab agent Venturia inaequalis of the Krasnodar region. One of the populations was fungicide naïve population; its sample was collected in natural habitats of the eastern crabapple Malus orientalis in foothills of the Severskii raion. The two other populations were from commercial orchards of the apple variety Reinette Simirenko (the Krasnoarmeiskii and Dinskoi raions), where fungicide treatments with various agents, including those with difenoconazole as an active ingredient, were performed on a regular basis. Single-spore V. inaequalis isolates were isolated from fresh leaves with signs of the disease or fallen leaves with fungal fruiting bodies. The median effective concentration (EC50) was defined as the concentration that halves the colony growth and was estimated in a series of in vitro experiments with 120 isolates. Difenoconazole (Score EC, 250 mg/L, Syngenta) was used at six concentrations: 0.005, 0.01, 0.025, 0.05, 0.5, and 1 mg a.i./L. Mean EC50 values were 0.0078 mg a.i./L in the natural population and 0.12 and 0.25 mg a.i./L in the orchard populations. Fungicide sensitivity was lower in both of the orchard populations; their resistance factors were estimated at 16 and 32. The proportion of sensitive and low-sensitive isolates differed between the two orchard populations. A discriminatory dose, or single-assessment concentration (SAC), of 0.01 mg a.i./L was proposed to simplify the laboratory monitoring of the difenoconazole sensitivity in V. inaequalis by using a test for relative growth (RG) of the mycelium. Comparable results were obtained with EC50 and RG at the discriminatory dose. The portion of isolates with RGs exceeding the threshold (RG > 70%) was 97% in one of the orchard populations. The results indicate that difenoconazole resistance develops in V. inaequalis populations from commercial orchards of the Krasnodar region.
Collapse
Affiliation(s)
- A I Nasonov
- North Caucasian Federal Research Center of Horticulture, Viniculture, and Wine Industry, Krasnodar, Russia.
| | - G V Yakuba
- North Caucasian Federal Research Center of Horticulture, Viniculture, and Wine Industry, Krasnodar, Russia.
| | - I L Astapchuk
- North Caucasian Federal Research Center of Horticulture, Viniculture, and Wine Industry, Krasnodar, Russia.
| |
Collapse
|
4
|
Celia-Sanchez BN, Mangum B, Brewer M, Momany M. Analysis of Cyp51 protein sequences shows 4 major Cyp51 gene family groups across fungi. G3 (BETHESDA, MD.) 2022; 12:jkac249. [PMID: 36130263 PMCID: PMC9635630 DOI: 10.1093/g3journal/jkac249] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Azole drugs target fungal sterol biosynthesis and are used to treat millions of human fungal infections each year. Resistance to azole drugs has emerged in multiple fungal pathogens including Candida albicans, Cryptococcus neoformans, Histoplasma capsulatum, and Aspergillus fumigatus. The most well-studied resistance mechanism in A. fumigatus arises from missense mutations in the coding sequence combined with a tandem repeat in the promoter of cyp51A, which encodes a cytochrome P450 enzyme in the fungal sterol biosynthesis pathway. Filamentous members of Ascomycota such as A. fumigatus have either 1 or 2 of 3 Cyp51 paralogs (Cyp51A, Cyp51B, and Cyp51C). Most previous research in A. fumigatus has focused on Cyp51A due to its role in azole resistance. We used the A. fumigatus Cyp51A protein sequence as the query in database searches to identify Cyp51 proteins across fungi. We found 435 Cyp51 proteins in 295 species spanning from early-diverging fungi (Blastocladiomycota, Chytridiomycota, Zoopagomycota, and Mucormycota) to late-diverging fungi (Ascomycota and Basidiomycota). We found these sequences formed 4 major Cyp51 groups: Cyp51, Cyp51A, Cyp51B, and Cyp51C. Surprisingly, we found all filamentous Ascomycota had a Cyp51B paralog, while only 50% had a Cyp51A paralog. We created maximum likelihood trees to investigate the evolution of Cyp51 in fungi. Our results suggest Cyp51 is present in all fungi with 3 paralogs emerging in Pezizomycotina, including Cyp51C which appears to have diverged from the progenitor of the Cyp51A and Cyp51B groups.
Collapse
Affiliation(s)
| | - Brandon Mangum
- Department of Plant Biology, University of Georgia, Athens, GA 30606, USA
| | - Marin Brewer
- Department of Plant Pathology, University of Georgia, Athens, GA 30606, USA
| | - Michelle Momany
- Department of Plant Biology, University of Georgia, Athens, GA 30606, USA
| |
Collapse
|
5
|
Nasonov A, Yakuba G, Marchenko N, Lobodina E, Astapchuk I. Evaluation of sensitivity of apple scab pathogen to difenoconazole using the discriminatory dose technique. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224710002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The most serious disease of the apple tree in all areas of its growth is scab. In the integrated apple tree protection system, the main method is chemical. However, the use of chemical fungicides is characterized by the risk of developing resistance to them by pathogen. The sensitivity of 118 monospore isolates of Venturia inaequalis was studied from three orchards of Jeromine, Reinette Simirenko and Gala cultivars, differing in the frequency of application of difenoconazole. Sensitivity was determined using the discriminatory dose technique (0.01 mg/l of active substance) in terms of RG, the relative growth of the mycelium. RG was expressed as the degree of change in mycelium growth in a nutrient medium with fungicide relative to the control variant in percent. All pathogen populations studied differed significantly in mean RG values. Populations treated three times per season with difenoconazole had higher RG values compared to populations treated two times. From Gala orchard, for some isolates, a stimulating effect of a discriminatory dose of difenoconazole on their growth was observed, that is, a hormesis effect was manifested. The proportion of isolates with RG values above the cutoff value, which was 84 and 100 % for the Reinette Simirenko and Gala orchards, may indicate that the pathogen populations studied are resistant, and in these orchards, there may be a decrease in the effectiveness of protection against apple scab. The discriminatory dose technique allowed us to objectively and promptly assess the sensitivity of V. inaequalis populations from orchards with varying intensity use of difenoconazole.
Collapse
|
6
|
Li H, Barlow W, Dixon E, Amsden BF, Hirsch RL, Pfeufer EE. Molecular Identification of Mutations Conferring Resistance to Azoxystrobin in Cercospora nicotianae. PLANT DISEASE 2021; 105:1272-1280. [PMID: 32954981 DOI: 10.1094/pdis-02-20-0441-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cercospora nicotianae, the causal agent of frogeye leaf spot (FLS) of tobacco, has been exposed to quinone outside inhibitor (QoI) fungicides for more than a decade through azoxystrobin applications targeting other major foliar diseases. From 2016 to 2018, a total of 124 isolates were collected from tobacco fields throughout Kentucky. Sensitivity of these isolates to azoxystrobin was previously characterized by determining the effective concentration to inhibit 50% conidial germination (EC50). Based on azoxystrobin EC50, isolates were categorized into three discrete groups: high sensitivity (<0.08 µg/ml), moderate sensitivity (0.14 to 0.64 µg/ml), and low sensitivity (>1.18 µg/ml). Variability in sensitivity in a limited number of C. nicotianae isolates was previously shown to be a result of resistance mutations in the fungicide target gene. To improve understanding of C. nicotianae cytochrome b (cytb) structure, the gene was cloned from three isolates representing each EC50 group, and sequences were compared. Our analysis showed that cytb gene in C. nicotianae consists of 1,161 nucleotides encoding 386 amino acids. The cytb sequence among the cloned isolates was identical with the exception of the F129L and G143A point mutations. To more rapidly determine the resistance status of C. nicotianae isolates to azoxystrobin, a polymerase chain reaction (PCR) assay was developed to screen for mutations. According to this assay, 80% (n = 99) of tested C. nicotianae isolates carried an F129L mutation and were moderately resistant to azoxystrobin, and 7% (n = 9) carried the G143A mutation and were highly resistant. A receiver operating characteristic curve analysis suggested the PCR assay was a robust diagnostic tool to identify C. nicotianae isolates with different sensitivity to azoxystrobin in Kentucky tobacco production. The prevalence of both the F129L and G143A mutations in C. nicotianae from Kentucky differs from that of other pathosystems where resistance to QoI fungicides has been identified, in which the majority of sampled isolates of the pathogen species have a broadly occurring cytb mutation.
Collapse
Affiliation(s)
- Hua Li
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| | - William Barlow
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| | - Edward Dixon
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| | | | - R Louis Hirsch
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| | - Emily E Pfeufer
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| |
Collapse
|
7
|
Cordero-Limon L, Shaw MW, Passey TA, Robinson JD, Xu X. Cross-resistance between myclobutanil and tebuconazole and the genetic basis of tebuconazole resistance in Venturia inaequalis. PEST MANAGEMENT SCIENCE 2021; 77:844-850. [PMID: 32926586 DOI: 10.1002/ps.6088] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/05/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Myclobutanil is one of the most widely used demethylation inhibitor (DMI) fungicides for the management of apple scab, caused by Venturia inaequalis. Strains of V. inaequalis resistant to myclobutanil have been reported across the world. Tebuconazole, another DMI fungicide, has been proposed as an alternative to myclobutanil, and the extent of cross-resistance with myclobutanil therefore needs to be evaluated. The sensitivity to tebuconazole and myclobutanil of a total of 40 isolates was determined. Half the isolates came from an isolated orchard which had never been sprayed with fungicides and half from orchards sprayed regularly with myclobutanil, but still with disease control problems. The progeny of a tebuconazole resistant (R) × sensitive (S) V. inaequalis cross were analyzed in order to improve understanding of the genetic control of tebuconazole sensitivity. RESULTS There is cross-resistance between myclobutanil and tebuconazole (r = 0.91; P < 0.001). Sensitivity to tebuconazole of the progeny of a R × S cross varied quantitatively in a pattern which implied at least two gene loci differing between the parental strains. In addition, the asymmetric distribution of the sensitivity in the progeny implied possible epistatic effects. CONCLUSION Resistance to myclobutanil and tebuconazole is strongly correlated. At least two genes are involved in the control of tebuconazole resistance in V. inaequalis.
Collapse
Affiliation(s)
- Laura Cordero-Limon
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
- NIAB EMR, Kent, UK
| | - Michael W Shaw
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | | | | | | |
Collapse
|
8
|
Grishechkina L, Podgornaya M, Dolzhenko V. Difenoconazole-based fungicides for orchard protection. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213404004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A comparative assessment of the effectiveness of 4 difenoconazole-based fungicides in the fight against apple scab in the Krasnodar region and the Rostov Region for several years has been carried out. The preparations Sercadis Plus, SC were applicated at a rate of application of 1.2 l/ha; Embrelia, SC – 1.5 l/ha; Cidely Top, DС – 0.7 l/ha and Tersel, WG – 2.5 kg/ha three times, against different infectious backgrounds, starting with the “pink bud” phenophase (the end of flowering stage). The following apple cultivars were used: Idared, Champion and Golden Delicious. Research has shown that all studied fungicides significantly reduced the scab infestation of apple leaves and fruits. This resulted in obtaining additional yield in the range of 12.6-46.0%. The fruit grade was high after the treatments: 93.0-100% in the Krasnodar region and 81.5-91.5% in the Rostov Region, while in the nil treatment the percentages of standard products were 68.5% and 44.6%, respectively. According to the toxic load indicator, difenoconazole-based fungicides, such as Embrelia, SC (11.6 LD50 per hectare), were less dangerous for the fruit cenosis.
Collapse
|
9
|
Tini F, Beccari G, Onofri A, Ciavatta E, Gardiner DM, Covarelli L. Fungicides may have differential efficacies towards the main causal agents of Fusarium head blight of wheat. PEST MANAGEMENT SCIENCE 2020; 76:3738-3748. [PMID: 32430980 DOI: 10.1002/ps.5923] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Fusarium head blight (FHB) is a complex disease of wheat and barley caused by several Fusarium species. In recent years, a variation in the composition of the FHB community has been observed in several wheat cultivation areas across the world. In detail, F. avenaceum and F. poae increased their frequencies, while, a lower F. graminearum and F. culmorum incidence was simultaneously observed. These shifts within the FHB complex might have been caused by different factors, including the selective pressure caused by fungicides used to control the disease in the field. Therefore, the present study was carried out to evaluate, both in in vitro experiments and in field trials, the activity of commonly used fungicides of wheat (tebuconazole, metconazole, prothioconazole and prochloraz) towards the above mentioned four Fusarium species. RESULTS A preliminary in vitro assay revealed that low concentrations of all tested fungicides caused the incomplete reduction of fungal development. Furthermore, F. poae and F. avenaceum showed, at the same time, a lower sensitivity to all tested fungicides. In field trials, all fungicides showed an activity against the four Fusarium species. However, F. avenaceum exhibited a reduced sensitivity to metconazole. The lower efficacy of metconazole towards F. avenaceum was also confirmed by an additional in vitro experiment on several F. avenaceum and F. graminearum different strains. CONCLUSION The selective pressure exerted by the extensive use of certain fungicides may influence population dynamics of Fusarium species due to their different sensitivity. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francesco Tini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Giovanni Beccari
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Andrea Onofri
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Emiliano Ciavatta
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Donald M Gardiner
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, Brisbane, Queensland, Australia
| | - Lorenzo Covarelli
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|
10
|
Dutra PSS, Lichtemberg PSF, Martinez MB, Michailides TJ, May De Mio LL. Cross-Resistance Among Demethylation Inhibitor Fungicides With Brazilian Monilinia fructicola Isolates as a Foundation to Discuss Brown Rot Control in Stone Fruit. PLANT DISEASE 2020; 104:2843-2850. [PMID: 32955405 DOI: 10.1094/pdis-04-20-0714-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the resistance problems in Monilinia fructicola, demethylation inhibitor fungicides (DMIs) are still effective for the disease management of brown rot in commercial stone fruit orchards in Brazil. This study aims to investigate the sensitivity of M. fructicola isolates and efficiency of DMIs to reduce brown rot. A set of 93 isolates collected from Brazilian commercial orchards were tested for their sensitivities to tebuconazole, propiconazole, prothioconazole, and myclobutanil. The isolates were analyzed separately according to the presence or absence of the G461S mutation in MfCYP51 gene, determined by allele-specific test. The mean EC50 values for G461S mutants and wild-type isolates were respectively 8.443 and 1.13 µg/ml for myclobutanil, 0.236 and 0.026 µg/ml for propiconazole, 0.115 and 0.002 µg/ml for prothioconazole, and 1.482 and 0.096 µg/ml for tebuconazole. The density distribution curves of DMI sensitivity for both genotypes showed that myclobutanil and prothioconazole curves were mostly shifted toward resistance and sensitivity, respectively. Incomplete cross-resistance was detected among propiconazole and tebuconazole in both wild-type (r = 0.45) and G461S (r = 0.38) populations. No cross-sensitivity was observed among wild-type isolates to prothioconazole and the others DMIs tested. Fungicide treatments on detached fruit inoculated with M. fructicola genotypes showed significant DMI efficacy differences when fruit were inoculated with wild-type and G461S isolates. Protective applications with prothioconazole were more effective for control of both G461S and wild-type isolates compared with tebuconazole. Curative applications with tebuconazole were most effective in reducing the incidence and lesion size of G461S isolates. Sporulation occurred only for G461S isolates treated with tebuconazole under curative and preventative treatments. The differences found among the performance of triazoles against M. fructicola isolates will form the basis for recommendations of rational DMI usage to control brown rot in Brazil.
Collapse
Affiliation(s)
| | - Paulo S F Lichtemberg
- University of California - Davis, Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | - Maria Bernat Martinez
- Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - Themis J Michailides
- University of California - Davis, Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | | |
Collapse
|
11
|
Unconventional Yeasts Are Tolerant to Common Antifungals, and Aureobasidium pullulans Has Low Baseline Sensitivity to Captan, Cyprodinil, and Difenoconazole. Antibiotics (Basel) 2020; 9:antibiotics9090602. [PMID: 32942551 PMCID: PMC7557980 DOI: 10.3390/antibiotics9090602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 01/16/2023] Open
Abstract
Many yeasts have demonstrated intrinsic insensitivity to certain antifungal agents. Unlike the fungicide resistance of medically relevant yeasts, which is highly undesirable, intrinsic insensitivity to fungicides in antagonistic yeasts intended for use as biocontrol agents may be of great value. Understanding how frequently tolerance exists in naturally occurring yeasts and their underlying molecular mechanisms is important for exploring the potential of biocontrol yeasts and fungicide combinations for plant protection. Here, yeasts were isolated from various environmental samples in the presence of different fungicides (or without fungicide as a control) and identified by sequencing the internal transcribed spacer (ITS) region or through matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Among 376 isolates, 47 taxa were identified, and Aureobasidium pullulans was the most frequently isolated yeast. The baseline sensitivity of this yeast was established for 30 isolates from different environmental samples in vitro to captan, cyprodinil, and difenoconazole. For these isolates, the baseline minimum inhibitory concentration (MIC50) values for all the fungicides were higher than the concentrations used for the control of plant pathogenic fungi. For some isolates, there was no growth inhibition at concentrations as high as 300 µg/mL for captan and 128 µg/mL for cyprodinil. This information provides insight into the presence of resistance among naturally occurring yeasts and allows the choice of strains for further mechanistic analyses and the assessment of A. pullulans for novel applications in combination with chemical agents and as part of integrated plant-protection strategies.
Collapse
|
12
|
Dixon E, Barlow W, Walles G, Amsden B, Hirsch RL, Pearce R, Pfeufer EE. Cytochrome b Mutations F129L and G143A Confer Resistance to Azoxystrobin in Cercospora nicotianae, the Frogeye Leaf Spot Pathogen of Tobacco. PLANT DISEASE 2020; 104:1781-1788. [PMID: 32282279 DOI: 10.1094/pdis-02-19-0382-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Azoxystrobin is the only synthetic, systemic fungicide labeled in the United States for management of frogeye leaf spot (FLS) of tobacco (Nicotiana tabacum L.), caused by Cercospora nicotianae. Though traditionally considered a minor disease in the United States, FLS has recently become yield and quality limiting. In 2016 and 2017, 100 C. nicotianae isolates were collected from symptomatic tobacco from eight counties in Kentucky, United States. Prior to azoxystrobin sensitivity testing, some C. nicotianae isolates were found to utilize the alternative oxidase pathway and, after assay comparisons, conidial germination was utilized to evaluate sensitivity in C. nicotianae as opposed to mycelial growth. Azoxystrobin sensitivity was determined by establishing the effective concentration to inhibit 50% conidial germination (EC50) for 47 (in 2016) and 53 (in 2017) C. nicotianae isolates. Distributions of C. nicotianae EC50 values indicated three qualitative levels of sensitivity to azoxystrobin. Partial cytochrome b sequence, encompassing the F129L and G143A mutation sites, indicated single-nucleotide polymorphisms (SNPs) conferring the F129L mutation in C. nicotianae of moderate resistance (azoxystrobin at 0.177 ≤ EC50 ≤ 0.535 µg/ml) and the G143A mutation in isolates with an azoxystrobin-resistant phenotype (azoxystrobin EC50 > 1.15 µg/ml). Higher frequencies of resistant isolates were identified from greenhouse transplant (4 of 17) and conventionally produced (58 of 62) tobacco samples, as compared with field-grown tobacco (<4 weeks prior to harvest; 4 of 62) or organically produced samples (1 of 7), respectively. Together, these results suggest that resistance to azoxystrobin in C. nicotianae occurs broadly in Kentucky, and generate new hypotheses about selection pressure affecting resistance mutation frequencies.
Collapse
Affiliation(s)
- Edward Dixon
- Department of Plant Pathology, University of Kentucky
| | | | - Grant Walles
- Science, Technology, Engineering, Arts, and Mathematics Academy, Lexington, KY, U.S.A
| | | | | | - Robert Pearce
- Department of Plant and Soil Sciences, University of Kentucky
| | | |
Collapse
|
13
|
Desmyttere H, Deweer C, Muchembled J, Sahmer K, Jacquin J, Coutte F, Jacques P. Antifungal Activities of Bacillus subtilis Lipopeptides to Two Venturia inaequalis Strains Possessing Different Tebuconazole Sensitivity. Front Microbiol 2019; 10:2327. [PMID: 31695685 PMCID: PMC6817503 DOI: 10.3389/fmicb.2019.02327] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 09/24/2019] [Indexed: 01/27/2023] Open
Abstract
Within the framework of biocontrol development, three natural substances produced by Bacillus subtilis, called lipopeptides, have been studied: fengycin (F), surfactin (S), and mycosubtilin (M). Their antifungal properties were tested in vitro, in liquid medium, on two strains of Venturia inaequalis, ascomycete fungi causing apple scab. These two strains were, respectively sensitive and less sensitive to tebuconazole, an active substance of the triazole family. These three molecules were tested on their own, in binary (FS, FM, SM) and ternary mixtures (FSM). The antifungal activities of lipopeptides were estimated by calculating an IC50, compared to tebuconazole chemical substance. In tests involving the sensitive strain, all lipopeptide modalities exhibited antifungal activity. However, modalities involving fengycin and its mixtures exhibited the best antifungal activities; the activity of fengycin alone being very similar to that of tebuconazole. Interestingly, regarding the strain with reduced sensitivity to tebuconazole, surfactin and fengycin alone were not efficient while mycosubtilin and the different mixtures showed interesting antifungal activities. Specifically, the antifungal activity of FS and FSM mixture were equivalent to that of tebuconazole. For both fungal strains, microscopic observations revealed important morphological modifications in the presence of fengycin and in a less important proportion in the presence of surfactin but not in the presence of mycosubtilin. Overall, this study highlights the diversity in mode of action of lipopeptides on apple scab strains.
Collapse
Affiliation(s)
- Hélène Desmyttere
- Univ. Lille, INRA, ISA-Yncréa, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, Lille, France
| | - Caroline Deweer
- Univ. Lille, INRA, ISA-Yncréa, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, Lille, France
| | - Jérôme Muchembled
- Univ. Lille, INRA, ISA-Yncréa, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, Lille, France
| | - Karin Sahmer
- Civil and Geo-Environmental Engineering Laboratory (LGCgE), ISA - Yncréa, Lille, France
| | - Justine Jacquin
- Univ. Lille, INRA, ISA-Yncréa, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, Lille, France
| | - François Coutte
- Univ. Lille, INRA, ISA-Yncréa, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394 - ICV - Institut Charles Viollette, Lille, France
| | - Philippe Jacques
- MiPI, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
14
|
He MH, Wang YP, Wu EJ, Shen LL, Yang LN, Wang T, Shang LP, Zhu W, Zhan J. Constraining Evolution of Alternaria alternata Resistance to a Demethylation Inhibitor (DMI) Fungicide Difenoconazole. Front Microbiol 2019; 10:1609. [PMID: 31354690 PMCID: PMC6636547 DOI: 10.3389/fmicb.2019.01609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/27/2019] [Indexed: 02/02/2023] Open
Abstract
Evolution of fungicide resistance in plant pathogens is one of major concerns in sustainable plant disease management. In this study, the genetics and potential of developing resistance to a demethylation inhibitor (DMI) fungicide, difenoconazole, in the fungal pathogen Alternaria alternata was investigated using a comparative analysis of genetic variation in molecular (Single Sequence Repeats, SSR) and phenotypic (fungicide tolerance) markers. No difenoconazole resistance was found in the 215 A. alternata isolates sampled from seven different ecological zones in China despite the widespread use of the fungicide for more than 20 years. This result suggests that the risk of developing resistance to difenoconazole in A. alternata is low and we hypothesize that the low risk is likely caused by fitness penalties incurred by resistant mutants and the multiple mechanisms involving in developing resistance. Heritability and plasticity account for ∼24 and 3% of phenotypic variation, respectively, indicating that genetic adaptation by sequence variation plays a more important role in the evolution of difenoconazole resistance than physiological adaptation by altering gene expression. Constraining selection in the evolution of A. alternata resistance to difenoconazole was documented by different patterns of population differentiation and isolate-by-distance between SSR markers and difenoconazole tolerance. Though the risk of developing resistance is low, the findings of significant differences in difenoconazole tolerance among isolates and populations, and a skewing distribution toward higher tolerance suggests that a stepwise accumulation of tolerance to the fungicide might be occurring in the pathogen populations. As a consequence, dynamic management programs guided by evolutionary principles such as spatiotemporal rotations of fungicides with different modes of action are critical to prevent the continued accumulation of tolerance or the evolution of resistance to difenoconazole and other DMI fungicides.
Collapse
Affiliation(s)
- Meng-Han He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan-Ping Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - E-Jiao Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lin-Lin Shen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Na Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tian Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Li-Ping Shang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wen Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiasui Zhan
- Key Laboratory for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
15
|
Trends and Challenges in Pesticide Resistance Detection. TRENDS IN PLANT SCIENCE 2016; 21:834-853. [PMID: 27475253 DOI: 10.1016/j.tplants.2016.06.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/15/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
Pesticide resistance is a crucial factor to be considered when developing strategies for the minimal use of pesticides while maintaining pesticide efficacy. This goal requires monitoring the emergence and development of resistance to pesticides in crop pests. To this end, various methods for resistance diagnosis have been developed for different groups of pests. This review provides an overview of biological, biochemical, and molecular methods that are currently used to detect and quantify pesticide resistance. The agronomic, technical, and economic advantages and drawbacks of each method are considered. Emerging technologies are also described, with their associated challenges and their potential for the detection of resistance mechanisms likely to be selected by current and future plant protection methods.
Collapse
|
16
|
Villani SM, Ayer K, Cox KD. Molecular Characterization of the sdhB Gene and Baseline Sensitivity to Penthiopyrad, Fluopyram, and Benzovindiflupyr in Venturia inaequalis. PLANT DISEASE 2016; 100:1709-1716. [PMID: 30686234 DOI: 10.1094/pdis-12-15-1512-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The succinate dehydrogenase inhibiting (SDHI) fungicides are a class of single-site fungicides that are increasingly important in the management of Venturia inaequalis. In this study, the baseline sensitivity of V. inaequalis to penthiopyrad, fluopyram, and benzovindiflupyr was investigated. In all, 35 to 70 isolates with no prior exposure to single-site fungicides were used to determine the effective concentration at which growth was inhibited by 50% (EC50). Mean EC50 values for the conidial germ tube growth stage for penthiopyrad, fluopyram, and benzovindiflupyr were 0.086, 0.176, and 0.0016 μg ml-1, respectively. Linear correlation analysis revealed a significant and positive correlation between fluopyram and penthiopyrad (P ≤ 0.0001, r = 0.66) and fluopyram and benzovindiflupyr (P = 0.0014, r = 0.52). Baseline sensitivities of V. inaequalis during the mycelial growth stage were also determined for fluopyram and benzovindiflupyr. EC50 values were higher for fluopyram and benzovindiflupyr during this stage compared with the conidial germ tube growth stage, with means of 0.043 and 2.02 μg ml-1, respectively. In addition, the sdhB gene was characterized for three isolates of V. inaequalis collected from a research, baseline, and commercial orchard population. No common mutation sites associated with SDHI resistance in other phytopathogenic fungi were discovered in these isolates or isolates that were recovered following field applications of SDHI fungicides. The results of this study suggest that SDHI fungicides have a high level of activity during the conidial germ tube elongation stage in V. inaequalis and provide a basis for phenotypic and genotypic monitoring of shifts toward resistance of V. inaequalis populations to the SDHI fungicide class.
Collapse
Affiliation(s)
- Sara M Villani
- Department of Plant Pathology, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River, NC 28759
| | - Katrin Ayer
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Kerik D Cox
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|
17
|
Frederick ZA, Villani SM, Cox KD. The Effect of Delayed-Dormant Chemical Treatments on Demethylation Inhibitor (DMI) Sensitivity in a DMI-resistant Population of Venturia inaequalis. PLANT DISEASE 2015; 99:1751-1756. [PMID: 30699510 DOI: 10.1094/pdis-12-14-1253-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Demethylation inhibitor (DMI) fungicides are an effective means to manage apple scab caused by Venturia inaequalis. Unfortunately, practical resistance to DMI fungicide chemistries is prevalent in populations in New York and the New England states. Management practices that delay the development of DMI resistance in V. inaequalis populations are highly desired by regional apple producers. Trials were conducted in a New York apple orchard during the 2011 and 2012 growing seasons to determine the impact of delayed-dormant (after bud break, but prior to green tissue) chemical treatments on the DMI sensitivity of a V. inaequalis population with stable resistance to DMI fungicides. Delayed-dormant treatment programs consisted of either an application of a copper fungicide, a manganese sanitation product, a DMI fungicide (myclobutanil), or no fungicide. Sensitivity to the DMI fungicide myclobutanil was evaluated for a minimum of 25 V. inaequalis single lesion conidial isolates from each of four replicated treatment blocks. In both years, mean percent relative growth on myclobutanil amended media for V. inaequalis isolates from the copper treatment program were significantly (P < 0.05) lower than isolates from blocks did not receive a delayed dormant fungicide treatment. The effect of the manganese treatment was inconsistent between years. V. inaequalis isolates collected from the myclobutanil treatment program were not significantly (P > 0.05) different in myclobutanil sensitivity from isolates collected from the blocks that did not receive a delayed dormant fungicide treatment. Overall, the results suggest that delayed dormant treatments of copper may favorably impact the myclobutanil sensitivity for a population of V. inaequalis with resistance to DMI fungicides, and should be considered as a standard management practice in apple production.
Collapse
Affiliation(s)
| | - Sara M Villani
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva NY 14456
| | - Kerik D Cox
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva NY 14456
| |
Collapse
|
18
|
Villani SM, Biggs AR, Cooley DR, Raes JJ, Cox KD. Prevalence of Myclobutanil Resistance and Difenoconazole Insensitivity in Populations of Venturia inaequalis. PLANT DISEASE 2015; 99:1526-1536. [PMID: 30695968 DOI: 10.1094/pdis-01-15-0002-re] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Demethylation inhibitors (DMIs) are a class of single-site fungicides with high levels of protective and curative efficacy against Venturia inaequalis, the causal agent of apple scab. To determine the prevalence of resistance to the DMI fungicide myclobutanil, 3,987 single-lesion conidial V. inaequalis isolates from 141 commercial, research, and baseline orchard populations were examined throughout New England, the mid-Atlantic, and the Midwest from 2004 to 2013. Of these orchard populations, 63% had practical resistance, 13% had reduced sensitivity, and 24% were sensitive to myclobutanil. A sensitivity baseline for the recently introduced DMI fungicide difenoconazole was established to make comparisons with myclobutanil sensitivity in orchard populations. The mean effective concentration of difenoconazole at which mycelial growth was inhibited by 50% (EC50) was determined to be 0.002 μg ml-1 for 44 baseline isolates of V. inaequalis. From 2010 to 2013, 1,012 isolates of V. inaequalis from 37 of the 141 orchard populations above were screened for sensitivity to difenoconazole. In all, 1 orchard population had reduced sensitivity to difenoconazole, while the remaining 36 orchard populations were sensitive to the fungicide. In field experiments, difenoconazole demonstrated high levels of apple scab control on mature apple fruit, despite the fact that the population of V. inaequalis had practical resistance to difenoconazole. Although our results indicate widespread resistance to myclobutanil but not difenoconazole, due to the propensity for cross-sensitivity among DMI fungicides, growers with myclobutanil resistance should be cautious when using difenoconazole for disease management.
Collapse
Affiliation(s)
- Sara M Villani
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Alan R Biggs
- Kearneysville Tree Fruit Research and Education Center, West Virginia University, Kearneysville 25443
| | - Daniel R Cooley
- Department Plant, Soil, and Insect Science, University of Massachusetts, Amherst 01003
| | - Jessica J Raes
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University
| | - Kerik D Cox
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University
| |
Collapse
|
19
|
Beckerman JL, Sundin GW, Rosenberger DA. Do some IPM concepts contribute to the development of fungicide resistance? Lessons learned from the apple scab pathosystem in the United States. PEST MANAGEMENT SCIENCE 2015; 71:331-342. [PMID: 24375947 DOI: 10.1002/ps.3715] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/19/2013] [Accepted: 12/11/2013] [Indexed: 06/03/2023]
Abstract
One goal of integrated pest management (IPM) as it is currently practiced is an overall reduction in fungicide use in the management of plant disease. Repeated and long-term success of the early broad-spectrum fungicides led to optimism about the capabilities of fungicides, but to an underestimation of the risk of fungicide resistance within agriculture. In 1913, Paul Ehrlich recognized that it was best to 'hit hard and hit early' to prevent microbes from evolving resistance to treatment. This tenet conflicts with the fungicide reduction strategies that have been widely promoted over the past 40 years as integral to IPM. The authors hypothesize that the approaches used to implement IPM have contributed to fungicide resistance problems and may still be driving that process in apple scab management and in IPM requests for proposals. This paper also proposes that IPM as it is currently practiced for plant diseases of perennial systems has been based on the wrong model, and that conceptual shifts in thinking are needed to address the problem of fungicide resistance.
Collapse
Affiliation(s)
- Janna L Beckerman
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | | | | |
Collapse
|
20
|
Amaradasa BS, Lakshman D, McCall DS, Horvath BJ. In Vitro Fungicide Sensitivity of Rhizoctonia and Waitea Isolates Collected from Turfgrasses. ACTA ACUST UNITED AC 2014. [DOI: 10.24266/0738-2898.32.3.126] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Different Rhizoctonia species and anastomosis groups (AGs) have been reported to show variable sensitivity to commercial fungicides. Thirty-six isolates of Rhizoctonia collected from turfgrasses were tested in vitro for sensitivity to commercial formulations of iprodione, triticonazole, and pyraclostrobin. Tested isolates represented R. solani AG 1-IB and AG 2-2IIIB; W. circinata varieties zeae (Wcz) and circinata (Wcc); and binucleate Rhizoctonia-like fungi (BNR) from different locations in Virginia and Maryland. Each fungicide was added to PDA medium to obtain concentrations at 0, 0.1, 1, 10 and 100 mg a.i.·L−1 (0.00001, 0.0001, 0.001 and 0.01 oz a.i.·gal−1). A mycelium plug from each isolate was grown on these plates. The fungicide concentration needed for 50% inhibition of radial growth (EC50) was determined for each isolate by fungicide combination. Waitea circinata isolates were moderately sensitive (EC50 = 1 to 10 mg a.i.·L−1) (0.0001 to 0.001 oz a.i.·gal−1) to iprodione while isolates of R. solani and BNR were extremely sensitive (EC50 < 1 mg a.i.·L−1). Isolates of AG 2-2IIIB exhibited less sensitivity to triticonazole (mean EC50 = 1.26 mg a.i.·L−1) than AG 1-IB and W. circinata (mean EC50 = 0.2, and 0.06 mg a.i.·L−1, respectively). BNR isolates varied in inhibition of growth by triticonazole, exhibiting extreme to moderate sensitivity. Isolates of W. circinata were moderately sensitive to pyraclostrobin while most cultures of R. solani and BNR were extremely sensitive. Geographic origin of isolates had no influence on the level of fungicide sensitivity. This study demonstrates the importance of accurately identifying the Rhizoctonia pathogen causing disease symptoms on a turfgrass for choosing an effective fungicide.
Collapse
|
21
|
Parker JE, Warrilow AGS, Price CL, Mullins JGL, Kelly DE, Kelly SL. Resistance to antifungals that target CYP51. J Chem Biol 2014; 7:143-61. [PMID: 25320648 DOI: 10.1007/s12154-014-0121-1] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/06/2014] [Indexed: 12/23/2022] Open
Abstract
Fungal diseases are an increasing global burden. Fungi are now recognised to kill more people annually than malaria, whilst in agriculture, fungi threaten crop yields and food security. Azole resistance, mediated by several mechanisms including point mutations in the target enzyme (CYP51), is increasing through selection pressure as a result of widespread use of triazole fungicides in agriculture and triazole antifungal drugs in the clinic. Mutations similar to those seen in clinical isolates as long ago as the 1990s in Candida albicans and later in Aspergillus fumigatus have been identified in agriculturally important fungal species and also wider combinations of point mutations. Recently, evidence that mutations originate in the field and now appear in clinical infections has been suggested. This situation is likely to increase in prevalence as triazole fungicide use continues to rise. Here, we review the progress made in understanding azole resistance found amongst clinically and agriculturally important fungal species focussing on resistance mechanisms associated with CYP51. Biochemical characterisation of wild-type and mutant CYP51 enzymes through ligand binding studies and azole IC50 determinations is an important tool for understanding azole susceptibility and can be used in conjunction with microbiological methods (MIC50 values), molecular biological studies (site-directed mutagenesis) and protein modelling studies to inform future antifungal development with increased specificity for the target enzyme over the host homologue.
Collapse
Affiliation(s)
- Josie E Parker
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Andrew G S Warrilow
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Claire L Price
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Jonathan G L Mullins
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Diane E Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| | - Steven L Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales SA2 8PP UK
| |
Collapse
|