1
|
Hunt L, Fuksa M, Klem K, Lhotáková Z, Oravec M, Urban O, Albrechtová J. Barley Genotypes Vary in Stomatal Responsiveness to Light and CO 2 Conditions. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112533. [PMID: 34834896 PMCID: PMC8625854 DOI: 10.3390/plants10112533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 05/03/2023]
Abstract
Changes in stomatal conductance and density allow plants to acclimate to changing environmental conditions. In the present paper, the influence of atmospheric CO2 concentration and light intensity on stomata were investigated for two barley genotypes-Barke and Bojos, differing in their sensitivity to oxidative stress and phenolic acid profiles. A novel approach for stomatal density analysis was used-a pair of convolution neural networks were developed to automatically identify and count stomata on epidermal micrographs. Stomatal density in barley was influenced by genotype, as well as by light and CO2 conditions. Low CO2 conditions resulted in increased stomatal density, although differences between ambient and elevated CO2 were not significant. High light intensity increased stomatal density compared to low light intensity in both barley varieties and all CO2 treatments. Changes in stomatal conductance were also measured alongside the accumulation of pentoses, hexoses, disaccharides, and abscisic acid detected by liquid chromatography coupled with mass spectrometry. High light increased the accumulation of all sugars and reduced abscisic acid levels. Abscisic acid was influenced by all factors-light, CO2, and genotype-in combination. Differences were discovered between the two barley varieties: oxidative stress sensitive Barke demonstrated higher stomatal density, but lower conductance and better water use efficiency (WUE) than oxidative stress resistant Bojos at saturating light intensity. Barke also showed greater variability between treatments in measurements of stomatal density, sugar accumulation, and abscisic levels, implying that it may be more responsive to environmental drivers influencing water relations in the plant.
Collapse
Affiliation(s)
- Lena Hunt
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (M.F.); (Z.L.)
| | - Michal Fuksa
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (M.F.); (Z.L.)
| | - Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.)
| | - Zuzana Lhotáková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (M.F.); (Z.L.)
| | - Michal Oravec
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.)
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.)
| | - Jana Albrechtová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (M.F.); (Z.L.)
- Correspondence: ; Tel.: +420-221-95-1959
| |
Collapse
|
2
|
Hunt L, Klem K, Lhotáková Z, Vosolsobě S, Oravec M, Urban O, Špunda V, Albrechtová J. Light and CO 2 Modulate the Accumulation and Localization of Phenolic Compounds in Barley Leaves. Antioxidants (Basel) 2021; 10:385. [PMID: 33807526 PMCID: PMC7999350 DOI: 10.3390/antiox10030385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Barley (Hordeum vulgare) accumulates phenolic compounds (PhCs), which play a key role in plant defense against environmental stressors as antioxidants or UV screening compounds. The influence of light and atmospheric CO2 concentration ([CO2]) on the accumulation and localization of PhCs in barley leaves was examined for two varieties with different tolerances to oxidative stress. PhC localization was visualized in vivo using fluorescence microscopy. Close relationships were found between fluorescence-determined localization of PhCs in barley leaves and PhC content estimated using liquid chromatography coupled with mass spectroscopy detection. Light intensity had the strongest effect on the accumulation of PhCs, but the total PhC content was similar at elevated [CO2], minimizing the differences between high and low light. PhCs localized preferentially near the surfaces of leaves, but under low light, an increasing allocation of PhCs in deeper mesophyll layers was observed. The PhC profile was significantly different between barley varieties. The relatively tolerant variety accumulated significantly more hydroxycinnamic acids, indicating that these PhCs may play a more prominent role in oxidative stress prevention. Our research presents novel evidence that [CO2] modulates the accumulation of PhCs in barley leaves. Mesophyll cells, rather than epidermal cells, were most responsive to environmental stimuli in terms of PhC accumulation.
Collapse
Affiliation(s)
- Lena Hunt
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (Z.L.); (S.V.)
| | - Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.); (V.Š.)
| | - Zuzana Lhotáková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (Z.L.); (S.V.)
| | - Stanislav Vosolsobě
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (Z.L.); (S.V.)
| | - Michal Oravec
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.); (V.Š.)
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.); (V.Š.)
| | - Vladimír Špunda
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 4a, 60300 Brno, Czech Republic; (K.K.); (M.O.); (O.U.); (V.Š.)
- Department of Physics, Faculty of Science, University of Ostrava, Dvořákova 7, 70103 Ostrava, Czech Republic
| | - Jana Albrechtová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná 5, 12844 Praha, Czech Republic; (L.H.); (Z.L.); (S.V.)
| |
Collapse
|
3
|
Hu X, Dong D, Xia M, Yang Y, Wang J, Su J, Sun L, Yu H. Oxidative stress and antioxidant capacity: development and prospects. NEW J CHEM 2020. [DOI: 10.1039/d0nj02041a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Signaling pathways regulating redox reactions are activated to balance the redox status and maintain the normal function of cells.
Collapse
Affiliation(s)
- Xiaoqing Hu
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Delu Dong
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Meihui Xia
- The First Hospital of Jilin University
- Changchun 130021
- P. R. China
| | - Yimeng Yang
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Jiabin Wang
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Jing Su
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Liankun Sun
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Huimei Yu
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| |
Collapse
|
4
|
Holub P, Nezval J, Štroch M, Špunda V, Urban O, Jansen MAK, Klem K. Induction of phenolic compounds by UV and PAR is modulated by leaf ontogeny and barley genotype. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 134:81-93. [PMID: 30143263 DOI: 10.1016/j.plaphy.2018.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/05/2018] [Accepted: 08/08/2018] [Indexed: 05/26/2023]
Abstract
We investigated the effect of leaf ontogeny and barley genotype on the accumulation of phenolic compounds (PhCs) induced by ultraviolet (UV) and photosynthetically active radiation (PAR). We hypothesized that different groups of PhCs are induced in leaves differing in ontogeny, and that this has consequences for protective functions and the need for other protection mechanisms. Generally, lower constitutive contents of PhCs (under conditions of UV exclusion and reduced PAR) were found in a UV-sensitive genotype (Barke) compared to a tolerant genotype (Bonus). However, UV and PAR induced accumulation of PhCs exceeded the constitutive amounts several fold. Specifically, lutonarin, 3-feruloylquinic acid, unidentified hydroxycinnamic acid and luteolin derivatives were markedly enhanced by high PAR and UV irradiances. Leaves developed during UV and PAR treatments had higher PhCs contents than mature leaves already fully developed at the onset of the UV and PAR treatment. UV and PAR treatments had, however, a minor effect on saponarin and unidentified apigenin derivatives which occur particularly in mature leaves of the tolerant genotype Bonus. In addition, high UV and PAR intensities increased the total content of xanthophylls (VAZ), while chlorophyll content was reduced, particularly in developing leaves. A redundancy analysis revealed positive associations between most of PhCs and VAZ and a negative association between total chlorophylls and carotenoids. Non-linear relationships between VAZ and lutonarin and other PhCs indicate that VAZ accumulation can compensate for the insufficient efficiency of anti-oxidative protection mediated by PhCs. Accordingly, we conclude that UV and PAR-induced accumulation of PhCs is affected by leaf ontogeny, however, this effect is compound-specific.
Collapse
Affiliation(s)
- Petr Holub
- Global Change Research Institute CAS, v. v. i., Bělidla 986/4a, CZ 60300 Brno, Czech Republic
| | - Jakub Nezval
- University of Ostrava, 30. dubna 22, CZ 70103 Ostrava, Czech Republic
| | - Michal Štroch
- Global Change Research Institute CAS, v. v. i., Bělidla 986/4a, CZ 60300 Brno, Czech Republic; University of Ostrava, 30. dubna 22, CZ 70103 Ostrava, Czech Republic
| | - Vladimír Špunda
- Global Change Research Institute CAS, v. v. i., Bělidla 986/4a, CZ 60300 Brno, Czech Republic; University of Ostrava, 30. dubna 22, CZ 70103 Ostrava, Czech Republic
| | - Otmar Urban
- Global Change Research Institute CAS, v. v. i., Bělidla 986/4a, CZ 60300 Brno, Czech Republic
| | - Marcel A K Jansen
- Global Change Research Institute CAS, v. v. i., Bělidla 986/4a, CZ 60300 Brno, Czech Republic; University of Cork, School of Biological, Earth and Environmental Science, Distillery Fields, Cork, Ireland
| | - Karel Klem
- Global Change Research Institute CAS, v. v. i., Bělidla 986/4a, CZ 60300 Brno, Czech Republic.
| |
Collapse
|
5
|
Vontimitta V, Olukolu BA, Penning BW, Johal G, Balint-Kurti PJ. The genetic basis of flecking and its relationship to disease resistance in the IBM maize mapping population. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2331-9. [PMID: 26239408 DOI: 10.1007/s00122-015-2588-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 07/16/2015] [Indexed: 05/20/2023]
Abstract
In this paper, we determine the genetic architecture controlling leaf flecking in maize and investigate its relationship to disease resistance and the defense response. Flecking is defined as a mild, often environmentally dependent lesion phenotype observed on the leaves of several commonly used maize inbred lines. Anecdotal evidence suggests a link between flecking and enhanced broad-spectrum disease resistance. Neither the genetic basis underlying flecking nor its possible relationship to disease resistance has been systematically evaluated. The commonly used maize inbred Mo17 has a mild flecking phenotype. The IBM-advanced intercross mapping population, derived from a cross between Mo17 and another commonly used inbred B73, has been used for mapping a number of traits in maize including several related to disease resistance. In this study, flecking was assessed in the IBM population over 6 environments. Several quantitative trait loci for flecking were identified, with the strongest one located on chromosome 6. Low but moderately significant correlations were observed between stronger flecking and higher disease resistance with respect to two diseases, southern leaf blight and northern leaf blight and between stronger flecking and a stronger defense response.
Collapse
Affiliation(s)
- Vijay Vontimitta
- Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, IN, 47907-2054, USA
| | - Bode A Olukolu
- Department of Plant Pathology, NC State University, 2574 Thomas Hall, Raleigh, NC, 27695-7616, USA
- Department of Crop Science, NC State University, Raleigh, NC, 27695-7620, USA
| | - Bryan W Penning
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Gurmukh Johal
- Botany and Plant Pathology, Purdue University, Lilly Hall, West Lafayette, IN, 47907-2054, USA
| | - P J Balint-Kurti
- Department of Plant Pathology, NC State University, 2574 Thomas Hall, Raleigh, NC, 27695-7616, USA.
- USDA-ARS Plant Science Research Unit, Raleigh, NC, 27695, USA.
| |
Collapse
|
6
|
Klem K, Holub P, Štroch M, Nezval J, Špunda V, Tříska J, Jansen MAK, Robson TM, Urban O. Ultraviolet and photosynthetically active radiation can both induce photoprotective capacity allowing barley to overcome high radiation stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 93:74-83. [PMID: 25583309 DOI: 10.1016/j.plaphy.2015.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 01/06/2015] [Indexed: 05/05/2023]
Abstract
The main objective of this study was to determine the effects of acclimation to ultraviolet (UV) and photosynthetically active radiation (PAR) on photoprotective mechanisms in barley leaves. Barley plants were acclimated for 7 days under three combinations of high or low UV and PAR treatments ([UV-PAR-], [UV-PAR+], [UV+PAR+]). Subsequently, plants were exposed to short-term high radiation stress (HRS; defined by high intensities of PAR - 1000 μmol m(-2) s(-1), UV-A - 10 W m(-2) and UV-B 2 W m(-2) for 4 h), to test their photoprotective capacity. The barley variety sensitive to photooxidative stress (Barke) had low constitutive flavonoid content compared to the resistant variety (Bonus) under low UV and PAR intensities. The accumulation of lutonarin and 3-feruloylquinic acid, but not of saponarin, was greatly enhanced by high PAR and further increased by UV exposure. Acclimation of plants to both high UV and PAR intensities also increased the total pool of xanthophyll-cycle pigments (VAZ). Subsequent exposure to HRS revealed that prior acclimation to UV and PAR was able to ameliorate the negative consequences of HRS on photosynthesis. Both total contents of epidermal flavonols and the total pool of VAZ were closely correlated with small reductions in light-saturated CO2 assimilation rate and maximum quantum yield of photosystem II photochemistry caused by HRS. Based on these results, we conclude that growth under high PAR can substantially increase the photoprotective capacity of barley plants compared with plants grown under low PAR. However, additional UV radiation is necessary to fully induce photoprotective mechanisms in the variety Barke. This study demonstrates that UV-exposure can lead to enhanced photoprotective capacity and can contribute to the induction of tolerance to high radiation stress in barley.
Collapse
Affiliation(s)
- Karel Klem
- Global Change Research Center AS CR, v.v.i., Bělidla 4a, CZ 60300 Brno, Czech Republic
| | - Petr Holub
- Global Change Research Center AS CR, v.v.i., Bělidla 4a, CZ 60300 Brno, Czech Republic
| | - Michal Štroch
- Global Change Research Center AS CR, v.v.i., Bělidla 4a, CZ 60300 Brno, Czech Republic; University of Ostrava, 30. dubna 22, CZ 70103 Ostrava, Czech Republic
| | - Jakub Nezval
- University of Ostrava, 30. dubna 22, CZ 70103 Ostrava, Czech Republic
| | - Vladimír Špunda
- Global Change Research Center AS CR, v.v.i., Bělidla 4a, CZ 60300 Brno, Czech Republic; University of Ostrava, 30. dubna 22, CZ 70103 Ostrava, Czech Republic
| | - Jan Tříska
- Global Change Research Center AS CR, v.v.i., Bělidla 4a, CZ 60300 Brno, Czech Republic
| | - Marcel A K Jansen
- University of Cork, School of Biological, Earth and Environmental Science, Distillery Fields, Cork, Ireland
| | - T Matthew Robson
- University of Helsinki, Department of Biosciences, Plant Biology, P.O. Box 65, 00014 University of Helsinki, Finland
| | - Otmar Urban
- Global Change Research Center AS CR, v.v.i., Bělidla 4a, CZ 60300 Brno, Czech Republic.
| |
Collapse
|
7
|
Chupakhina GN, Maslennikov PV, Skrypnik LN, Chupakhina NY, Poltavskaya RL, Feduraev PV. The influence of the Baltic region conditions on the accumulation of water-soluble antioxidants in plants. Russ Chem Bull 2015. [DOI: 10.1007/s11172-014-0684-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Hayes JE, Pallotta M, Baumann U, Berger B, Langridge P, Sutton T. Germanium as a tool to dissect boron toxicity effects in barley and wheat. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:618-627. [PMID: 32481135 DOI: 10.1071/fp12329] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/12/2013] [Indexed: 05/24/2023]
Abstract
Tolerance to boron (B) toxicity in barley (Hordeum vulgare L.) is partially attributable to HvNIP2;1, an aquaporin with permeability to B, as well as to silicon, arsenic and germanium (Ge). In this study, we mapped leaf symptoms of Ge toxicity in a doubled-haploid barley population (Clipper×Sahara 3771). Two quantitative trait loci (QTL) associated with Ge toxicity symptoms were identified, located on Chromosomes 6H and 2H. These QTL co-located with two of four B toxicity tolerance loci previously mapped in the same population. The B toxicity tolerance gene underlying the 6H locus encodes HvNIP2;1, whereas the gene(s) and mechanisms underlying the 2H locus are as yet unknown. We provide examples of the application of Ge in studying specific aspects of B toxicity tolerance in plants, including screening of wheat (Triticum aestivum L.) and barley populations for altered function of HvNIP2;1 and related proteins. In particular, Ge may facilitate elucidation of the mechanism and gene(s) underlying the barley Chromosome 2H B tolerance locus.
Collapse
Affiliation(s)
- Julie E Hayes
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Margaret Pallotta
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Ute Baumann
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Bettina Berger
- The Plant Accelerator, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Peter Langridge
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Tim Sutton
- Australian Centre for Plant Functional Genomics, School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| |
Collapse
|