1
|
Zhang JL, Lv M, Yang CF, Zhu YX, Li CJ. Mevalonate pathway and male reproductive aging. Mol Reprod Dev 2023; 90:774-781. [PMID: 37733694 DOI: 10.1002/mrd.23705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
Male fertility declines with age. The mevalonate pathway, through which cholesterol and nonsteroidal isoprenoids are synthesized, plays key role in metabolic processes and is an essential pathway for cholesterol production and protein prenylation. Male reproductive aging is accompanied by dramatic changes in the metabolic microenvironment of the testis. Since the mevalonate pathway has an important role in spermatogenesis, we attempted to explore the association between male reproductive aging and the mevalonate pathway to explain the mechanism of male reproductive aging. Alterations in the mevalonate pathway may affect male reproductive aging by decreasing cholesterol synthesis and altering testis protein prenylation. Decreased cholesterol levels affect cholesterol modification, testosterone production, and remodeling of germ cell membranes. Aging-related metabolic disorders also affect the metabolic coupling between somatic cells and spermatogenic cells, leading to male fertility decline. Therefore, we hypothesized that alterations in the mevalonate pathway represent one of the metabolic causes of reproductive aging.
Collapse
Affiliation(s)
- Jia-Le Zhang
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meng Lv
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao-Fan Yang
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ying-Xi Zhu
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chao-Jun Li
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Wang Z, Yu J, Zhong S, Fan Z, Wang F, Ji C, Wang Y, Lei C, Dang R, Zhao F. Metabolomic profiling of Dezhou donkey seminal plasma related to freezability. Reprod Domest Anim 2022; 57:1165-1175. [PMID: 35713115 DOI: 10.1111/rda.14187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/12/2022]
Abstract
Donkeys are indispensable livestock in China because they have transport function and medicinal value. With the popularization of artificial insemination on donkeys, semen cryopreservation technology has gradually become a research hotspot. Seminal plasma is a necessary medium for transporting sperm and provides energy and nutrition for sperm. Seminal plasma metabolites play an important role in the process of sperm freezing, and also have an important impact on sperm motility and fertilization rate after freezing and thawing. In this study, liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was used to compare the metabolic characteristics of seminal plasma of high freezability (HF) and low freezability (LF) male donkeys. We identified 672 metabolites from donkey seminal plasma, of which 33 metabolites were significantly different between the two groups. Metabolites were identified and categorized according to their major chemical classes, including homogeneous non-metal compounds, nucleosides, nucleotides, and analogues, organosulphur compounds, phenylpropanoids and polyketide, organoheterocyclic compounds, organic oxygen compounds, benzenoids, organic acids and derivatives, lipids and lipid-like molecules, organooxygen compounds, alkaloids and derivatives, organic nitrogen compounds. The results showed that the contents of phosphatidylcholine, piceatannol and enkephalin in donkey semen of HF group were significantly higher than those of LF group (p < .05), while the contents of taurocholic and lysophosphatidic acid were significantly lower than those of LF group (p < .05). The different metabolites were mainly related to sperm biological pathway response and oxidative stress. These metabolites may be considered as candidate biomarkers for different fertility in jacks.
Collapse
Affiliation(s)
- Zhaofei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Jie Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China.,Dong-E-E-Jiao Co. Ltd., National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Done-E Country, China
| | - Shuai Zhong
- College of Pharmacy, Heze University, Heze, China
| | - Zhaobin Fan
- College of Pharmacy, Heze University, Heze, China
| | - Fuwen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Chuanliang Ji
- Dong-E-E-Jiao Co. Ltd., National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Done-E Country, China
| | - Yantao Wang
- Dong-E-E-Jiao Co. Ltd., National Engineering Research Center for Gelatin-Based Traditional Chinese Medicine, Done-E Country, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Fuwei Zhao
- College of Pharmacy, Heze University, Heze, China
| |
Collapse
|
3
|
Pelletier RM, Layeghkhavidaki H, Seidah NG, Prat A, Vitale ML. PCSK9 Contributes to the Cholesterol, Glucose, and Insulin2 Homeostasis in Seminiferous Tubules and Maintenance of Immunotolerance in Testis. Front Cell Dev Biol 2022; 10:889972. [PMID: 35586340 PMCID: PMC9108277 DOI: 10.3389/fcell.2022.889972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
The PCSK9 contribution to cholesterol and immunotolerance homeostasis and response to glucose, and insulin in testis and hypophysis were studied using Pcsk9-deficient (-/-) and transgenic [Tg (PCSK9)] mice, and diabetic, obese ob/ob and db/db mice. The spermatids/spermatozoa acrosome, peritubular vessels, and epididymal adipocytes were PCSK9- and LDL-R-positive. The pro-PCSK9/PCSK9 ratio was high in interstitial tissue-fractions (ITf) and spermatozoa and low in seminiferous tubule-fractions (STf) in normal adult mice. This ratio decreased in ITf in ob/ob and db/db mice but increased in tubules in ob/ob mice. Deleting pcsk9 lowered cholesterol in serum but increased testicular cholesterol. Furthermore, HMGCoA-red, ACAT-2 and LDL-R turnover increased whereas SR-BI decreased in ITf; in tubules, ABCA1 decreased and 160 kDa LDL-R increased in Pcsk9 -/- mice. Excess testicular cholesterol could result from increased cholesterol synthesis and uptake with reduction in SR-BI-mediated efflux in ITf and from the overload of apoptotic cells, lowered ABCA1-mediated efflux and stimulated LDL-R protein synthesis in tubules in Pcsk9 -/- mice. Concomitantly with the cholesterol accumulation, tubules showed infiltrates of immune cells, elevated IL-17A and IL-17RA, and changes in the immunotolerance homeostasis. PCSK9 deficiency decreased glucose in tubules and spermatozoa while increasing insulin2 in ITf and tubules not serum. Moreover, IR-α, and IR-β augmented in tubules but decreased in the anterior pituitary; IR-α increased whereas IR-β decreased in ITf. The histology and cholesterol levels were normal in Tg (PCSK9) mouse testis. The excess cholesterol creates a milieu favorable to the action of high IL-17A and IL-17RA, the development of inflammatory conditions and self-tolerance breakdown in testis.
Collapse
Affiliation(s)
- R.-Marc Pelletier
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, Canada
| | - Hamed Layeghkhavidaki
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, Canada
| | - Nabil G. Seidah
- Biochemical Neuroendocrinology Laboratory, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - Annik Prat
- Biochemical Neuroendocrinology Laboratory, Montreal Clinical Research Institute (IRCM), Montreal, QC, Canada
| | - María L. Vitale
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
4
|
Casado ME, Huerta L, Marcos-Díaz A, Ortiz AI, Kraemer FB, Lasunción MA, Busto R, Martín-Hidalgo A. Hormone-sensitive lipase deficiency affects the expression of SR-BI, LDLr, and ABCA1 receptors/transporters involved in cellular cholesterol uptake and efflux and disturbs fertility in mouse testis. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159043. [PMID: 34461308 DOI: 10.1016/j.bbalip.2021.159043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022]
Abstract
Hormone-sensitive lipase (HSL) hydrolyse acylglycerols, cholesteryl and retinyl esters. HSL is a key lipase in mice testis, as HSL deficiency results in male sterility. The present work study the effects of the deficiency and lack of HSL on the localization and expression of SR-BI, LDLr, and ABCA1 receptors/transporters involved in uptake and efflux of cholesterol in mice testis, to determine the impact of HSL gene dosage on testis morphology, lipid homeostasis and fertility. The results of this work show that the lack of HSL in mice alters testis morphology and spermatogenesis, decreasing sperm counts, sperm motility and increasing the amount of Leydig cells and lipid droplets. They also show that there are differences in the localization of HSL, SR-BI, LDLr and ABCA1 in HSL+/+, HSL+/- and HSL-/- mice. The deficiency or lack of HSL has effects on protein and mRNA expression of genes involved in lipid metabolisms in mouse testis. HSL-/- testis have augmented expression of SR-BI, LDLr, ABCA1 and LXRβ, a critical sterol sensor that regulate multiple genes involved in lipid metabolism; whereas LDLr expression decreased in HSL+/- mice. Plin2, Abca1 and Ldlr mRNA levels increased; and LXRα (Nr1h3) and LXRβ (Nr1h2) decreased in testis from HSL-/- compared with HSL+/+; with no differences in Scarb1. Together these data suggest that HSL deficiency or lack in mice testis induces lipid homeostasis alterations that affect the cellular localization and expression of key receptors/transporter involved in cellular cholesterol uptake and efflux (SR-BI, LDRr, ABCA1); alters normal cellular function and impact fertility.
Collapse
Affiliation(s)
- María Emilia Casado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Lydia Huerta
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Ana Marcos-Díaz
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Ana Isabel Ortiz
- Unidad de Cirugía Experimental y Animalario, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain
| | - Fredric B Kraemer
- Division of Endocrinology, Stanford University, United States of America; VA Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Miguel Angel Lasunción
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Rebeca Busto
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain
| | - Antonia Martín-Hidalgo
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), ISCIII, Spain.
| |
Collapse
|
5
|
Holota H, Thirouard L, Monrose M, Garcia M, De Haze A, Saru JP, Caira F, Beaudoin C, Volle DH. FXRα modulates leydig cell endocrine function in mouse. Mol Cell Endocrinol 2020; 518:110995. [PMID: 32827571 DOI: 10.1016/j.mce.2020.110995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 01/14/2023]
Abstract
The hypothalamic-pituitary axis exert a major control over endocrine and exocrine testicular functions. The hypothalamic-pituitary axis corresponds to a cascade with the Gonadotropin Releasing Hormone secreted by the hypothalamus, which stimulates the synthesis and the release of Luteinizing Hormone (LH) and Follicle Stimulating Hormone by the gonadotropic cells of the anterior pituitary. The LH signaling pathway controls the steroidogenic activity of the Leydig cells via the activation of the luteinizing hormone/choriogonadotropin receptor. In order to avoid a runaway system, sex steroids exert a negative feedback within hypothalamus and pituitary. Testicular steroidogenesis is locally controlled within Leydig cells. The present work reviews some local regulations of steroidogenesis within the Leydig cells focusing mainly on the roles of the Farnesoid-X-Receptor-alpha and its interactions with several orphan members of the nuclear receptor superfamily. Further studies are required to reinforce our knowledge of the regulation of testicular endocrine function, which is necessary to ensure a better understanding of fertility disorders and then proposed an adequate treatment of the diseases.
Collapse
Affiliation(s)
- Hélène Holota
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Laura Thirouard
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Mélusine Monrose
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Manon Garcia
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Angélique De Haze
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Jean-Paul Saru
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Françoise Caira
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - Claude Beaudoin
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France
| | - David H Volle
- Inserm U1103, Université Clermont Auvergne, CNRS UMR-6293, GReD, F-63001, Clermont-Ferrand, France.
| |
Collapse
|
6
|
Vitale ML, Pelletier RM. The anterior pituitary gap junctions: potential targets for toxicants. Reprod Toxicol 2018; 79:72-78. [PMID: 29906538 DOI: 10.1016/j.reprotox.2018.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/31/2018] [Accepted: 06/07/2018] [Indexed: 01/16/2023]
Abstract
The anterior pituitary regulates endocrine organs and physiological activities in the body. Environmental pollutants and drugs deleterious to the endocrine system may affect anterior pituitary activity through direct action on anterior pituitary cells. Within the gland, endocrine and folliculostellate cells are organized into and function as individual tridimensional networks, each network regulating its activity by coordinating the connected cells' responses to physiological or pathological cues. The gap junctions connecting endocrine cells and/or folliculostellate cells allow transmission of information among cells that is necessary for adequate network function. Toxicants may affect gap junctions as well as the physiology of the anterior pituitary. However, whether toxicants effects on anterior pituitary hormone secretion involve gap junctions is unknown. The folliculostellate cell gap junctions are sensitive to hormones, cytokines and growth factors. These cells may be an interesting experimental model for evaluating whether toxicants target anterior pituitary gap junctions.
Collapse
Affiliation(s)
- María Leiza Vitale
- Département de pathologie et biologie cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC Canada.
| | - R-Marc Pelletier
- Département de pathologie et biologie cellulaire, Faculté de Médecine, Université de Montréal, Montréal, QC Canada
| |
Collapse
|
7
|
Shi JF, Li YK, Ren K, Xie YJ, Yin WD, Mo ZC. Characterization of cholesterol metabolism in Sertoli cells and spermatogenesis (Review). Mol Med Rep 2018; 17:705-713. [PMID: 29115523 PMCID: PMC5780145 DOI: 10.3892/mmr.2017.8000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/31/2017] [Indexed: 01/21/2023] Open
Abstract
The Sertoli cell, which is the supporting cell of spermatogenesis, has an important role in the endocrine and paracrine control of spermatogenesis. Functionally, it provides the cells of the seminiferous epithelium with nutrition, conveys mature spermatids to the lumen of seminiferous tubules, secretes androgen‑binding protein and interacts with endocrine Leydig cells. In addition, the levels of cholesterol, as well as its intermediates, vary greatly between nongonadal tissues and the male reproductive system. Throughout spermatogenesis, a dynamic and constant alteration in the membrane lipid composition of Sertoli cells occurs. In several mammalian species, testis meiosis‑activating sterol and desmosterol, as well as other cholesterol precursors, accumulate in the testes and spermatozoa. In addition, certain cholesterogenic genes exhibit stage‑specific expression patterns during spermatogenesis, including the cytochrome P450 enzyme lanosterol 14α‑demethylase. Inconsistency in the patterns of gene expression during spermatogenesis indicates a cell‑type specific and complex temporary modulation of lipids and cholesterol, which also implicates the dynamic interactions between Sertoli cells and germ cells. Furthermore, in the female reproductive tract and during epididymal transit, which is a prerequisite for valid fertilization, the modulation of cholesterol occurring in spermatozoal membranes further indicates the functional importance of sterol compounds in spermatogenesis. However, the exact role of cholesterol metabolism in Sertoli cells in sperm production is unknown. The present review article describes the progress made in the research regarding the characteristics of the Sertoli cell, particularly the regulation of its cholesterol metabolism during spermatogenesis.
Collapse
Affiliation(s)
- Jin-Feng Shi
- Institute of Cardiovascular Disease, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
- Key Laboratory for Arteriosclerology of Hunan Province, Hengyang, Hunan 421001, P.R. China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan 421001, P.R. China
| | - Yu-Kun Li
- Department of Histology and Embryology, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Kun Ren
- Institute of Cardiovascular Disease, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
- Key Laboratory for Arteriosclerology of Hunan Province, Hengyang, Hunan 421001, P.R. China
| | - Yuan-Jie Xie
- Department of Histology and Embryology, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Wei-Dong Yin
- Institute of Cardiovascular Disease, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
- Key Laboratory for Arteriosclerology of Hunan Province, Hengyang, Hunan 421001, P.R. China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan 421001, P.R. China
| | - Zhong-Cheng Mo
- Department of Histology and Embryology, Medical School, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
8
|
Sèdes L, Thirouard L, Maqdasy S, Garcia M, Caira F, Lobaccaro JMA, Beaudoin C, Volle DH. Cholesterol: A Gatekeeper of Male Fertility? Front Endocrinol (Lausanne) 2018; 9:369. [PMID: 30072948 PMCID: PMC6060264 DOI: 10.3389/fendo.2018.00369] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/19/2018] [Indexed: 12/14/2022] Open
Abstract
Cholesterol is essential for mammalian cell functions and integrity. It is an important structural component maintaining the permeability and fluidity of the cell membrane. The balance between synthesis and catabolism of cholesterol should be tightly regulated to ensure normal cellular processes. Male reproductive function has been demonstrated to be dependent on cholesterol homeostasis. Here we review data highlighting the impacts of cholesterol homeostasis on male fertility and the molecular mechanisms implicated through the signaling pathways of some nuclear receptors.
Collapse
|
9
|
Pelletier RM, Akpovi CD, Chen L, Vitale ML. Cholesterol metabolism and Cx43, Cx46, and Cx50 gap junction protein expression and localization in normal and diabetic and obese ob/ob and db/db mouse testes. Am J Physiol Endocrinol Metab 2018; 314:E21-E38. [PMID: 28851737 PMCID: PMC5866387 DOI: 10.1152/ajpendo.00215.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/07/2017] [Accepted: 08/24/2017] [Indexed: 11/22/2022]
Abstract
Decreased fertility and birth rates arise from metabolic disorders. This study assesses cholesterol metabolism and Cx46, Cx50, and Cx43 expression in interstitium- and seminiferous tubule-enriched fractions of leptin-deficient ( ob/ob) and leptin receptor-deficient ( db/db) mice, two type 2 diabetes and obesity models associated with infertility. Testosterone levels decreased and glucose and free and esterified cholesterol (FC and EC) levels increased in serum, whereas FC and EC levels decreased in the interstitium, in ob/ob and db/db mice. In tubules, a decrease in EC caused FC-to-EC ratios to increase in db/db mice. In tubules, only acyl coenzyme A:cholesterol acyl transferase type 1 and 2 protein levels significantly decreased in ob/ob, but not db/db, mice compared with wild-type mice, and imbalances in the cholesterol transporters Niemann-Pick C1 (NPC1), ATP-binding cassette A1 (ABCA1), scavenger receptor class B member I (SR-BI), and cluster of differentiation 36 (CD36) were observed in ob/ob and db/db mice. In tubules, 14-kDa Cx46 prevailed during development, 48- to 49- and 68- to 71-kDa Cx46 prevailed during adulthood, and total Cx46 changed little. Compared with wild-type mice, 14-kDa Cx46 increased, whereas 48- to 49- and 68- to 71-kDa Cx46 decreased, in tubules, whereas the opposite occurred in the interstitium, in db/db and ob/ob mice. Total and 51-kDa Cx50 increased in db/db and ob/ob interstitium and tubules. Cx43 levels decreased in ob/ob interstitium and tubules, whereas Cx43 decreased in db/db interstitium but increased in db/db tubules. Apoptosis levels measured by ELISA and numbers of apostain-labeled apoptotic cells significantly increased in db/db, but not ob/ob, tubules. Testicular db/db capillaries were Cx50-positive but weakly Cx43-positive with a thickened lamina, suggesting altered permeability. Our findings indicate that the db mutation-induced impairment of meiosis may arise from imbalances in cholesterol metabolism and upregulated Cx43 expression and phosphorylation in tubules.
Collapse
Affiliation(s)
- R-Marc Pelletier
- Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec , Canada
| | - Casimir D Akpovi
- Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec , Canada
| | - Li Chen
- Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec , Canada
| | - María Leiza Vitale
- Department of Pathology and Cell Biology, Université de Montréal , Montréal, Québec , Canada
| |
Collapse
|
10
|
Visualization of lipid directed dynamics of perilipin 1 in human primary adipocytes. Sci Rep 2017; 7:15011. [PMID: 29118433 PMCID: PMC5678101 DOI: 10.1038/s41598-017-15059-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/19/2017] [Indexed: 12/20/2022] Open
Abstract
Perilipin 1 is a lipid droplet coating protein known to regulate lipid metabolism in adipocytes by serving as a physical barrier as well as a recruitment site for lipases to the lipid droplet. Phosphorylation of perilipin 1 by protein kinase A rapidly initiates lipolysis, but the detailed mechanism on how perilipin 1 controls lipolysis is unknown. Here, we identify specific lipid binding properties of perilipin 1 that regulate the dynamics of lipolysis in human primary adipocytes. Cellular imaging combined with biochemical and biophysical analyses demonstrate that perilipin 1 specifically binds to cholesteryl esters, and that their dynamic properties direct segregation of perilipin 1 into topologically distinct micro domains on the lipid droplet. Together, our data points to a simple unifying mechanism that lipid assembly and segregation control lipolysis in human primary adipocytes.
Collapse
|
11
|
Vitale ML, Garcia CJ, Akpovi CD, Pelletier RM. Distinctive actions of connexin 46 and connexin 50 in anterior pituitary folliculostellate cells. PLoS One 2017; 12:e0182495. [PMID: 28759642 PMCID: PMC5536325 DOI: 10.1371/journal.pone.0182495] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/19/2017] [Indexed: 12/16/2022] Open
Abstract
Folliculostellate cell gap junctions establish a network for the transmission of information within the anterior pituitary. Connexins make up gap junction channels. Changes in connexin (Cx) turnover modify gap junction-mediated intercellular communication. We have reported that cytokines and hormones influence Cx43 turnover and coupling in folliculostellate cells and in the folliculostellate cell line TtT/GF. In addition, the expression of different connexins alters intercellular communication and connexins may have functions besides cell coupling. Here we assessed the expression, turnover and subcellular localization of Cx46 and Cx50 in the anterior pituitary and TtT/GF cells. Then, we assessed the impact of various natural (lactation, annual reproductive cycle, bFGF) and pathological (autoimmune orchitis, diabetes/obesity) conditions associated with altered anterior pituitary hormone secretion on Cx46 and Cx50. Anterior pituitary Cx46 and Cx50 expression and subcellular distribution were cell-dependent. Cx46 was expressed by folliculostellate, TtT/GF and endocrine cells. In the cytoplasm, Cx46 was chiefly associated with lysosomes. Variously sized Cx46 molecules were recovered exclusively in the TtT/GF cell nuclear fraction. In the nucleus, Cx46 co-localized with Nopp-140, a nucleolar factor involved in rRNA processing. Neither cytoplasmic nor nuclear Cx46 and Cx43 co-localized. Cx50 localized to folliculostellate and TtT/GF cells, and to the walls of blood capillaries, not to endocrine cells. Cx50 was cytoplasmic and associated with the cell membrane, not nuclear. Cx50 did not co-localize with Cx46 but it co-localized in the cytoplasm and co-immunoprecipitated with Cx43. Cx46 and Cx50 responses to various physiological and pathological challenges were different, often opposite. Cx46 and Cx43 expression and phosphorylation profiles differed in the anterior pituitary, whereas Cx50 and Cx43 were similar. The data suggest that Cx46 participates to cellular growth and proliferation and that Cx50, together with Cx43, contributes to folliculostellate cell coupling.
Collapse
Affiliation(s)
- María Leiza Vitale
- Département de pathologie et biologie cellulaire, Faculté de Médecine, Université de Montréal, Montreal, Québec, Canada
| | - Christopher J. Garcia
- Département de pathologie et biologie cellulaire, Faculté de Médecine, Université de Montréal, Montreal, Québec, Canada
| | - Casimir D. Akpovi
- Département de pathologie et biologie cellulaire, Faculté de Médecine, Université de Montréal, Montreal, Québec, Canada
| | - R.-Marc Pelletier
- Département de pathologie et biologie cellulaire, Faculté de Médecine, Université de Montréal, Montreal, Québec, Canada
| |
Collapse
|
12
|
Wang A, Holladay SD, Wolf DC, Ahmed SA, Robertson JL. Reproductive and Developmental Toxicity of Arsenic in Rodents: A Review. Int J Toxicol 2016; 25:319-31. [PMID: 16940004 DOI: 10.1080/10915810600840776] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Arsenic is a recognized reproductive toxicant in humans and induces malformations, especially neural tube defects, in laboratory animals. Early studies showed that murine malformations occurred only when a high dose of inorganic arsenic was given by intravenous or intraperitoneal injection in early gestation. Oral gavage of inorganic arsenic at maternally toxic doses caused reduced fetal body weight and increased resorptions. Recently, arsenic reproductive and developmental toxicity has been studied in situations more similar to human exposures and using broader endpoints, such as behavioral changes and gene expression. For the general population, exposure to arsenic is mostly oral, particularly via drinking water, repeated and prolonged over time. In mice and rats, methylated or inorganic arsenic via drinking water or by repeated oral gavage induced male and female reproductive and developmental toxicities. Furthermore, at nonmaternally toxic levels, inorganic arsenic given to pregnant dams via drinking water affected fetal brain development and postnatal behaviors. However, arsenic given by repeated oral gavage to pregnant mice and rats was not morphologically teratogenic. In this review of arsenic reproductive and developmental toxicity in rats and mice, the authors summarize recent in vivo studies and discuss possible underlying mechanisms. The influences of folate, selenium, zinc, and arsenic methylation on arsenic reproductive and developmental toxicity are also discussed.
Collapse
Affiliation(s)
- Amy Wang
- Department of Biomedical Sciences and Pathobiology, Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
| | | | | | | | | |
Collapse
|
13
|
Kim YJ, Kim JM. Arsenic Toxicity in Male Reproduction and Development. Dev Reprod 2015; 19:167-80. [PMID: 26973968 PMCID: PMC4786478 DOI: 10.12717/dr.2015.19.4.167] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 10/23/2015] [Accepted: 11/05/2015] [Indexed: 01/27/2023]
Abstract
Arsenic is a toxic metalloid that exists ubiquitously in the environment, and affects global health problems due to its carcinogenicity. In most populations, the main source of arsenic exposure is the drinking water. In drinking water, chronic exposure to arsenic is associated with increased risks of various cancers including those of skin, lung, bladder, and liver, as well as numerous other non-cancer diseases including gastrointestinal and cardiovascular diseases, diabetes, and neurologic and cognitive problems. Recent emerging evidences suggest that arsenic exposure affects the reproductive and developmental toxicity. Prenatal exposure to inorganic arsenic causes adverse pregnancy outcomes and children's health problems. Some epidemiological studies have reported that arsenic exposure induces premature delivery, spontaneous abortion, and stillbirth. In animal studies, inorganic arsenic also causes fetal malformation, growth retardation, and fetal death. These toxic effects depend on dose, route and gestation periods of arsenic exposure. In males, inorganic arsenic causes reproductive dysfunctions including reductions of the testis weights, accessory sex organs weights, and epididymal sperm counts. In addition, inorganic arsenic exposure also induces alterations of spermatogenesis, reductions of testosterone and gonadotrophins, and disruptions of steroidogenesis. However, the reproductive and developmental problems following arsenic exposure are poorly understood, and the molecular mechanism of arsenic-induced reproductive toxicity remains unclear. Thus, we further investigated several possible mechanisms underlying arsenic-induced reproductive toxicity.
Collapse
Affiliation(s)
- Yoon-Jae Kim
- Dept. of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714, Korea
| | - Jong-Min Kim
- Dept. of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan 602-714, Korea
| |
Collapse
|
14
|
Lobo MVT, Arenas MI, Huerta L, Sacristán S, Pérez-Crespo M, Gutiérrez-Adán A, Díaz-Gil JJ, Lasunción MA, Martín-Hidalgo A. Liver growth factor induces testicular regeneration in EDS-treated rats and increases protein levels of class B scavenger receptors. Am J Physiol Endocrinol Metab 2015; 308:E111-21. [PMID: 25389365 DOI: 10.1152/ajpendo.00329.2014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present work was to determine the effects of liver growth factor (LGF) on the regeneration process of rat testes after chemical castration induced by ethane dimethanesulfonate (EDS) by analyzing some of the most relevant proteins involved in cholesterol metabolism, such as hormone sensitive lipase (HSL), 3β-hydroxysteroid dehydrogenase (3β-HSD), scavenger receptor SR-BI, and other components of the SR family that could contribute to the recovery of steroidogenesis and spermatogenesis in the testis. Sixty male rats were randomized to nontreated (controls) and LGF-treated, EDS-treated, and EDS + LGF-treated groups. Testes were obtained on days 10 (T1), 21 (T2), and 35 (T3) after EDS treatment, embedded in paraffin, and analyzed by immunohistochemistry and Western blot. LGF improved the recovery of the seminiferous epithelia, the appearance of the mature pattern of Leydig cell interstitial distribution, and the expression of mature SR-BI. Moreover, LGF treatment resulted in partial recovery of HSL expression in Leydig cells and spermatogonia. No changes in serum testosterone were observed in control or LGF-treated rats, but in EDS-castrated animals LGF treatment induced a progressive increase in serum testosterone levels and 3β-HSD expression. Based on the pivotal role of SR-BI in the uptake of cholesteryl esters from HDL, it is suggested that the observed effects of LGF would facilitate the provision of cholesterol for sperm cell growth and Leydig cell recovery.
Collapse
Affiliation(s)
- M V T Lobo
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - M I Arenas
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - L Huerta
- Servicio de Bioquímica-Departamento Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - S Sacristán
- Servicio de Bioquímica-Departamento Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - M Pérez-Crespo
- Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, INIA, Madrid, Spain; and
| | - A Gutiérrez-Adán
- Departamento de Reproducción Animal y Conservación de Recursos Zoogenéticos, INIA, Madrid, Spain; and
| | - J J Díaz-Gil
- Servicio de Bioquímica Experimental, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - M A Lasunción
- Servicio de Bioquímica-Departamento Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - A Martín-Hidalgo
- Servicio de Bioquímica-Departamento Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain;
| |
Collapse
|
15
|
Akpovi CD, Murphy BD, Erickson RP, Pelletier RM. Dysregulation of testicular cholesterol metabolism following spontaneous mutation of the niemann-pick c1 gene in mice. Biol Reprod 2014; 91:42. [PMID: 25009206 DOI: 10.1095/biolreprod.114.119412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Niemann-Pick-type C1 (Npc1) protein mobilizes LDL-derived cholesterol from lysosomes. Npc1 deficiency disease is a panethnic autosomal recessive disorder of intracellular cholesterol trafficking, leading to accumulation of cholesterol in endosomes/lysosomes. This report assesses the effects of a spontaneous inactivating mutation of the Npc1 gene on spermatogenesis and cholesterol homeostasis in mice. We quantified 1) free and esterified cholesterol levels by enzymatic analysis, 2) cholesterol enzymes and transporter protein expression by Western blotting, and 3) the number of Apostain-labeled apoptotic germ cells and apoptosis levels by ELISA in seminiferous tubule-enriched fractions. In wild-type (WT) mice, esterified cholesterol was elevated when Npc1 expression was low during puberty, while in adulthood, the levels were low (P < 0.05) when Npc1 expression was high (P < 0.01). In Npc1-/- mice, free and esterified cholesterol were significantly elevated. The abundance of cholesterol regulatory proteins, HMGR ACAT1, ACAT2, SR-BI, and ABCA1 was significantly higher in Npc1-/- than in WT mice. The level of apoptosis determined by ELISA and the number of Apostain-labeled cells/tubule were higher in Npc1-/- than in WT mice. Circulating testosterone levels in the Npc1-/- males were threefold lower than those observed in the WT. Deleting the Npc1 gene is accompanied by an increase in germ cell apoptosis and compensatory imbalances in the expression of cholesterol enzymatic and transporter factors and is associated with esterified cholesterol accumulation in seminiferous tubules.
Collapse
Affiliation(s)
- Casimir D Akpovi
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Bruce D Murphy
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St.-Hyacinthe, Québec, Canada
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona College of Medicine, Tucson, Arizona
| | - R-Marc Pelletier
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
16
|
Manna PR, Cohen-Tannoudji J, Counis R, Garner CW, Huhtaniemi I, Kraemer FB, Stocco DM. Mechanisms of action of hormone-sensitive lipase in mouse Leydig cells: its role in the regulation of the steroidogenic acute regulatory protein. J Biol Chem 2013; 288:8505-8518. [PMID: 23362264 DOI: 10.1074/jbc.m112.417873] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of cholesteryl esters in steroidogenic tissues and, thus, facilitates cholesterol availability for steroidogenesis. The steroidogenic acute regulatory protein (StAR) controls the rate-limiting step in steroid biosynthesis. However, the modes of action of HSL in the regulation of StAR expression remain obscure. We demonstrate in MA-10 mouse Leydig cells that activation of the protein kinase A (PKA) pathway, by a cAMP analog Bt2cAMP, enhanced expression of HSL and its phosphorylation (P) at Ser-660 and Ser-563, but not at Ser-565, concomitant with increased HSL activity. Phosphorylation and activation of HSL coincided with increases in StAR, P-StAR (Ser-194), and progesterone levels. Inhibition of HSL activity by CAY10499 effectively suppressed Bt2cAMP-induced StAR expression and progesterone synthesis. Targeted silencing of endogenous HSL, with siRNAs, resulted in increased cholesteryl ester levels and decreased cholesterol content in MA-10 cells. Depletion of HSL affected lipoprotein-derived cellular cholesterol influx, diminished the supply of cholesterol to the mitochondria, and resulted in the repression of StAR and P-StAR levels. Cells overexpressing HSL increased the efficacy of liver X receptor (LXR) ligands on StAR expression and steroid synthesis, suggesting HSL-mediated steroidogenesis entails enhanced oxysterol production. Conversely, cells deficient in LXRs exhibited decreased HSL responsiveness. Furthermore, an increase in HSL was correlated with the LXR target genes, steroid receptor element-binding protein 1c and ATP binding cassette transporter A1, demonstrating HSL-dependent regulation of steroidogenesis predominantly involves LXR signaling. LXRs interact/cooperate with RXRs and result in the activation of StAR gene transcription. These findings provide novel insight and demonstrate the molecular events by which HSL acts to drive cAMP/PKA-mediated regulation of StAR expression and steroidogenesis in mouse Leydig cells.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Joëlle Cohen-Tannoudji
- University Paris Diderot, Sorbonne Paris Cité, Physiologie de l'axe gonadotrope, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Raymond Counis
- University Paris Diderot, Sorbonne Paris Cité, Physiologie de l'axe gonadotrope, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Charles W Garner
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Ilpo Huhtaniemi
- Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Fredric B Kraemer
- Department of Medicine, Veterans Affairs Palo Alto Heath Care System, Palo Alto, California 94304
| | - Douglas M Stocco
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430.
| |
Collapse
|
17
|
Casado ME, Huerta L, Ortiz AI, Pérez-Crespo M, Gutiérrez-Adán A, Kraemer FB, Lasunción MÁ, Busto R, Martín-Hidalgo A. HSL-knockout mouse testis exhibits class B scavenger receptor upregulation and disrupted lipid raft microdomains. J Lipid Res 2012; 53:2586-97. [PMID: 22988039 DOI: 10.1194/jlr.m028076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
There is a tight relationship between fertility and changes in cholesterol metabolism during spermatogenesis. In the testis, class B scavenger receptors (SR-B) SR-BI, SR-BII, and LIMP II mediate the selective uptake of cholesterol esters from HDL, which are hydrolyzed to unesterified cholesterol by hormone-sensitive lipase (HSL). HSL is critical because HSL knockout (KO) male mice are sterile. The aim of the present work was to determine the effects of the lack of HSL in testis on the expression of SR-B, lipid raft composition, and related cell signaling pathways. HSL-KO mouse testis presented altered spermatogenesis associated with decreased sperm counts, sperm motility, and infertility. In wild-type (WT) testis, HSL is expressed in elongated spermatids; SR-BI, in Leydig cells and spermatids; SR-BII, in spermatocytes and spermatids but not in Leydig cells; and LIMP II, in Sertoli and Leydig cells. HSL knockout male mice have increased expression of class B scavenger receptors, disrupted caveolin-1 localization in lipid raft plasma membrane microdomains, and activated phospho-ERK, phospho-AKT, and phospho-SRC in the testis, suggesting that class B scavenger receptors are involved in cholesterol ester uptake for steroidogenesis and spermatogenesis in the testis.
Collapse
Affiliation(s)
- María Emilia Casado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
The elucidation of how individual components of the Sertoli cell junctional complexes form and are dismantled to allow not only individual cells but whole syncytia of germinal cells to migrate from the basal to the lumenal compartment of the seminiferous epithelium without causing a permeability leak in the blood-testis barrier is amongst the most enigmatic yet, challenging and timely questions in testicular physiology. The intriguing key event in this process is how the barrier modulates its permeability during the periods of formation and dismantling of individual Sertoli cell junctions. The purpose of this review is therefore to first provide a reliable account on the normal formation, maintenance and dismantling process of the Sertoli cells junctions, then to assess the influence of the expression of their individual proteins, of the cytoskeleton associated with the junctions, and of the lipid content in the seminiferous tubules on the regulation of the their permeability barrier function. To help focus on the formation and dismantling of the Sertoli cell junctions, several considerations are based on data gleaned not only from rodents but from seasonal breeders as well because these animal models are characterized by exhaustive periods of junction assembly during development and the onset of the seasonal re-initiation of spermatogenesis as well as by an extensive junction dismantling period at the beginning of testicular regression, something unavailable in normal physiological conditions in continual breeders. Thus, the modulation of the permeability barrier function of the Sertoli cell junctions is analyzed in the physiological context of the blood-epidydimis barrier and in particular of the blood-testis barrier rather than in the context of a detailed account of the molecular composition and signalisation pathways of cell junctions. Moreover, the considerations discussed in this review are based on measurements performed on seminiferous tubule-enriched fractions gleaned at regular time intervals during development and the annual reproductive cycle.
Collapse
|
19
|
Abstract
To investigate further the mechanisms of developmental programming, we analysed the effects of maternal overnutrition and of postnatal high-fat feeding on adipose tissue metabolism in the offspring. Postnatal changes in serum adiponectin, leptin and TAG [triacylglycerol (triglyceride)] levels, adipose tissue TAGs, fatty acids and enzyme activities were determined in offspring of cafeteria-diet-fed dams during gestation and lactation, weaned on to standard chow or on to cafeteria diet. Obese rats showed higher adiposity (+35% to 85%) as well as a significant increase in serum glucose, insulin, leptin, adiponectin and TAG levels (P<0.01) and adipose tissue LPL (lipoprotein lipase) and GPDH (glycerol-3-phosphate dehydrogenase) activities (P<0.01), compared with control pups at weaning (day 21) and at adulthood (day 90). Adipose HSL (hormone-sensitive lipase) activity was increased only at day 90 (P<0.05), and FAS (fatty acid synthase) activity remained unchanged. The proportions of SFAs (saturated fatty acids) and MUFAs (mono-unsaturated fatty acids) and the Δ9-desaturation index were significantly increased (P<0.05), whereas PUFAs (polyunsaturated fatty acids) were decreased (P<0.01) in serum and adipose TAGs of obese pups compared with controls. The cafeteria diet at weaning induced more severe abnormalities in obese rats. In conclusion, maternal overnutrition induced permanent changes in adipose tissue metabolism of the offspring. These pre-existing alterations in offspring were worsened under a high-fat diet from weaning to adulthood. Consequently, adipose adipokines and enzymes could provide a potential therapeutic target, and new investigations in this field could constitute strategies to improve the impact of early-life overnutrition.
Collapse
|
20
|
Pelletier RM, Akpovi CD, Chen L, Day R, Vitale ML. CX43 expression, phosphorylation, and distribution in the normal and autoimmune orchitic testis with a look at gap junctions joining germ cell to germ cell. Am J Physiol Regul Integr Comp Physiol 2010; 300:R121-39. [PMID: 20962206 DOI: 10.1152/ajpregu.00500.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spermatogenesis requires connexin 43 (Cx43).This study examines normal gene transcription, translation, and phosphorylation of Cx43 to define its role on germ cell growth and Sertoli cell's differentiation, and identifies abnormalities arising from spontaneous autoimmune orchitis (AIO) in mink, a seasonal breeder and a natural model for autoimmunity. Northern blot analysis detected 2.8- and a 3.7-kb Cx43 mRNA bands in seminiferous tubule-enriched fractions. Cx43 mRNA increased in seminiferous tubule-enriched fractions throughout development and then seasonally with the completion of spermatogenesis. Cx43 protein levels increased transiently during the colonization of the tubules by the early-stage spermatocytes. Cx43 phosphorylated (PCx43) and nonphosphorylated (NPCx43) in Ser368 decreased during the periods of completion of meiosis and Sertoli cell differentiation, while Cx43 mRNA remained elevated throughout. PCx43 labeled chiefly the plasma membrane except by stage VII when vesicles were also labeled in Sertoli cells. Vesicles and lysosomes in Sertoli cells and the Golgi apparatus in the round spermatids were NPCx43 positive. A decrease in Cx43 gene expression was matched by a Cx43 protein increase in the early, not the late, phase of AIO. Total Cx43 and PCx43 decreased with the advance of orchitis. The study makes a novel finding of gap junctions connecting germ cells. The data indicate that Cx43 protein expression and phosphorylation in Ser368 are stage-specific events that may locally influence the acquisition of meiotic competence and the Sertoli cell differentiation in normal testis. AIO modifies Cx43 levels, suggesting changes in Cx43-mediated intercommunication and spermatogenic activity in response to cytokines imbalances in Sertoli cells.
Collapse
Affiliation(s)
- R-Marc Pelletier
- Department of Pathology and Cell Biology, Université de Montréal, Canada.
| | | | | | | | | |
Collapse
|
21
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 5: intercellular junctions and contacts between germs cells and Sertoli cells and their regulatory interactions, testicular cholesterol, and genes/proteins associated with more than one germ cell generation. Microsc Res Tech 2010; 73:409-94. [PMID: 19941291 DOI: 10.1002/jemt.20786] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the testis, cell adhesion and junctional molecules permit specific interactions and intracellular communication between germ and Sertoli cells and apposed Sertoli cells. Among the many adhesion family of proteins, NCAM, nectin and nectin-like, catenins, and cadherens will be discussed, along with gap junctions between germ and Sertoli cells and the many members of the connexin family. The blood-testis barrier separates the haploid spermatids from blood borne elements. In the barrier, the intercellular junctions consist of many proteins such as occludin, tricellulin, and claudins. Changes in the expression of cell adhesion molecules are also an essential part of the mechanism that allows germ cells to move from the basal compartment of the seminiferous tubule to the adluminal compartment thus crossing the blood-testis barrier and well-defined proteins have been shown to assist in this process. Several structural components show interactions between germ cells to Sertoli cells such as the ectoplasmic specialization which are more closely related to Sertoli cells and tubulobulbar complexes that are processes of elongating spermatids embedded into Sertoli cells. Germ cells also modify several Sertoli functions and this also appears to be the case for residual bodies. Cholesterol plays a significant role during spermatogenesis and is essential for germ cell development. Lastly, we list genes/proteins that are expressed not only in any one specific generation of germ cells but across more than one generation.
Collapse
Affiliation(s)
- Louis Hermo
- Faculty of Medicine, Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
22
|
Vitale ML, Akpovi CD, Pelletier RM. Cortactin/tyrosine-phosphorylated cortactin interaction with connexin 43 in mouse seminiferous tubules. Microsc Res Tech 2010; 72:856-67. [PMID: 19725064 DOI: 10.1002/jemt.20771] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deletion of the cortactin gene leads to male infertility. Considering that cortactin is an actin filament (F-actin)-binding protein associated with intercellular junctions, we measured changes in the expression and distribution of cortactin and tyrosine phosphorylated cortactin (P-cortactin) in the seminiferous epithelium of developing and adult mice to address the physiological significance of cortactin to germ cell differentiation. Cortactin was expressed in neonatal and developing Sertoli cells. Cortactin levels decreased early during puberty, while P-cortactin increased. Cortactin labeling was intense in the basal and apical thirds of the epithelium. Sertoli cell cytoplasmic processes facing spermatogonia, preleptotene spermatocytes, and step 8-13 spermatids were intensely labeled by both cortactin and P-cortactin. In contrast, the middle region of Sertoli cells exhibited diffuse cortactin labeling but no P-cortactin. This is consistent with the view that plasma membrane segments facing germ cells are part of the continuum of Sertoli cell junctional complexes that extend over lateral and apical membranes of supporting cells. Moreover, F-actin and P-cortactin share a common location in the seminiferous epithelium. The increased P-cortactin levels detected during puberty may be related to the modulatory effect of cortactin tyrosine phosphorylation on actin assembly at sites of selected Sertoli cell-germ cell contacts. Cortactin and connexin 43 (Cx43) were physically linked in seminiferous tubule homogenates and their colocalization in the basal and apical thirds of the seminiferous epithelium was stage-dependent. Our results suggest that cortactin-Cx43 interaction helps coordinate formation of cell-to-cell junctions and organization of the subsurface actin cytoskeleton in specific regions of the epithelium.
Collapse
Affiliation(s)
- María Leiza Vitale
- Faculté de Médecine, Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
23
|
Pelletier RM, Yoon SR, Akpovi CD, Silvas E, Vitale ML. Defects in the regulatory clearance mechanisms favor the breakdown of self-tolerance during spontaneous autoimmune orchitis. Am J Physiol Regul Integr Comp Physiol 2008; 296:R743-62. [PMID: 19052317 DOI: 10.1152/ajpregu.90751.2008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We identified aberrations leading to spontaneous autoimmune orchitis (AIO) in mink, a seasonal breeder and natural model for autoimmunity. This study provides evidence favoring the view that a malfunction of the clearance mechanisms for apoptotic cell debris arising from imbalances in phagocyte receptors or cytokines acting on Sertoli cells constitutes a major factor leading to breakdown of self-tolerance during spontaneous AIO. Serum anti-sperm antibody titers measured by ELISA reflected spermatogenic activity without causing immune inflammatory responses. Orchitic mink showed excess antibody production accompanied by spermatogenic arrest, testicular leukocyte infiltration, and infertility. AIO serum labeled the postacrosomal region, the mid and end piece of mink sperm, whereas normal mink serum did not. Normal serum labeled plasma membranes, whereas AIO serum reacted with germ cell nuclei. Western blot analyses revealed that AIO serum reacted specifically to a 23- and 50-kDa protein. The number of apostain-labeled apoptotic cells was significantly higher in orchitic compared with normal tubules. However, apoptosis levels measured by ELISA in seminiferous tubular fractions (STf) were not significantly different in normal and orchitic tubules. The levels of CD36, TNF-alpha, TNF-alpha RI, IL-6, and Fas but not Fas-ligand (L), and ATP-binding cassette transporter ABCA1 were changed in AIO STf. TNF-alpha and IL-6 serum levels were increased during AIO. Fas localized to germ cells, Sertoli cells, and the lamina propria of the tubules and Fas-L, to germ cells. Fas colocalized with Fas-L in residual bodies in normal testis and in giant cells and infiltrating leukocytes in orchitic tubules.
Collapse
Affiliation(s)
- R-Marc Pelletier
- Département de pathologie et biologie cellulaire, Université de Montréal, QC,Canada.
| | | | | | | | | |
Collapse
|
24
|
Blottner S, Schön J, Jewgenow K. Seasonally activated spermatogenesis is correlated with increased testicular production of testosterone and epidermal growth factor in mink (Mustela vison). Theriogenology 2006; 66:1593-8. [PMID: 16481033 DOI: 10.1016/j.theriogenology.2006.01.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Seasonal changes in spermatogenesis were studied with respect to testicular production of both testosterone and epidermal growth factor (EGF) in mink. The testes were collected in November (n = 15; testis recrudescence), February (n = 15; before breeding season), March (n = 14; breeding season), and May (n = 11; testis involution) and the following parameters of testicular activity were quantified: testicular mass, number of testicular spermatozoa, percentages of haploid, diploid, and tetraploid (G2/M-phase) cells and content of testosterone and EGF. The growth factor was immunohistochemically localized in the parenchyma. Testis mass, spermatogenic activity, and the production of both testosterone and EGF were maximal in March, but were not significantly different from the levels in February. The correlation between testis weight and sperm per testis was r = 0.825 (P < 0.001). Testosterone and EGF levels were correlated to each other (r = 0.78; P < 0.001) and had significant positive correlations to testis mass, number of sperm and proportion of haploid cells; and negative correlations to percentages of mitotic cells. EGF was localized in interstitial cells and in the luminal region of seminiferous tubules, where it occurred during the last steps of spermiogenesis. We inferred that intensified seasonal spermatogenesis was stimulated by testosterone and by autocrine/paracrine effects of EGF.
Collapse
Affiliation(s)
- Steffen Blottner
- Institute for Zoo Biology and Wildlife Research, PF 601103, D-10252 Berlin, Germany.
| | | | | |
Collapse
|
25
|
Akpovi CD, Yoon SR, Vitale ML, Pelletier RM. The predominance of one of the SR-BI isoforms is associated with increased esterified cholesterol levels not apoptosis in mink testis. J Lipid Res 2006; 47:2233-47. [PMID: 16861621 DOI: 10.1194/jlr.m600162-jlr200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Scavenger receptor class B type I (SR-BI) contributes to HDL-mediated cellular cholesterol efflux and is a phagocytosis-inducing phospholipid phosphatidylserine receptor in rat Sertoli cells, whereas the spliced variant of the SR-B gene, SR-BII, is implicated in the efflux of free cholesterol in macrophages. This study aimed to assess whether spontaneous autoimmune orchitis (AIO), which causes impaired clearance of apoptotic germ cells and spermatogenic arrest, involves SR-BI, SR-BII, and/or cholesterol. The levels measured during development and the annual reproductive cycle in normal mink were compared with those in mink with spontaneous AIO. Time periods with lowest tubular esterified cholesterol (EC) levels showed maximal SR-BI and SR-BII levels, and the periods when one or the other SR-BI isoform predominated showed increased EC levels and spermatogenic arrest in normal mink seminiferous tubules. In tubules with AIO, the predominance of only one or the other SR-BI isoform was the reverse of that measured in normal tubules, and it was associated with an increase in EC levels but not with apoptosis levels. SR-BI and SR-BII levels were not correlated with serum testosterone levels. SR-BI mainly localized to the Leydig cell, germ cell, and Sertoli cell surface, where its distribution was stage-specific. SR-BII was principally intracellular. Tubules from testes with AIO showed a deregulation of cholesterol homeostasis and SR-BI expression but relatively unchanged apoptosis levels. These results suggest that the expression of both SR-BI isoforms is required for the maintenance of low EC levels and that the predominance of only one isoform is associated with the accumulation of EC but not with apoptosis in the tubules.
Collapse
Affiliation(s)
- Casimir D Akpovi
- Département de Pathologie et Biologie Cellulaire, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|