1
|
Cen C, Chen J, Lin L, Chen M, Dong F, Shen Z, Cui X, Hou X, Gao F. Fancb deficiency causes premature ovarian insufficiency in mice†. Biol Reprod 2022; 107:790-799. [PMID: 35596251 DOI: 10.1093/biolre/ioac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 11/12/2022] Open
Abstract
FANCB protein is a major component of the Fanconi anemia (FA) core complex and plays important role in hematopoiesis and germ cell development. Deletion of Fancb gene causes the defect of primordial germ cells (PGCs) development and infertility in male mice. However, it remains unknown whether Fancb is required for female germ cell development. In this study, we found that the fertility of Fancb knockout male mice in C57/ICR mixed backgrounds was not affected. Female Fancb-/- mice were obtained by crossing Fancb+/- females with Fancb-/Y males. The number of PGCs was dramatically decreased in Fancb-/- females. Very few oocytes were observed after birth and primordial follicle pool was completely depleted at 6 weeks of age in Fancb-/- females. However, the remained oocytes from Fancb-/- mice were normal in fertilization and embryonic development from 2-cell to blastocyst stage. We also found that Fancb and Fancl double knockout males were also fertile and the number of sperm in epididymis was not reduced comparable to that of Fancb-/- and Fancl-/- single knockout mice. Taken together, these results demonstrated that Fancb is also essential for female germ cell development. Inactivation of Fancb causes massive germ cell loss and infertility in adult females. We also found that Fancb and Fancl do not act synergistically in regulating germ cell development.
Collapse
Affiliation(s)
- Changhuo Cen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junhua Chen
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Limei Lin
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Min Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fangfang Dong
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiming Shen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xiaohui Hou
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Cargnelutti F, Di Nisio A, Pallotti F, Sabovic I, Spaziani M, Tarsitano MG, Paoli D, Foresta C. Effects of endocrine disruptors on fetal testis development, male puberty, and transition age. Endocrine 2021; 72:358-374. [PMID: 32757113 PMCID: PMC8128728 DOI: 10.1007/s12020-020-02436-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/23/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Endocrine disruptors (EDs) are exogenous substances able to impair endocrine system; consequently, they may cause numerous adverse effects. Over the last years, particular focus has been given to their harmful effects on reproductive system, but very little is known, especially in males. The aim of this review is to discuss the detrimental effects of EDs exposure on fetal testis development, male puberty, and transition age. METHODS A search for the existing literature focusing on the impact of EDs on fetal testis development, male puberty, andrological parameters (anogenital distance, penile length, and testicular volume), and testicular cancer with particular regard to pubertal age provided the most current information available for this review. Human evidence-based reports were given priority over animal and in vitro experimental results. Given the paucity of available articles on this subject, all resources were given careful consideration. RESULTS Information about the consequences associated with EDs exposure in the current literature is limited and often conflicting, due to the scarcity of human studies and their heterogeneity. CONCLUSIONS We conclude that current evidence does not clarify the impact of EDs on human male reproductive health, although severe harmful effects had been reported in animals. Despite controversial results, overall conclusion points toward a positive association between exposure to EDs and reproductive system damage. Further long-term studies performed on wide number of subjects are necessary in order to identify damaging compounds and remove them from the environment.
Collapse
Affiliation(s)
- Francesco Cargnelutti
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Andrea Di Nisio
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Francesco Pallotti
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Iva Sabovic
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| | - Matteo Spaziani
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Maria Grazia Tarsitano
- Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Donatella Paoli
- Laboratory of Seminology-Sperm Bank "Loredana Gandini", Department of Experimental Medicine, "Sapienza" University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| | - Carlo Foresta
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Via Giustiniani, 2, 35128, Padua, Italy
| |
Collapse
|
3
|
Animal models of Fanconi anemia: A developmental and therapeutic perspective on a multifaceted disease. Semin Cell Dev Biol 2021; 113:113-131. [PMID: 33558144 DOI: 10.1016/j.semcdb.2020.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/17/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022]
Abstract
Fanconi anemia (FA) is a genetic disorder characterized by developmental abnormalities, progressive bone marrow failure, and increased susceptibility to cancer. FA animal models have been useful to understand the pathogenesis of the disease. Herein, we review FA developmental models that have been developed to simulate human FA, focusing on zebrafish and mouse models. We summarize the recapitulated phenotypes observed in these in vivo models including bone, gametogenesis and sterility defects, as well as marrow failure. We also discuss the relevance of aldehydes in pathogenesis of FA, emphasizing on hematopoietic defects. In addition, we provide a summary of potential therapeutic agents, such as aldehyde scavengers, TGFβ inhibitors, and gene therapy for FA. The diversity of FA animal models makes them useful for understanding FA etiology and allows the discovery of new therapies.
Collapse
|
4
|
Ye M, Chen Y. Zebrafish as an emerging model to study gonad development. Comput Struct Biotechnol J 2020; 18:2373-2380. [PMID: 32994895 PMCID: PMC7498840 DOI: 10.1016/j.csbj.2020.08.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/26/2020] [Indexed: 01/24/2023] Open
Abstract
The zebrafish (Danio rerio) has emerged as a popular model organism in developmental biology and pharmacogenetics due to its attribute of pathway conservation. Coupled with the availability of robust genetic and transgenic tools, transparent embryos and rapid larval development, studies of zebrafish allow detailed cellular analysis of many dynamic processes. In recent decades, the cellular and molecular mechanisms involved in the process of gonad development have been the subject of intense research using zebrafish models. In this mini-review, we give a brief overview of these studies, and highlight the essential genes involved in sex determination and gonad development in zebrafish.
Collapse
Affiliation(s)
- Mengling Ye
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Ye Chen
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
The Fanconi Anemia Pathway and Fertility. Trends Genet 2019; 35:199-214. [DOI: 10.1016/j.tig.2018.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
|
6
|
Hamer G, de Rooij DG. Mutations causing specific arrests in the development of mouse primordial germ cells and gonocytes. Biol Reprod 2018; 99:75-86. [DOI: 10.1093/biolre/ioy075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/22/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Geert Hamer
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk G de Rooij
- Center for Reproductive Medicine, Amsterdam Research Institute Reproduction and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Czechanski A, Kim H, Byers C, Greenstein I, Stumpff J, Reinholdt LG. Kif18a is specifically required for mitotic progression during germ line development. Dev Biol 2015; 402:253-262. [PMID: 25824710 DOI: 10.1016/j.ydbio.2015.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
Abstract
Genome integrity in the developing germ line is strictly required for fecundity. In proliferating somatic cells and in germ cells, there are mitotic checkpoint mechanisms that ensure accurate chromosome segregation and euploidy. There is growing evidence of mitotic cell cycle components that are uniquely required in the germ line to ensure genome integrity. We previously showed that the primary phenotype of germ cell deficient 2 (gcd2) mutant mice is infertility due to germ cell depletion during embryogenesis. Here we show that the underlying mutation is a mis-sense mutation, R308K, in the motor domain of the kinesin-8 family member, KIF18A, a protein that is expressed in a variety of proliferative tissues and is a key regulator of chromosome alignment during mitosis. Despite the conservative nature of the mutation, we show that its functional consequences are equivalent to KIF18A deficiency in HeLa cells. We also show that somatic cells progress through mitosis, despite having chromosome alignment defects, while germ cells with similar chromosome alignment defects undergo mitotic arrest and apoptosis. Our data provide evidence for differential requirements for chromosome alignment in germ and somatic cells and show that Kif18a is one of a growing number of genes that are specifically required for cell cycle progression in proliferating germ cells.
Collapse
Affiliation(s)
- Anne Czechanski
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME 04609
| | - Haein Kim
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Candice Byers
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME 04609
| | - Ian Greenstein
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME 04609
| | - Jason Stumpff
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Laura G Reinholdt
- The Jackson Laboratory, Genetic Resource Science, Bar Harbor, ME 04609
| |
Collapse
|
8
|
Rouiller-Fabre V, Guerquin MJ, N’Tumba-Byn T, Muczynski V, Moison D, Tourpin S, Messiaen S, Habert R, Livera G. Nuclear receptors and endocrine disruptors in fetal and neonatal testes: a gapped landscape. Front Endocrinol (Lausanne) 2015; 6:58. [PMID: 25999913 PMCID: PMC4423451 DOI: 10.3389/fendo.2015.00058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/07/2015] [Indexed: 11/28/2022] Open
Abstract
During the last decades, many studies reported that male reproductive disorders are increasing among humans. It is currently acknowledged that these abnormalities can result from fetal exposure to environmental chemicals that are progressively becoming more concentrated and widespread in our environment. Among the chemicals present in the environment (air, water, food, and many consumer products), several can act as endocrine disrupting compounds (EDCs), thus interfering with the endocrine system. Phthalates, bisphenol A (BPA), and diethylstilbestrol (DES) have been largely incriminated, particularly during the fetal and neonatal period, due to their estrogenic and/or anti-androgenic properties. Indeed, many epidemiological and experimental studies have highlighted their deleterious impact on fetal and neonatal testis development. As EDCs can affect many different genomic and non-genomic pathways, the mechanisms underlying the adverse effects of EDC exposure are difficult to elucidate. Using literature data and results from our laboratory, in the present review, we discuss the role of classical nuclear receptors (genomic pathway) in the fetal and neonatal testis response to EDC exposure, particularly to phthalates, BPA, and DES. Among the nuclear receptors, we focused on some of the most likely candidates, such as peroxisome-proliferator activated receptor (PPAR), androgen receptor (AR), estrogen receptors (ERα and β), liver X receptors (LXR), and small heterodimer partner (SHP). First, we describe the expression and potential functions (based on data from studies using receptor agonists and mouse knockout models) of these nuclear receptors in the developing testis. Then, for each EDC studied, we summarize the main evidences indicating that the reprotoxic effect of each EDC under study is mediated through a specific nuclear receptor(s). We also point-out the involvement of other receptors and nuclear receptor-independent pathways.
Collapse
Affiliation(s)
- Virginie Rouiller-Fabre
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- Unité 967, INSERM, Fontenay aux Roses, France
- *Correspondence: Virginie Rouiller-Fabre, Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, CEA, DSV, iRCM, SCSR, LDG, BP6, Fontenay aux Roses F-92265, France,
| | - Marie Justine Guerquin
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- Unité 967, INSERM, Fontenay aux Roses, France
| | - Thierry N’Tumba-Byn
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- Unité 967, INSERM, Fontenay aux Roses, France
| | - Vincent Muczynski
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- Unité 967, INSERM, Fontenay aux Roses, France
| | - Delphine Moison
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- Unité 967, INSERM, Fontenay aux Roses, France
| | - Sophie Tourpin
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- Unité 967, INSERM, Fontenay aux Roses, France
| | - Sébastien Messiaen
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- Unité 967, INSERM, Fontenay aux Roses, France
| | - René Habert
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- Unité 967, INSERM, Fontenay aux Roses, France
| | - Gabriel Livera
- Unit of Genetic Stability, Stem Cells and Radiation, Laboratory of Development of the Gonads, Sorbonne Paris Cité, Université Paris Diderot, Fontenay-aux-Roses, France
- CEA, DSV, iRCM, SCSR, LDG, Fontenay-aux-Roses, France
- Unité 967, INSERM, Fontenay aux Roses, France
| |
Collapse
|
9
|
Luebben SW, Kawabata T, Akre MK, Lee WL, Johnson CS, O'Sullivan MG, Shima N. Helq acts in parallel to Fancc to suppress replication-associated genome instability. Nucleic Acids Res 2013; 41:10283-97. [PMID: 24005041 PMCID: PMC3905894 DOI: 10.1093/nar/gkt676] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
HELQ is a superfamily 2 DNA helicase found in archaea and metazoans. It has been implicated in processing stalled replication forks and in repairing DNA double-strand breaks and inter-strand crosslinks. Though previous studies have suggested the possibility that HELQ is involved in the Fanconi anemia (FA) pathway, a dominant mechanism for inter-strand crosslink repair in vertebrates, this connection remains elusive. Here, we investigated this question in mice using the Helqgt and Fancc− strains. Compared with Fancc−/− mice lacking FANCC, a component of the FA core complex, Helqgt/gt mice exhibited a mild of form of FA-like phenotypes including hypogonadism and cellular sensitivity to the crosslinker mitomycin C. However, unlike Fancc−/− primary fibroblasts, Helqgt/gt cells had intact FANCD2 mono-ubiquitination and focus formation. Notably, for all traits examined, Helq was non-epistatic with Fancc, as Helqgt/gt;Fancc−/− double mutants displayed significantly worsened phenotypes than either single mutant. Importantly, this was most noticeable for the suppression of spontaneous chromosome instability such as micronuclei and 53BP1 nuclear bodies, known consequences of persistently stalled replication forks. These findings suggest that mammalian HELQ contributes to genome stability in unchallenged conditions through a mechanism distinct from the function of FANCC.
Collapse
Affiliation(s)
- Spencer W Luebben
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA, Molecular, Cellular, Developmental Biology and Genetics Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA, Masonic Cancer Center, Minneapolis, MN 55455, USA and College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Mir-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects. Proc Natl Acad Sci U S A 2011; 108:14163-8. [PMID: 21844366 DOI: 10.1073/pnas.1111241108] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mir-290 through mir-295 (mir-290-295) is a mammalian-specific microRNA (miRNA) cluster that, in mice, is expressed specifically in early embryos and embryonic germ cells. Here, we show that mir-290-295 plays important roles in embryonic development as indicated by the partially penetrant lethality of mutant embryos. In addition, we show that in surviving mir-290-295-deficient embryos, female but not male fertility is compromised. This impairment in fertility arises from a defect in migrating primordial germ cells and occurs equally in male and female mutant animals. Male mir-290-295(-/-) mice, due to the extended proliferative lifespan of their germ cells, are able to recover from this initial germ cell loss and are fertile. Female mir-290-295(-/-) mice are unable to recover and are sterile, due to premature ovarian failure.
Collapse
|
11
|
Holloway JK, Mohan S, Balmus G, Sun X, Modzelewski A, Borst PL, Freire R, Weiss RS, Cohen PE. Mammalian BTBD12 (SLX4) protects against genomic instability during mammalian spermatogenesis. PLoS Genet 2011; 7:e1002094. [PMID: 21655083 PMCID: PMC3107204 DOI: 10.1371/journal.pgen.1002094] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 04/06/2011] [Indexed: 12/27/2022] Open
Abstract
The mammalian ortholog of yeast Slx4, BTBD12, is an ATM substrate that functions as a scaffold for various DNA repair activities. Mutations of human BTBD12 have been reported in a new sub-type of Fanconi anemia patients. Recent studies have implicated the fly and worm orthologs, MUS312 and HIM-18, in the regulation of meiotic crossovers arising from double-strand break (DSB) initiating events and also in genome stability prior to meiosis. Using a Btbd12 mutant mouse, we analyzed the role of BTBD12 in mammalian gametogenesis. BTBD12 localizes to pre-meiotic spermatogonia and to meiotic spermatocytes in wildtype males. Btbd12 mutant mice have less than 15% normal spermatozoa and are subfertile. Loss of BTBD12 during embryogenesis results in impaired primordial germ cell proliferation and increased apoptosis, which reduces the spermatogonial pool in the early postnatal testis. During prophase I, DSBs initiate normally in Btbd12 mutant animals. However, DSB repair is delayed or impeded, resulting in persistent γH2AX and RAD51, and the choice of repair pathway may be altered, resulting in elevated MLH1/MLH3 focus numbers at pachynema. The result is an increase in apoptosis through prophase I and beyond. Unlike yeast Slx4, therefore, BTBD12 appears to function in meiotic prophase I, possibly during the recombination events that lead to the production of crossovers. In line with its expected regulation by ATM kinase, BTBD12 protein is reduced in the testis of Atm−/− males, and Btbd12 mutant mice exhibit increased genomic instability in the form of elevated blood cell micronucleus formation similar to that seen in Atm−/− males. Taken together, these data indicate that BTBD12 functions throughout gametogenesis to maintain genome stability, possibly by co-ordinating repair processes and/or by linking DNA repair events to the cell cycle via ATM. Mutations in genes essential for genome maintenance during meiosis can result in severe disruptions to spermatogenesis and subsequent low fertility and/or birth defects in mammals. The mammalian homolog of yeast Slx4, BTBD12, plays a critical role in somatic cell repair in mice. Here, we show that this critical function extends to mammalian germ cells, by examining the effects of a Btbd12 gene disruption in mice. Btbd12 mutant mice show severely reduced fertility, as a result of both pre-meiotic spermatogonial proliferation defects and impairment of proper meiotic progression. BTBD12 appears to be required for normal progression of double-strand break repair events that result in the formation of crossovers between maternal and paternal homologous chromosomes, with Btbd12 mutants displaying an increase in unrepaired breaks, impaired homologous chromosome interactions, and a slight increase in the number of crossover intermediates. BTBD12 protein is also down-regulated in the testes of Atm null mice, supporting previous studies showing that BTBD12 is a target of ATM kinase. These data provide new evidence about the role of BTBD12 in mammalian gametogenesis and are critical to furthering the understanding of the molecular processes involved in meiotic DNA repair.
Collapse
Affiliation(s)
- J. Kim Holloway
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Swapna Mohan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Gabriel Balmus
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Xianfei Sun
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Andrew Modzelewski
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Peter L. Borst
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Raimundo Freire
- Unidad de Investigacion, Hospital Universitario de Canarias, Tenerife, Spain
| | - Robert S. Weiss
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Paula E. Cohen
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Polluants environnementaux et troubles de la reproduction masculine : les phtalates au cœur du débat. CAHIERS DE NUTRITION ET DE DIETETIQUE 2011. [DOI: 10.1016/j.cnd.2011.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Crossan GP, van der Weyden L, Rosado IV, Langevin F, Gaillard PHL, McIntyre RE, Gallagher F, Kettunen MI, Lewis DY, Brindle K, Arends MJ, Adams DJ, Patel KJ. Disruption of mouse Slx4, a regulator of structure-specific nucleases, phenocopies Fanconi anemia. Nat Genet 2011; 43:147-52. [PMID: 21240276 PMCID: PMC3624090 DOI: 10.1038/ng.752] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 12/15/2010] [Indexed: 01/29/2023]
Abstract
The evolutionarily conserved SLX4 protein, a key regulator of nucleases, is critical for DNA damage response. SLX4 nuclease complexes mediate repair during replication and can also resolve Holliday junctions formed during homologous recombination. Here we describe the phenotype of the Btbd12 knockout mouse, the mouse ortholog of SLX4, which recapitulates many key features of the human genetic illness Fanconi anemia. Btbd12-deficient animals are born at sub-Mendelian ratios, have greatly reduced fertility, are developmentally compromised and are prone to blood cytopenias. Btbd12(-/-) cells prematurely senesce, spontaneously accumulate damaged chromosomes and are particularly sensitive to DNA crosslinking agents. Genetic complementation reveals a crucial requirement for Btbd12 (also known as Slx4) to interact with the structure-specific endonuclease Xpf-Ercc1 to promote crosslink repair. The Btbd12 knockout mouse therefore establishes a disease model for Fanconi anemia and genetically links a regulator of nuclease incision complexes to the Fanconi anemia DNA crosslink repair pathway.
Collapse
Affiliation(s)
- Gerry P Crossan
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Fanconi anemia (FA) is a human disease of bone marrow failure, leukemia, squamous cell carcinoma, and developmental anomalies, including hypogonadism and infertility. Bone marrow transplants improve hematopoietic phenotypes but do not prevent other cancers. FA arises from mutation in any of the 15 FANC genes that cooperate to repair double stranded DNA breaks by homologous recombination. Zebrafish has a single ortholog of each human FANC gene and unexpectedly, mutations in at least two of them (fancl and fancd1(brca2)) lead to female-to-male sex reversal. Investigations show that, as in human, zebrafish fanc genes are required for genome stability and for suppressing apoptosis in tissue culture cells, in embryos treated with DNA damaging agents, and in meiotic germ cells. The sex reversal phenotype requires the action of Tp53 (p53), an activator of apoptosis. These results suggest that in normal sex determination, zebrafish oocytes passing through meiosis signal the gonadal soma to maintain expression of aromatase, an enzyme that converts androgen to estrogen, thereby feminizing the gonad and the individual. According to this model, normal male and female zebrafish differ in genetic factors that control the strength of the late meiotic oocyte-derived signal, probably by regulating the number of meiotic oocytes, which environmental factors can also alter. Transcripts from fancd1(brca2) localize at the animal pole of the zebrafish oocyte cytoplasm and are required for normal oocyte nuclear architecture, for normal embryonic development, and for preventing ovarian tumors. Embryonic DNA repair and sex reversal phenotypes provide assays for the screening of small molecule libraries for therapeutic substances for FA.
Collapse
|
15
|
Rodríguez-Marí A, Cañestro C, BreMiller RA, Nguyen-Johnson A, Asakawa K, Kawakami K, Postlethwait JH. Sex reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis. PLoS Genet 2010; 6:e1001034. [PMID: 20661450 PMCID: PMC2908690 DOI: 10.1371/journal.pgen.1001034] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/17/2010] [Indexed: 11/19/2022] Open
Abstract
The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53) mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA-repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination.
Collapse
Affiliation(s)
- Adriana Rodríguez-Marí
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Cristian Cañestro
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Ruth A. BreMiller
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | | | - Kazuhide Asakawa
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka, Japan
| | - John H. Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
16
|
Abstract
Primordial germ cells (PGCs) are embryonic progenitors for the gametes. In the gastrulating mouse embryo, a small group of cells begin expressing a unique set of genes and so commit to the germline. Over the next 3-5 days, these PGCs migrate anteriorly and increase rapidly in number via mitotic division before colonizing the newly formed gonads. PGCs then express a different set of unique genes, their inherited epigenetic imprint is erased and an individual methylation imprint is established, and for female PGCs, the silent X chromosome is reactivated. At this point, germ cells (GCs) commit to either a female or male sexual lineage, denoted by meiosis entry and mitotic arrest, respectively. This developmental program is determined by cues emanating from the somatic environment.
Collapse
Affiliation(s)
- Katherine A Ewen
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | | |
Collapse
|
17
|
Borg CL, Wolski KM, Gibbs GM, O'Bryan MK. Phenotyping male infertility in the mouse: how to get the most out of a 'non-performer'. Hum Reprod Update 2009; 16:205-24. [PMID: 19758979 PMCID: PMC2816191 DOI: 10.1093/humupd/dmp032] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Functional male gametes are produced through complex processes that take place within the testis, epididymis and female reproductive tract. A breakdown at any of these phases can result in male infertility. The production of mutant mouse models often yields an unexpected male infertility phenotype. It is with this in mind that the current review has been written. The review aims to act as a guide to the ‘non-reproductive biologist’ to facilitate a systematic analysis of sterile or subfertile mice and to assist in extracting the maximum amount of information from each model. METHODS This is a review of the original literature on defects in the processes that take a mouse spermatogonial stem cell through to a fully functional spermatozoon, which result in male infertility. Based on literature searches and personal experience, we have outlined a step-by-step strategy for the analysis of an infertile male mouse line. RESULTS A wide range of methods can be used to define the phenotype of an infertile male mouse. These methods range from histological methods such as electron microscopy and immunohistochemistry, to hormone analyses and methods to assess sperm maturation status and functional competence. CONCLUSION With the increased rate of genetically modified mouse production, the generation of mouse models with unexpected male infertility is increasing. This manuscript will help to ensure that the maximum amount of information is obtained from each mouse model and, by extension, will facilitate the knowledge of both normal fertility processes and the causes of human infertility.
Collapse
Affiliation(s)
- Claire L Borg
- Department of Anatomy and Developmental Biology, The School of Biomedical Sciences, Monash University, Clayton 3800, Australia
| | | | | | | |
Collapse
|
18
|
Wiebe MS, Nichols RJ, Molitor TP, Lindgren JK, Traktman P. Mice deficient in the serine/threonine protein kinase VRK1 are infertile due to a progressive loss of spermatogonia. Biol Reprod 2009; 82:182-93. [PMID: 19696012 DOI: 10.1095/biolreprod.109.079095] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The VRK1 protein kinase has been implicated as a pro-proliferative factor. Genetic analyses of mutant alleles of the Drosophila and Caenorhabditis elegans VRK1 homologs have revealed phenotypes ranging from embryonic lethality to mitotic and meiotic defects with resultant sterility. Herein, we describe the first genetic analysis of murine VRK1. Two lines of mice containing distinct gene-trap integrations into the Vrk1 locus were established. Insertion into intron 12 (GT12) spared VRK1 function, enabling the examination of VRK1 expression in situ. Insertion into intron 3 (GT3) disrupted VRK1 function, but incomplete splicing to the gene trap rendered this allele hypomorphic (approximately 15% of wild-type levels of VRK1 remain). GT3/GT3 mice are viable, but both males and females are infertile. In testes, VRK1 is expressed in Sertoli cells and spermatogonia. The infertility of GT3/GT3 male mice results from a progressive defect in spermatogonial proliferation or differentiation, culminating in the absence of mitotic and meiotic cells in adult testis. These data demonstrate an important role for VRK1 in cell proliferation and confirm that the need for VRK1 during gametogenesis is evolutionarily conserved.
Collapse
Affiliation(s)
- Matthew S Wiebe
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
19
|
Lambrot R, Muczynski V, Lécureuil C, Angenard G, Coffigny H, Pairault C, Moison D, Frydman R, Habert R, Rouiller-Fabre V. Phthalates impair germ cell development in the human fetal testis in vitro without change in testosterone production. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:32-7. [PMID: 19165384 PMCID: PMC2627862 DOI: 10.1289/ehp.11146] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 09/08/2008] [Indexed: 05/04/2023]
Abstract
BACKGROUND Several studies have described an increasing frequency of male reproductive disorders, which may have a common origin in fetal life and which are hypothesized to be caused by endocrine disruptors. Phthalate esters represent a class of environmental endocrine-active chemicals known to disrupt development of the male reproductive tract by decreasing testosterone production in the fetal rat. OBJECTIVES Using the organ culture system we developed previously, we investigated the effects on the development of human fetal testis of one phthalate--mono-2-ethylhexyl phthalate (MEHP)--an industrial chemical found in many products, which has been incriminated as a disruptor of male reproductive function. METHODS Human fetal testes were recovered during the first trimester (7-12 weeks) of gestation, a critical period for testicular differentiation, and cultured for 3 days with or without MEHP in basal conditions or stimulated with luteinizing hormone (LH). RESULTS Whatever the dose, MEHP treatment had no effect on basal or LH-stimulated testosterone produced by the human fetal testis in vitro, although testosterone production can be modulated in our culture system. MEHP (10(-4) M) did not affect proliferation or apoptosis of Sertoli cells, but it reduced the mRNA expression of anti-Müllerian hormone. MEHP (10(-4) M) reduced the number of germ cells by increasing their apoptosis, measured by the detection of caspase-3-positive germ cells, without modification of their proliferation. CONCLUSIONS This is the first experimental demonstration that phthalates alter the development of the germ cell lineage in humans. However, in contrast to results observed in the rat, phthalates did not affect steroidogenesis.
Collapse
Affiliation(s)
- Romain Lambrot
- Laboratory of Differentiation and Radiobiology of the Gonads, Unit of Gametogenesis and Genotoxicity, Commissariat à l’Energie Atomique, Direction des Sciences du Vivant, Institute of Cellular and Molecular Radiation Biology, Stem Cells and Radiation Department, Fontenay aux Roses, France
- Université Paris Diderot-Paris, Fontenay aux Roses, France
- Unité 566, INSERM, Fontenay aux Roses, France
| | - Vincent Muczynski
- Laboratory of Differentiation and Radiobiology of the Gonads, Unit of Gametogenesis and Genotoxicity, Commissariat à l’Energie Atomique, Direction des Sciences du Vivant, Institute of Cellular and Molecular Radiation Biology, Stem Cells and Radiation Department, Fontenay aux Roses, France
- Université Paris Diderot-Paris, Fontenay aux Roses, France
- Unité 566, INSERM, Fontenay aux Roses, France
| | - Charlotte Lécureuil
- Laboratory of Differentiation and Radiobiology of the Gonads, Unit of Gametogenesis and Genotoxicity, Commissariat à l’Energie Atomique, Direction des Sciences du Vivant, Institute of Cellular and Molecular Radiation Biology, Stem Cells and Radiation Department, Fontenay aux Roses, France
- Université Paris Diderot-Paris, Fontenay aux Roses, France
- Unité 566, INSERM, Fontenay aux Roses, France
| | - Gaëlle Angenard
- Laboratory of Differentiation and Radiobiology of the Gonads, Unit of Gametogenesis and Genotoxicity, Commissariat à l’Energie Atomique, Direction des Sciences du Vivant, Institute of Cellular and Molecular Radiation Biology, Stem Cells and Radiation Department, Fontenay aux Roses, France
- Université Paris Diderot-Paris, Fontenay aux Roses, France
- Unité 566, INSERM, Fontenay aux Roses, France
| | - Hervé Coffigny
- Laboratory of Differentiation and Radiobiology of the Gonads, Unit of Gametogenesis and Genotoxicity, Commissariat à l’Energie Atomique, Direction des Sciences du Vivant, Institute of Cellular and Molecular Radiation Biology, Stem Cells and Radiation Department, Fontenay aux Roses, France
- Université Paris Diderot-Paris, Fontenay aux Roses, France
- Unité 566, INSERM, Fontenay aux Roses, France
| | - Catherine Pairault
- Laboratory of Differentiation and Radiobiology of the Gonads, Unit of Gametogenesis and Genotoxicity, Commissariat à l’Energie Atomique, Direction des Sciences du Vivant, Institute of Cellular and Molecular Radiation Biology, Stem Cells and Radiation Department, Fontenay aux Roses, France
- Université Paris Diderot-Paris, Fontenay aux Roses, France
- Unité 566, INSERM, Fontenay aux Roses, France
| | - Delphine Moison
- Laboratory of Differentiation and Radiobiology of the Gonads, Unit of Gametogenesis and Genotoxicity, Commissariat à l’Energie Atomique, Direction des Sciences du Vivant, Institute of Cellular and Molecular Radiation Biology, Stem Cells and Radiation Department, Fontenay aux Roses, France
- Université Paris Diderot-Paris, Fontenay aux Roses, France
- Unité 566, INSERM, Fontenay aux Roses, France
| | - René Frydman
- Service de Gynécologie-Obstétrique, Université Paris Sud, Hôpital Antoine Béclère, Clamart, France
- Unité 782, INSERM, Clamart, France
| | - René Habert
- Laboratory of Differentiation and Radiobiology of the Gonads, Unit of Gametogenesis and Genotoxicity, Commissariat à l’Energie Atomique, Direction des Sciences du Vivant, Institute of Cellular and Molecular Radiation Biology, Stem Cells and Radiation Department, Fontenay aux Roses, France
- Université Paris Diderot-Paris, Fontenay aux Roses, France
- Unité 566, INSERM, Fontenay aux Roses, France
| | - Virginie Rouiller-Fabre
- Laboratory of Differentiation and Radiobiology of the Gonads, Unit of Gametogenesis and Genotoxicity, Commissariat à l’Energie Atomique, Direction des Sciences du Vivant, Institute of Cellular and Molecular Radiation Biology, Stem Cells and Radiation Department, Fontenay aux Roses, France
- Université Paris Diderot-Paris, Fontenay aux Roses, France
- Unité 566, INSERM, Fontenay aux Roses, France
- Address correspondence to V. Rouiller-Fabre, Unit of Gametogenesis and Genotoxicity, LDRG/SCSR/ iRCM/DSV, Centre CEA, BP6, F-92265, Fontenay aux Roses, France. Telephone: 33-1-46-54-99-23. Fax: 33-1-46-54-99-06. E-mail:
| |
Collapse
|
20
|
Rouiller-Fabre V, Lambrot R, Muczynski V, Coffigny H, Lécureuil C, Pairault C, Bakalska M, Courtot AM, Frydman R, Habert R. [Development and regulations of testicular functions in the human foetus]. ACTA ACUST UNITED AC 2008; 36:898-907. [PMID: 18718803 DOI: 10.1016/j.gyobfe.2008.06.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 06/30/2008] [Indexed: 11/19/2022]
Abstract
Two major functions are assumed by the testis: the production of male gametes (that is, spermatozoa) and the production of steroid hormones. Both two functions are established during fetal life and are essential to the adult fertility and the masculinization of the internal tract and genitalia. For many years, our laboratory has been interested in the ontogeny of those two functions in rodents and, since 2003, in collaboration with gynecology and obstetrics service of professor R. Frydman in Antoine-Béclère hospital, we have studied them in human. The first aim of this work was to improve the global knowledge of the human fetal testis development by using both our experimental data and the literature. Then, we focused on the different defects that can occur during the fetal testis development. Indeed, male reproductive abnormalities have been steadily increasing since the last decades and are thought to be related to the concomitant increase of the concentration of contaminants and particularly of endocrine disruptors in the environment. Thus, we decided to study the effect of endocrine disruptors on human fetal testis and, more particularly, the effect of phthalates, by using an organ culture system developed for human. In contrast to the data obtained in rat, mono (ethylhexyl)-phthalate (MEHP), an active metabolite of the most widespread phthalate in the environment, does not disturb the steroidogenic function. On the other hand, it has a negative effect on the male germ cells number. This study is the first experimental demonstration of a negative effect of phthalates directly on human fetal testis.
Collapse
Affiliation(s)
- V Rouiller-Fabre
- Inserm, unité mixte de recherche de gamétogénèse et génotoxicité, unité mixte de recherche-S 566-CEA, laboratoire de différenciation et radiobiologie des gonades, université Denis-Diderot Paris-7, Fontenay-aux-Roses, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Li LY, Liu MY, Shih HM, Tsai CH, Chen JY. Human cellular protein VRK2 interacts specifically with Epstein-Barr virus BHRF1, a homologue of Bcl-2, and enhances cell survival. J Gen Virol 2006; 87:2869-2878. [PMID: 16963744 DOI: 10.1099/vir.0.81953-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BHRF1, an early gene product of Epstein-Barr virus (EBV), is structurally and functionally homologous to Bcl-2, a cellular anti-apoptotic protein. BHRF1 has been shown to protect cells from apoptosis induced by numerous external stimuli. Nasopharyngeal carcinoma is an epithelial cancer associated closely with EBV infection. Specific proteins that might interact with and modulate the BHRF1 anti-apoptotic activity in normal epithelial cells are of interest. Therefore, a cDNA library derived from normal human foreskin keratinocytes was screened by the yeast two-hybrid system and a cellular gene encoding human vaccinia virus B1R kinase-related kinase 2 (VRK2) was isolated. Interaction between the cellular VRK2 and viral BHRF1 proteins was further demonstrated by glutathione S-transferase pull-down assays, confocal laser-scanning microscopy and co-immunoprecipitation. Analyses of VRK2-deletion mutants revealed that a 108 aa fragment at the C terminus was important for VRK2 to interact with BHRF1. For BHRF1, aa 1-18 and 89-142 were crucial in interacting with VRK2 and these two regions are counterparts of Bcl-2 homology domains 4 and 1. Overexpressed VRK2 alone showed a modest effect in anti-apoptosis and appeared to enhance cell survival in the presence of BHRF1. However, this enhancement was not observed when VRK2 was co-expressed with Bcl-2. The results indicate that human VRK2 interacts specifically with EBV BHRF1 and that the interaction is involved in protecting cells from apoptosis.
Collapse
Affiliation(s)
- Long-Yuan Li
- Institute of Cancer Research, National Health Research Institutes, Taipei 114, Taiwan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Mei-Ying Liu
- Department of General Education, National Taipei College of Nursing, Taipei 112, Taiwan
- Institute of Cancer Research, National Health Research Institutes, Taipei 114, Taiwan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Hsiu-Ming Shih
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Taipei 115, Taiwan
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jen-Yang Chen
- Institute of Cancer Research, National Health Research Institutes, Taipei 114, Taiwan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
22
|
Blanco S, Klimcakova L, Vega FM, Lazo PA. The subcellular localization of vaccinia-related kinase-2 (VRK2) isoforms determines their different effect on p53 stability in tumour cell lines. FEBS J 2006; 273:2487-504. [PMID: 16704422 DOI: 10.1111/j.1742-4658.2006.05256.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
VRK is a new kinase family of unknown function. Endogenous human vacinia-related kinase 2 (VRK2) protein is present in both the nucleus and the cytosol, which is a consequence of alternative splicing of two VRK2 messages coding for proteins of 508 and 397 amino acids, respectively. VRK2A has a C-terminal hydrophobic region that anchors the protein to membranes in the endoplasmic reticulum (ER) and mitochondria, and it colocalizes with calreticulin, calnexin and mitotracker; whereas VRK2B is detected in both the cytoplasm and the nucleus. VRK2A is expressed in all cell types, whereas VRK2B is expressed in cell lines in which VRK1 is cytoplasmic. Both VRK2 isoforms have an identical catalytic N-terminal domain and phosphorylate p53 in vitro uniquely in Thr18. Phosphorylation of the p53 protein in response to cellular stresses results in its stabilization by modulating its binding to other proteins. However, p53 phosphorylation also occurs in the absence of stress. Only overexpression of the nuclear VRK2B isoform induces p53 stabilization by post-translational modification, largely due to Thr18 phosphorylation. VRK2B may play a role in controlling the binding specificity of the N-terminal transactivation domain of p53. Indeed, the p53 phosphorylated by VRK2B shows a reduction in ubiquitination by Mdm2 and an increase in acetylation by p300. Endogenous p53 is also phosphorylated in Thr18 by VRK2B, promoting its stabilization and transcriptional activation in A549 cells. The relative phosphorylation of Thr18 by VRK2B is similar in magnitude to that induced by taxol, which might use a different signalling pathway. In this context, VRK2B kinase might functionally replace nuclear VRK1. Therefore, these kinases might be components of a new signalling pathway that is likely to play a role in normal cell proliferation.
Collapse
Affiliation(s)
- Sandra Blanco
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Spain
| | | | | | | |
Collapse
|
23
|
Reinholdt LG, Munroe RJ, Kamdar S, Schimenti JC. The mouse gcd2 mutation causes primordial germ cell depletion. Mech Dev 2006; 123:559-69. [PMID: 16822657 DOI: 10.1016/j.mod.2006.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 05/15/2006] [Accepted: 05/17/2006] [Indexed: 11/23/2022]
Abstract
Germ cell depletion 2 (gcd2) is a chemically induced recessive mutation that causes infertility in male and female mice. The infertility is caused by germ cell depletion as early as 11.5 days post-coitum, when primordial germ cells have completed their migration to the embryonic gonads. Thus, the gcd2 mutation affects the proliferation and/or survival of germ cells after they arrive in the embryonic gonad, a developmental time when little is known about the requirements for germ cell proliferation and survival. The sterility phenotype is incompletely penetrant, has variable expressivity, and is modulated by strain background. The penetrance ranges from 37% in strain C57BL/6J to nearly 100% in CAST/EiJ. Genetic mapping localized gcd2 to a approximately 1Mb region on Chr 2. This interval contains a small number of annotated genes, of which none are known to have a role in germ cell development. Sequencing the coding regions of these genes failed to reveal a mutation, and BACs containing two of the candidate genes failed to rescue the phenotype. This raises the possibilities that the gcd2 mutation resides in non-coding sequences, and regulates genes outside the genetically defined critical region.
Collapse
|
24
|
O'Bryan MK, de Kretser D. Mouse models for genes involved in impaired spermatogenesis. ACTA ACUST UNITED AC 2006; 29:76-89; discussion 105-8. [PMID: 16466527 DOI: 10.1111/j.1365-2605.2005.00614.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Since the introduction of molecular biology and gene ablation technologies there have been substantial advances in our understanding of how sperm are made and fertilization occurs. There have been at least 150 different models of specifically altered gene function produced that have resulted in male infertility spanning virtually all aspects of the spermatogenic, sperm maturation and fertilization processes. While each has, or potentially will reveal, novel aspects of these processes, there is still much of which we have little knowledge. The current review is by no means a comprehensive list of these mouse models, rather it gives an overview of the potential for such models which up to this point have generally been 'knockouts'; it presents alternative strategies for the production of new models and emphasizes the importance of thorough phenotypic analysis in order to extract a maximum amount of information from each model.
Collapse
Affiliation(s)
- M K O'Bryan
- Monash Institute of Medical Research and The ARC Centre of Excellence in Biotechnology and Development, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
25
|
Zhao QG, Zhou Y, Zhu HQ, Lu BS, Huang PT. Generation of Mouse FANCL Antibody and Analysis of FANCL Protein Expression Profile in Mouse Tissues. ACTA ACUST UNITED AC 2006; 33:49-55. [PMID: 16450587 DOI: 10.1016/s0379-4172(06)60008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fanconi anemia complementation group L (FANCL) is a novel Fanconi anemia protein, which mono-ubiquitinates FANCD2 as a ubiquitin E3 ligase, and plays a crucial role in DNA damage repair and chromosome stability maintenance. FANCL is involved in the proliferation of primordial germ cells (PGC) in early embryonic stages, and may play a role in the development of germ cells by forming a novel testis-specific network with testis-specific proteins in the adult testis. FancL cDNA sequence was cloned by RT-PCR from mouse testis total RNA, and expressed in E. coli BL21(DE3). Rabbit FANCL polyclonal antiserum was generated using the recombinant protein as the antigen. To prepare an antigen column for affinity purification of FANCL-specific antibody, recombinant His-tagged FANCL was purified by Ni(2+)-charged HiTrap Chelating HP column and coupled to an NHS-activated HiTrap column. To confirm the activity and specificity of the FANCL antibody, we constructed plasmid pCMV-HA/FANCL to transfect HEK 293T cells. Transiently expressed HA-FANCL fusion protein was analyzed by immunoblotting with both the FANCL antibody and HA monoclonal antibody. The antibody was used in Western blotting to check the expression of FANCL protein in mouse tissues. We found wide expression of FANCL in brain, muscle, heart, lung, liver, spleen, kidney, testis, ovary and uterus, indicating the functional importance of this novel protein.
Collapse
Affiliation(s)
- Qing-Guo Zhao
- Beijing Institute of Biotechnology, Beijing 100071, China
| | | | | | | | | |
Collapse
|
26
|
Dolatshad H, Campbell EA, O'Hara L, Maywood ES, Hastings MH, Johnson MH. Developmental and reproductive performance in circadian mutant mice. Hum Reprod 2005; 21:68-79. [PMID: 16210390 DOI: 10.1093/humrep/dei313] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Genes underlying circadian rhythm generation are expressed in many tissues. We explore a role for circadian rhythms in the timing and efficacy of mouse reproduction and development using a genetic approach. METHODS We compare fecundity in Clock(Delta19) mutant mice (a dominant-negative protein essential for circadian rhythm activity) and in Vipr2-/- null mutant mice (affecting the generation and output of the circadian rhythm of the hypothalamic suprachiasmatic nucleus) with wild type (WT) litter mates under both a 12 h:12 h light:dark cycle and continuous darkness. RESULTS Uteri from Clock(Delta19) mice show no circadian rhythm and Vipr2-/- mice show a phase-advanced rhythm compared to WT uteri. In neither mutant line were homozygous or heterozygous fetuses lethal. Sexually mature adults of both mutant lines showed mildly reduced male in vivo (but not in vitro) fertility and irregular estrous cycles exacerbated by continuous darkness. However, pregnancy rates and neonatal litter sizes were not affected. The Clock(Delta19) mutant line was distinguishable from the Vipr2-/- null mutant line in showing more peri-natal delivery problems and very poor survival of offspring to weaning. CONCLUSIONS A fully functional central and peripheral circadian clock is not essential for reproduction and development to term, but has critical roles peri-natally and post-partum.
Collapse
Affiliation(s)
- H Dolatshad
- Department of Anatomy, Downing Street, Cambridge CB2 3DY, UK
| | | | | | | | | | | |
Collapse
|
27
|
Zhang J, Wang Y, Zhou Y, Cao Z, Huang P, Lu B. Yeast two-hybrid screens imply that GGNBP1, GGNBP2 and OAZ3 are potential interaction partners of testicular germ cell-specific protein GGN1. FEBS Lett 2005; 579:559-66. [PMID: 15642376 DOI: 10.1016/j.febslet.2004.10.112] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 10/11/2004] [Accepted: 10/13/2004] [Indexed: 11/27/2022]
Abstract
Gametogenetin (Ggn) is a testicular germ cell-specific gene specifically expressed from late pachytene spermatocytes through round spermatids. The function of gametogenetin protein 1 (GGN1) remains unknown. Here, we used the yeast two-hybrid approach to look for more GGN1 interacting proteins. We found that gametogenetin binding protein 1 (GGNBP1), gametogenetin binding protein 2 (GGNBP2) and ornithine decarboxylase antizyme 3 (OAZ3) were potential GGN1 interaction partners. We determined the regions mediating the interactions and further showed the interactions between the proteins in mammalian cells by colocalization and coimmunoprecipitation experiments. Our work suggested that GGN1, GGNBP1, GGNBP2 and OAZ3 could be involved in a common process associated with spermatogenesis.
Collapse
Affiliation(s)
- Jin Zhang
- Beijing Institute of Biotechnology, Beijing 100071, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Zhao Q, Zhou Y, Cao Z, Zhu H, Huang P, Lu B. Germ-cell specific protein gametogenetin protein 2 (GGN2), expression in the testis, and association with intracellular membrane. Mol Reprod Dev 2005; 72:31-9. [PMID: 15892049 DOI: 10.1002/mrd.20313] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gametogenetin (Ggn) is a germ cell-specific gene with multiple splicing variants giving rise to three predicted protein products, gametogenetin protein 1 (GGN1), gametogenetin protein 2 (GGN2), and gametogenetin protein 3 (GGN3). GGN1 and GGN3 were reported to interact with Fanconi anemia complementation group L (FANCL) per proliferation of germ cells (POG), a ubiquitin E3 ligase involved in germ-cell-deficient (gcd) mutation. While GGN2, another protein from Ggn by alternative splicing did not interact with FANCL/POG since it lacked the domain mediating the interaction. Little is known about the expression and function of GGN2. Here through Northern blotting experiment we showed that Ggn was mainly expressed in the testis but hardly detectable in the ovary or the somatic tissues. By preparing GGN2-specific antibody we showed that GGN2 was detectable and only detectable in the testis. By comparing the expression of Ggn mRNA and GGN2 protein in developing mouse testis, we showed that there was no evident delay of the translation of Ggn mRNA after their transcription. Both the subcellular localization study and the germ cell membrane protein fractionation implied that GGN2 associated with the intracellular membrane system. Co-fractionation on Superdex and yeast two-hybrids suggested that like GGN1, GGN2 was also a potential interaction partner of gametogenetin binding protein 1 (GGNBP1). Our data suggested that gametogenetin proteins were mainly involved in male germ cell development and GGN2 was also a possible interaction partner of GGNBP1. Like GGN1, GGN2 was also possibly involved in cell trafficking. The possible involvement of GGN2 in acrosome biogenesis was proposed.
Collapse
Affiliation(s)
- Qingguo Zhao
- Beijing Institute of Biotechnology, Beijing, China
| | | | | | | | | | | |
Collapse
|
29
|
Kuo YM, Duncan JL, Westaway SK, Yang H, Nune G, Xu EY, Hayflick SJ, Gitschier J. Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia. Hum Mol Genet 2004; 14:49-57. [PMID: 15525657 PMCID: PMC2117329 DOI: 10.1093/hmg/ddi005] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pantothenate kinase-associated neurodegeneration (PKAN, formerly known as Hallervorden-Spatz syndrome) is a rare but devastating neurodegenerative disorder, resulting from an inherited defect in coenzyme A biosynthesis. As pathology in the human condition is limited to the central nervous system, specifically the retina and globus pallidus, we have generated a mouse knock-out of the orthologous murine gene (Pank2) to enhance our understanding of the mechanisms of disease and to serve as a testing ground for therapies. Over time, the homozygous null mice manifest retinal degeneration, as evidenced by electroretinography, light microscopy and pupillometry response. Specifically, Pank2 mice show progressive photoreceptor decline, with significantly lower scotopic a- and b-wave amplitudes, decreased cell number and disruption of the outer segment and reduced pupillary constriction response when compared with those of wild-type littermates. Additionally, the homozygous male mutants are infertile due to azoospermia, a condition that was not appreciated in the human. Arrest occurs in spermiogenesis, with complete absence of elongated and mature spermatids. In contrast to the human, however, no changes were observed in the basal ganglia by MRI or by histological exam, nor were there signs of dystonia, even after following the mice for one year. Pank2 mice are 20% decreased in weight when compared with their wild-type littermates; however, dysphagia was not apparent. Immunohistochemistry shows staining consistent with localization of Pank2 to the mitochondria in both the retina and the spermatozoa.
Collapse
Affiliation(s)
- Yien-Ming Kuo
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Jacque L. Duncan
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Shawn K. Westaway
- Department of Molecular and Medical Genetics, Oregon Health and Science University, OR, USA
| | - Haidong Yang
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - George Nune
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Eugene Yujun Xu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Susan J. Hayflick
- Department of Molecular and Medical Genetics, Oregon Health and Science University, OR, USA
| | - Jane Gitschier
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
- *To whom correspondence should be addressed at: HSE-901, PO Box 0794, University of California, San Francisco, CA 94143, USA. Tel: +1 4154768729; Fax: +1 4155020720;
| |
Collapse
|
30
|
Zhou Y, Zhao Q, Bishop CE, Huang P, Lu B. Identification and characterization of a novel testicular germ cell-specific geneGgnbp1. Mol Reprod Dev 2004; 70:301-7. [PMID: 15625700 DOI: 10.1002/mrd.20214] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A novel gene Ggnbp1 was identified during yeast two-hybrid screening of gametogenetin protein 1 (GGN1)-interacting proteins. Ggnbp1 gene was found in mouse, rat, and human genomes but not in sequenced yeast, worms, fly, or fish genomes. Northern blotting analysis revealed that the gene was specifically expressed in the testis but not expressed in the other tissues. In situ hybridization showed that it was testicular germ cell-specific and was specifically expressed in later primary spermatocytes, meiotic cells, and early round spermatids. Western blotting analysis detected a protein of expected size in and only in the testis. By making membrane and cytosolic fractions of germ cells, we were able to show that GGNBP1 associated with the membrane. The identification and characterization of a novel germ cell-specific gene Ggnbp1 is the first step toward the defining of the functions of Ggnbp1 in spermatogenesis.
Collapse
Affiliation(s)
- Yu Zhou
- Beijing Institute of Biotechnology, 20 Dong Da Jie Street, Beijing, China, 100071
| | | | | | | | | |
Collapse
|
31
|
Abstract
Spermatogonia in the mouse testis arise from early postnatal gonocytes that are derived from primordial germ cells (PGCs) during embryonic development. The proliferation, self-renewal, and differentiation of spermatogonial stem cells provide the basis for the continuing integrity of spermatogenesis. We previously reported that Pin1-deficient embryos had a profoundly reduced number of PGCs and that Pin1 was critical to ensure appropriate proliferation of PGCs. The current investigation aimed to elucidate the function of Pin1 in postnatal germ cell development by analyzing spermatogenesis in adult Pin1-/- mice. Although Pin1 was ubiquitously expressed in the adult testis, we found it to be most highly expressed in spermatogonia and Sertoli cells. Correspondingly, we show here that Pin1 plays an essential role in maintaining spermatogonia in the adult testis. Germ cells in postnatal Pin1-/- testis were able to initiate and complete spermatogenesis, culminated by production of mature spermatozoa. However, there was a progressive and age-dependent degeneration of the spermatogenic cells in Pin1-/- testis that led to complete germ cell loss by 14 mo of age. This depletion of germ cells was not due to increased cell apoptosis. Rather, detailed analysis of the seminiferous tubules using a germ cell-specific marker revealed that depletion of spermatogonia was the first step in the degenerative process and led to disruption of spermatogenesis, which resulted in eventual tubule degeneration. These results reveal that the presence of Pin1 is required to regulate proliferation and/or cell fate of undifferentiated spermatogonia in the adult mouse testis.
Collapse
Affiliation(s)
- Fawn W Atchison
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|