1
|
Chen L, Tang B, Xie G, Yang R, Zhang B, Wang Y, Zhang Y, Jiang D, Zhang X. Bovine Pluripotent Stem Cells: Current Status and Prospects. Int J Mol Sci 2024; 25:2120. [PMID: 38396797 PMCID: PMC10889747 DOI: 10.3390/ijms25042120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Pluripotent stem cells (PSCs) can differentiate into three germ layers and diverse autologous cell lines. Since cattle are the most commonly used large domesticated animals, an important food source, and bioreactors, great efforts have been made to establish bovine PSCs (bPSCs). bPSCs have great potential in bovine breeding and reproduction, modeling in vitro differentiation, imitating cancer development, and modeling diseases. Currently, bPSCs mainly include bovine embryonic stem cells (bESCs), bovine induced pluripotent stem cells (biPSCs), and bovine expanded potential stem cells (bEPSCs). Establishing stable bPSCs in vitro is a critical scientific challenge, and researchers have made numerous efforts to this end. In this review, the category of PSC pluripotency; the establishment of bESCs, biPSCs, and bEPSCs and its challenges; and the application outlook of bPSCs are discussed, aiming to provide references for future research.
Collapse
Affiliation(s)
- Lanxin Chen
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Bo Tang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guanghong Xie
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Rui Yang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Boyang Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yueqi Wang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Daozhen Jiang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xueming Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
2
|
Oliveira CS, Saraiva NZ, Oliveira LZ. Morphology of 16-cell embryo in bovine: Inside cells, compaction, fragmentation and effects of X-sorted semen. Anat Histol Embryol 2024; 53:e13015. [PMID: 38230835 DOI: 10.1111/ahe.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
In mouse embryos, inside cells are allocated in 16-cell embryos through a well-orchestrated sequence of events involving compaction and polarization. The emergence of inside cells is of great importance as itl later gives rise to the inner cell mass and epiblast. In this study, we report the sequence of critical events in embryology (compaction, inside cells allocation and fragmentation) in bovine 72 h.p.i. 9-16 cell embryos, while also investigating the effects of X-sorted semen on these events. We found a wide distribution of total cell numbers among embryos, attributed to an asynchronous cleavage pattern and blastomere death. Additionally, 13% of embryos displayed irregular shapes. The establishment of the inside cell compartment increased (p < 0.01) in embryos with more cells. However, only 53.8% of 16-cell embryos presented inside cells. Compaction was present in 32.4% embryos and was positively correlated (p = 0.03, OR 3.02) with the establishment of inside cells, occurring independently of cell number. Fragmentation was present in 36% embryos, being more frequent (p = 0.01) in embryos with lower cell numbers. A possible association between irregular shape and fragmentation was considered (p = 0.06). The use of X-sorted semen had no effect on most evaluated parameters. However, it did have a marked effect on cleavage rate (p < 0.01) and the arrest of 2- and 4- cell embryos. In conclusion, bovine embryos exhibit an asynchronous cleavage pattern, high levels of fragmentation, and demonstrate compaction and inside cell allocation later in development compared to mouse embryos. Semen X-sorting has major effects on cleavage and embryo arrest. Further studies are needed to elucidate the association between irregularly shaped embryos and fragmentation, as well as the effects of sex on inside cell allocation.
Collapse
Affiliation(s)
| | | | - Leticia Zoccolaro Oliveira
- Department of Veterinary Clinics and Surgery, Veterinary School, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
3
|
Bhat RA, Rafi H, Tardiolo G, Fazio F, Aragona F, Zumbo A, Coelho C, D'Alessandro E. The role of embryonic stem cells, transcription and growth factors in mammals: A review. Tissue Cell 2023; 80:102002. [PMID: 36549226 DOI: 10.1016/j.tice.2022.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Mammals represent a relevant species in worldwide cultures with significant commercial value. These animals are considered an attractive large animal model for biomedical and biotechnology research. The development of large animal experimental models may open alternative strategies for investigating stem cells (SCs) physiology and potential application in the veterinary field. The embryonic stem cells (ESCs) are known to possess natural pluripotency that confers the ability to differentiate into various tissues in vivo and in vitro. These notable characteristics can be useful for research and innovative applications, including biomedicine, agriculture and industry. Transcription factors play a crucial role in preserving stem cell self-renewal, whereas growth factors are involved in both growth and differentiation. However, to date, many questions concerning pluripotency, cellular differentiation regulator genes, and other molecules such as growth factors and their interactions in many mammalian species remain unresolved. The purpose of this review is to provide an overall review regarding the study of ESCs in mammals and briefly discuss the role of transcription and growth factors.
Collapse
Affiliation(s)
- Rayees Ahmad Bhat
- Department of Zoology, Kurukshetra University, Kurukshetra 136119, India
| | - Humera Rafi
- Department of Chemistry, University of Gujrat, Pakistan
| | - Giuseppe Tardiolo
- Department of Veterinary Sciences, University of Messina, Via Palatucci snc, Messina 98168, Italy
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Via Palatucci snc, Messina 98168, Italy.
| | - Francesca Aragona
- Department of Veterinary Sciences, University of Messina, Via Palatucci snc, Messina 98168, Italy
| | - Alessandro Zumbo
- Department of Veterinary Sciences, University of Messina, Via Palatucci snc, Messina 98168, Italy
| | - Clarisse Coelho
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias (ULHT), Campo Grande 376, Lisboa 1749-024, Portugal
| | - Enrico D'Alessandro
- Department of Veterinary Sciences, University of Messina, Via Palatucci snc, Messina 98168, Italy
| |
Collapse
|
4
|
da Silva CG, Martins CF. Stem Cells as Nuclear Donors for Mammalian Cloning. Methods Mol Biol 2023; 2647:105-119. [PMID: 37041331 DOI: 10.1007/978-1-0716-3064-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Mammals are routinely cloned by introducing somatic nuclei into enucleated oocytes. Cloning contributes to propagating desired animals, to germplasm conservation efforts, among other applications. A challenge to more broader use of this technology is the relatively low cloning efficiency, which inversely correlates with donor cell differentiation status. Emerging evidence suggests that adult multipotent stem cells improve cloning efficiency, while the greater potential of embryonic stem cells for cloning remains restricted to the mouse. The derivation of pluripotent or totipotent stem cells from livestock and wild species and their association with modulators of epigenetic marks in donor cells should increase cloning efficiency.
Collapse
Affiliation(s)
- Carolina Gonzales da Silva
- Federal Institute of Education, Science and Technology of Bahia, Campus Xique-Xique, Xique-Xique, Bahia, Brazil
| | - Carlos Frederico Martins
- Brazilian Agricultural Research Corporation (Embrapa Cerrados), Brasília, Federal District, Brazil.
| |
Collapse
|
5
|
Jamwal S, Ansari S, Malakar D, Kaushik JK, Kumar S, Mohanty AK. Production of biologically active recombinant buffalo leukemia inhibitory factor (BuLIF) in Escherichia Coli. J Genet Eng Biotechnol 2022; 20:47. [PMID: 35294648 PMCID: PMC8927517 DOI: 10.1186/s43141-022-00328-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/11/2022] [Indexed: 12/27/2022]
Abstract
Background Leukemia inhibitory factor (LIF) is a multifunctional cytokine which plays multiple roles in different biological processes such as implantation, bone remodeling, and hematopoiesis. The buESCs are difficult to culture due to lack of proper understanding of the culture conditions. LIF is one of the important factors which maintain the pluripotency in embryonic stem cells and commercial LIF from murine and human origin is used in the establishment of buffalo embryonic stem cells (buESCs). The LIF from a foreign origin is not able to maintain pluripotency and proliferation in buESCs for a long term which is contributed by difference in the binding sites on LIF; therefore, culture medium supplemented with buffalo-specific LIF may enhance the efficiency of buESCs by improving the environment of culture conditions. The high cost of LIF is another major drawback which restricts buESCs research, thus limits the scope of buffalo stem cell use. Various methods have been developed to produce human and murine LIF in prokaryotic system. However, Buffalo leukemia inhibitory factor (BuLIF) has not been yet produced in prokaryotic system. Here, we describe a simple strategy for the expression and purification of biologically active BuLIF in Escherichia coli (E. coli). Results The BuLIF cDNA from buffalo (Bubalus bubalis) was cloned into pET22b(+) and expressed in E. coli Lemo-21(DE3). The expression of BuLIF was directed into periplasmic space of E. coli which resulted in the formation of soluble recombinant protein. One step immobilized metal affinity chromatography (IMAC chromatography) was performed for purification of BuLIF with ≥ 95% of homogeneity. The recombinant protein was confirmed by western blot and identified by mass spectroscopy. The biological activity of recombinant BuLIF was determined on murine myeloid leukemic cells (M1 cells) by MTT proliferation assay. The addition of BuLIF increased the reduction of MTT by stimulated M1 cells in a dose-dependent manner. The BuLIF induced the formation of macrophage like structures from M1 cells where they engulfed fluorescent latex beads. The recombinant BuLIF successfully maintained pluripotency in buffalo embryonic stem cells (buESCs) and were positive for stem cells markers such as Oct-4, Sox-2, Nanog, and alkaline phosphatase activity. Conclusions The present study demonstrated a simple method for the production of bioactive BuLIF in E. coli through single step purification. BuLIF effectively maintained buffalo embryonic stem cells pluripotency. Thus, this purified BuLIF can be used in stem cell study, biomedical, and agricultural research. Supplementary Information The online version contains supplementary material available at 10.1186/s43141-022-00328-1.
Collapse
Affiliation(s)
- Shradha Jamwal
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Shama Ansari
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Dhruba Malakar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Jai Kumar Kaushik
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India
| | - Sudarshan Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, India.
| | - Ashok Kumar Mohanty
- Indian Council of Agricultural Research-Indian Veterinary Research Institute, Mukteshwar, India.
| |
Collapse
|
6
|
Pillai VV, Koganti PP, Kei TG, Gurung S, Butler WR, Selvaraj V. Efficient induction and sustenance of pluripotent stem cells from bovine somatic cells. Biol Open 2021; 10:272681. [PMID: 34719702 PMCID: PMC8565620 DOI: 10.1242/bio.058756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although derivation of naïve bovine embryonic stem cells is unachieved, the possibility for generation of bovine induced pluripotent stem cells (biPSCs) has been generally reported. However, attempts to sustain biPSCs by promoting self-renewal have not been successful. Methods established for maintaining murine and human induced pluripotent stem cells (iPSCs) do not support self-renewal of iPSCs for any bovid species. In this study, we examined methods to enhance complete reprogramming and concurrently investigated signaling relevant to pluripotency of the bovine blastocyst inner cell mass (ICM). First, we identified that forced expression of SV40 large T antigen together with the reprogramming genes (OCT4, SOX2, KLF4 and MYC) substantially enhanced the reprogramming efficacy of bovine fibroblasts to biPSCs. Second, we uncovered that TGFβ signaling is actively perturbed in the ICM. Inhibition of ALK4/5/7 to block TGFβ/activin/nodal signaling together with GSK3β and MEK1/2 supported robust in vitro self-renewal of naïve biPSCs with unvarying colony morphology, steady expansion, expected pluripotency gene expression and committed differentiation plasticity. Core similarities between biPSCs and stem cells of the 16-cell-stage bovine embryo indicated a stable ground state of pluripotency; this allowed us to reliably gain predictive understanding of signaling in bovine pluripotency using systems biology approaches. Beyond defining a high-fidelity platform for advancing biPSC-based biotechnologies that have not been previously practicable, these findings also represent a significant step towards understanding corollaries and divergent aspects of bovine pluripotency. This article has an associated First Person interview with the joint first authors of the paper. Summary: Pluripotency reprogramming by overcoming the stable epigenome of bovine cells, and uncovering precise early embryo self-renewal mechanisms enables sustenance and expansion of authentic induced pluripotent stem cells in vitro.
Collapse
Affiliation(s)
- Viju Vijayan Pillai
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - Prasanthi P Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - Tiffany G Kei
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - Shailesh Gurung
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - W Ronald Butler
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| |
Collapse
|
7
|
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13:1-29. [PMID: 33584977 PMCID: PMC7859985 DOI: 10.4252/wjsc.v13.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The recent progress in derivation of pluripotent stem cells (PSCs) from farm animals opens new approaches not only for reproduction, genetic engineering, treatment and conservation of these species, but also for screening novel drugs for their efficacy and toxicity, and modelling of human diseases. Initial attempts to derive PSCs from the inner cell mass of blastocyst stages in farm animals were largely unsuccessful as either the cells survived for only a few passages, or lost their cellular potency; indicating that the protocols which allowed the derivation of murine or human embryonic stem (ES) cells were not sufficient to support the maintenance of ES cells from farm animals. This scenario changed by the innovation of induced pluripotency and by the development of the 3 inhibitor culture conditions to support naïve pluripotency in ES cells from livestock species. However, the long-term culture of livestock PSCs while maintaining the full pluripotency is still challenging, and requires further refinements. Here, we review the current achievements in the derivation of PSCs from farm animals, and discuss the potential application areas.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India.
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Iqbal Hyder
- Department of Physiology, NTR College of Veterinary Science, Gannavaram 521102, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institute, Federal Institute of Animal Health, Neustadt 31535, Germany
| |
Collapse
|
8
|
PATHAK JUHI, KHARCHE SD, GOEL ANJANA, SIKARWAR AKS, SARASWAT SONIA, RANJAN RAVI, GANGWAR CHETNA, SINGH SP, GOEL AK, CHAUHAN MS. Assessment of different stages of parthenogenetic embryos for production of embryonic stem cell like colonies. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2020. [DOI: 10.56093/ijans.v90i5.104614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Parthenogenetic activation of oocytes has gained new interest in recent years as an alternative approach to create embryos with no reproductive purpose for research in areas such as assisted reproduction technologies itself and for derivation of clinical grade pluripotent embryonic stem cells for regenerative medicine. In this study, we described the production of goat parthenogenetic ES like cells from different stages of parthenogenetic embryos. We compared the source material on the pESCs outgrowth and culture. 8-16 cell stage embryos, morula, blastocysts and ICM (inner cell mass) from hatched blastocysts produced from chemical activation were cultured on goat fetal fibroblast monolayer in stem cell culture media. Colonies were passaged when signs of differentiation were visible. ESC like colonies were cultured on feeder cells in the presence of hLIF however, some ESC like colonies were also cultured in absence of hLIF for random differentiation. In our study, ESC like colony formation with ICM of hatched blastocyst was comparatively higher as compared to blastocysts while ESC like colony formation with blastocysts and ICM of hatched blastocyst was significantly higher as compared 8-16 cells and morula. It is observed that inner cell mass source is an important criterion for the ES like cells derivation in goats. Also, in comparison to the expanded blastocysts (80.10%), hatched blastocysts showed higher (86.06%) attachment rate and primary colony formation rate. ESC like colonies in absence of hLIF differentiated in vitro into epithelial like and neuronal like cells. Undifferentiated ESC like colonies stained positive for alkaline phosphatase, SSEA-3 and OCT-4.
Collapse
|
9
|
Navarro M, Soto DA, Pinzon CA, Wu J, Ross PJ. Livestock pluripotency is finally captured in vitro. Reprod Fertil Dev 2020; 32:11-39. [PMID: 32188555 DOI: 10.1071/rd19272] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pluripotent stem cells (PSCs) have demonstrated great utility in improving our understanding of mammalian development and continue to revolutionise regenerative medicine. Thanks to the improved understanding of pluripotency in mice and humans, it has recently become feasible to generate stable livestock PSCs. Although it is unlikely that livestock PSCs will be used for similar applications as their murine and human counterparts, new exciting applications that could greatly advance animal agriculture are being developed, including the use of PSCs for complex genome editing, cellular agriculture, gamete generation and invitro breeding schemes.
Collapse
Affiliation(s)
- Micaela Navarro
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Delia A Soto
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Carlos A Pinzon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA; and Corresponding author.
| |
Collapse
|
10
|
Casals JB, Pieri NCG, Roballo KCS, Bressan FF, Favaron PO, Martins DDS, Ambrósio CE. Pluripotent stem cells proliferation is associated with placentation in dogs. Anim Reprod 2020; 17:e20200040. [PMID: 33029216 PMCID: PMC7534554 DOI: 10.1590/1984-3143-ar2020-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pluripotent stem cells have been studied as source of cells for regenerative medicine and acquire or genetic diseases, as an innovative therapy. Most tissues have stem cells populations, however in few quantities or impossible to be used during adult life, which lead to scientists look for new sources. Thus, this study aimed to analyze the presence of pluripotent cells in the uterus and placenta, following up non-pregnant, pregnant (begin, middle, and final), and postpartum periods in dogs. The uteri were obtained from social castration programs for population control in Pirassununga, Sao Paulo, Brazil. It was collected 20 uteri at different stages. The samples were fixed and processed for immunohistochemical analysis of NANOG, OCT4 and SOX2 expression, knowing as pluripotent stem cells makers. Our results showed positive expression for NANOG, OCT4 and SOX2 in all stages of gestation and nonpregnant uterus; however, we highlight some quantitative different between stages. OCT4 showed more expression in non-pregnant uterus than NANOG and SOX2, and its expression increased in pregnant uterus. In pregnant uterus there was more expression of NANOG than OCT4 and SOX2. Interesting, no difference was found between these markers in the other periods. In conclusion, it was possible to identify pluripotent stem cells in all periods in dog placenta and uterus, however during the early stage of pregnancy we observed more pluripotent stem cells than in all the others periods confirming the high plasticity and regeneration capacity of the uterine tissue.
Collapse
Affiliation(s)
- Juliana Barbosa Casals
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Naira Caroline Godoy Pieri
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Kelly Cristine Santos Roballo
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil.,School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Fabiana Fernandes Bressan
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil.,Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Phelipe Oliveira Favaron
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Daniele Dos Santos Martins
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil.,Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Carlos Eduardo Ambrósio
- Departamento de Cirurgia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil.,Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| |
Collapse
|
11
|
Bressan FF, Bassanezze V, de Figueiredo Pessôa LV, Sacramento CB, Malta TM, Kashima S, Fantinato Neto P, Strefezzi RDF, Pieri NCG, Krieger JE, Covas DT, Meirelles FV. Generation of induced pluripotent stem cells from large domestic animals. Stem Cell Res Ther 2020; 11:247. [PMID: 32586372 PMCID: PMC7318412 DOI: 10.1186/s13287-020-01716-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/23/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPSCs) have enormous potential in developmental biology studies and in cellular therapies. Although extensively studied and characterized in human and murine models, iPSCs from animals other than mice lack reproducible results. METHODS Herein, we describe the generation of robust iPSCs from equine and bovine cells through lentiviral transduction of murine or human transcription factors Oct4, Sox2, Klf4, and c-Myc and from human and murine cells using similar protocols, even when different supplementations were used. The iPSCs were analyzed regarding morphology, gene and protein expression of pluripotency factors, alkaline phosphatase detection, and spontaneous and induced differentiation. RESULTS Although embryonic-derived stem cells are yet not well characterized in domestic animals, generation of iPS cells from these species is possible through similar protocols used for mouse or human cells, enabling the use of pluripotent cells from large animals for basic or applied purposes. Herein, we also infer that bovine iPS (biPSCs) exhibit similarity to mouse iPSCs (miPSCs), whereas equine iPSs (eiPSCs) to human (hiPSCs). CONCLUSIONS The generation of reproducible protocols in different animal species will provide an informative tool for producing in vitro autologous pluripotent cells from domestic animals. These cells will create new opportunities in animal breeding through transgenic technology and will support a new era of translational medicine with large animal models.
Collapse
Affiliation(s)
- Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
- Postgraduate Program in Anatomy of Domestic and Wild Animals, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Center for Cell-Based Therapy, Regional Blood Center, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Vinícius Bassanezze
- Heart Institute (INCOR), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Present Address: Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
- Postgraduate Program in Anatomy of Domestic and Wild Animals, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Chester Bittencourt Sacramento
- Heart Institute (INCOR), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Present Address: Weill Cornell Medicine, Cornell University, Ithaca, USA
| | - Tathiane Maistro Malta
- Center for Cell-Based Therapy, Regional Blood Center, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Simone Kashima
- Center for Cell-Based Therapy, Regional Blood Center, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Paulo Fantinato Neto
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
- Postgraduate Program in Anatomy of Domestic and Wild Animals, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ricardo De Francisco Strefezzi
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - José Eduardo Krieger
- Heart Institute (INCOR), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-Based Therapy, Regional Blood Center, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
- Postgraduate Program in Anatomy of Domestic and Wild Animals, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Center for Cell-Based Therapy, Regional Blood Center, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
12
|
Siriboon C, Li TS, Yu CW, Chern JW, Ju JC. Novel histone deacetylase inhibitors and embryo aggregation enhance cloned embryo development and ES cell derivation in pigs. PLoS One 2018; 13:e0204588. [PMID: 30261020 PMCID: PMC6160101 DOI: 10.1371/journal.pone.0204588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 09/11/2018] [Indexed: 11/26/2022] Open
Abstract
The histone deacetylase inhibitor (HDACi) has been investigated for treating cancers and many other diseases as well as enhancing the reprogramming efficiency in cloned embryos for decades. In the present study, we investigated the effects of two novel HDAC inhibitors, i.e., HDACi-14 and -79, at the concentrations of 0, 1, 2, or 4 μM on the development of embryos cloned by the oocyte bisection cloning technique (OBCT). Blastocyst rates for the reconstructed embryos reached 60% in the 2 μM HDACi-14-treated groups, which was higher (P < 0.05) compared to the untreated group (36.9%). Similarly, HDACi-79 treatment at 2 and 4 μM also conferred higher (P < 0.05) blastocyst rates than that of the untreated group (79.4, 74.2, and 50.0%, respectively). Both HDACi-14 and -79 treatments had no beneficial effect on total cell numbers and apoptotic indices of cloned embryos (P > 0.05). Histone acetylation profile by both HDACi-14 (2 μM) and -79 (2 μM) treatments demonstrated a drastic increase (P < 0.05) mainly in two-cell stage embryos when compared to the control group. After seeding on the feeder cells, the aggregated cloned blastocysts produced by the HDACi-79 treatment showed a significant increase of primary outgrowths compared to the control group (60.0% vs. 42.9%; P < 0.05). Finally, the cloned embryo-derived ES cell lines from aggregated cloned embryos produced from the HDACi-79-treated, HDACi-14-treated and control groups were established (5, 3, and 2 lines, respectively). In conclusion, the novel histone deacetylation inhibitors improve blastocyst formation and potentially increase the derivation efficiency of ES cell lines from the cloned porcine embryos produced in vitro. Depending on the purposes, some fine-tuning may be required to maximize its beneficial effects of these newly synthesized chemicals.
Collapse
Affiliation(s)
- Chawalit Siriboon
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Animal Science, Faculty of Agriculture, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Tzai-Shiuan Li
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Chao-Wu Yu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Ji-Wang Chern
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Jyh-Cherng Ju
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
13
|
Recombinant purified buffalo leukemia inhibitory factor plays an inhibitory role in cell growth. PLoS One 2018; 13:e0198523. [PMID: 29897967 PMCID: PMC5999108 DOI: 10.1371/journal.pone.0198523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/21/2018] [Indexed: 01/22/2023] Open
Abstract
Leukemia Inhibitory Factor (LIF) is a polyfunctional cytokine, involved in numerous regulatory effects in vivo and in vitro, varying from cell proliferation to differentiation, and has therapeutic potential for treating various diseases. In the current study, a COS-1 cell line overexpressing recombinant Buffalo LIF (rBuLIF) was established. The rBuLIF was purified to homogeneity from the total cell lysate of COS-1 cells using a two-step affinity chromatography. The purified LIF was confirmed by western blot and mass spectrometer (MS/MS). Particularly, high-resolution MS has identified the rBuLIF with 73% of sequence coverage with highest confidence parameters and with the search engine score of 4580. We determined the molecular weight of rBuLIF protein to be 58.99 kDa and 48.9 kDa with and without glycosylation, respectively. Moreover, the purified rBuLIF was verified to be functionally active by measuring the growth inhibition of M1 myeloid leukemia cells, revealing a maximum inhibition at 72 hours and half-maximal effective concentration (EC50) of 0.0555 ng/ml, corresponding to a specific activity of >1.6×107 units/mg. Next, we evaluated the effect of rBuLIF on buffalo mammary epithelial cell lines for its role in involution and also identified the IC50 value for BuMEC migrating cells to be 77.8 ng/ml. Additionally, the treatment of MECs (BuMEC and EpH4) displayed significant (P < 0.05) reduction in growth progression, as confirmed by qRT-PCR analysis, suggesting its strong involvement in the involution of the mammary gland in vivo. Thus, we conclude that the glycosylated rBuLIF, purified from COS-1 cells was found to be functionally active as its natural counterpart.
Collapse
|
14
|
Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc Natl Acad Sci U S A 2018; 115:2090-2095. [PMID: 29440377 DOI: 10.1073/pnas.1716161115] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Embryonic stem cells (ESCs) are derived from the inner cell mass of preimplantation blastocysts. From agricultural and biomedical perspectives, the derivation of stable ESCs from domestic ungulates is important for genomic testing and selection, genome engineering, and modeling human diseases. Cattle are one of the most important domestic ungulates that are commonly used for food and bioreactors. To date, however, it remains a challenge to produce stable pluripotent bovine ESC lines. Employing a culture system containing fibroblast growth factor 2 and an inhibitor of the canonical Wnt-signaling pathway, we derived pluripotent bovine ESCs (bESCs) with stable morphology, transcriptome, karyotype, population-doubling time, pluripotency marker gene expression, and epigenetic features. Under this condition bESC lines were efficiently derived (100% in optimal conditions), were established quickly (3-4 wk), and were simple to propagate (by trypsin treatment). When used as donors for nuclear transfer, bESCs produced normal blastocyst rates, thereby opening the possibility for genomic selection, genome editing, and production of cattle with high genetic value.
Collapse
|
15
|
Negrón-Pérez VM, Zhang Y, Hansen PJ. Single-cell gene expression of the bovine blastocyst. Reproduction 2017; 154:627-644. [PMID: 28814615 PMCID: PMC5630521 DOI: 10.1530/rep-17-0345] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022]
Abstract
The first two differentiation events in the embryo result in three cell types - epiblast, trophectoderm (TE) and hypoblast. The purpose here was to identify molecular markers for each cell type in the bovine and evaluate the differences in gene expression among individual cells of each lineage. The cDNA from 67 individual cells of dissociated blastocysts was used to determine transcript abundance for 93 genes implicated as cell lineage markers in other species or potentially involved in developmental processes. Clustering analysis indicated that the cells belonged to two major populations (clades A and B) with two subpopulations of clade A and four of clade B. Use of lineage-specific markers from other species indicated that the two subpopulations of clade A represented epiblast and hypoblast respectively while the four subpopulations of clade B were TE. Among the genes upregulated in epiblast were AJAP1, DNMT3A, FGF4, H2AFZ, KDM2B, NANOG, POU5F1, SAV1 and SLIT2 Genes overexpressed in hypoblast included ALPL, FGFR2, FN1, GATA6, GJA1, HDAC1, MBNL3, PDGFRA and SOX17, while genes overexpressed in all four TE populations were ACTA2, CDX2, CYP11A1, GATA2, GATA3, IFNT, KRT8, RAC1 and SFN The subpopulations of TE varied among each other for multiple genes including the prototypical TE marker IFNT. New markers for each cell type in the bovine blastocyst were identified. Results also indicate heterogeneity in gene expression among TE cells. Further studies are needed to confirm whether subpopulations of TE cells represent different stages in the development of a committed TE phenotype.
Collapse
Affiliation(s)
- Verónica M. Negrón-Pérez
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Yanping Zhang
- Gene Expression and Genotyping Core, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Peter J. Hansen
- Department of Animal Sciences, D. H. Barron Reproductive and Perinatal Biology Research Program and Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
16
|
Zhou J, Jiang D, Chen HY. Nanoelectrochemical architectures for high-spatial-resolution single cell analysis. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9109-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
17
|
Reed SA, Govoni KE. How mom's diet affects offspring growth and health through modified stem cell function. Anim Front 2017. [DOI: 10.2527/af.2017-0125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Sarah A. Reed
- Department of Animal Science, University of Connecticut, Storrs, CT 06269-4040
| | - Kristen E. Govoni
- Department of Animal Science, University of Connecticut, Storrs, CT 06269-4040
| |
Collapse
|
18
|
Kim D, Jung YG, Roh S. Microarray analysis of embryo-derived bovine pluripotent cells: The vulnerable state of bovine embryonic stem cells. PLoS One 2017; 12:e0173278. [PMID: 28257460 PMCID: PMC5336296 DOI: 10.1371/journal.pone.0173278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/17/2017] [Indexed: 12/20/2022] Open
Abstract
Although there are many studies about pluripotent stem cells, little is known about pluripotent pathways and the difficulties of maintaining the pluripotency of bovine cells in vitro. Here, we investigated differently expressed genes (DEG) in bovine embryo-derived stem-like cells (eSLCs) from various origins to validate their distinct characteristics of pluripotency and differentiation. We identified core pluripotency markers and additional markers which were not determined as pluripotency markers yet in bovine eSLCs. Using the KEGG database, TGFβ, WNT, and LIF signaling were related to the maintenance of pluripotency. In contrast, some DEGs related to the LIF pathway were down-regulated, suggesting that reactivation of the pathway may be required for the establishment of true bovine embryonic stem cells (ESCs). Interestingly, oncogenes were co-down-regulated, while tumor suppressor genes were co-up-regulated in eSLCs, implying that this pattern may induce abnormal teratomas. These data analyses of signaling pathways provide essential information on authentic ESCs in addition to providing evidence for pluripotency in bovine eSLCs.
Collapse
Affiliation(s)
- Daehwan Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | | | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
19
|
Li R, Wu H, Zhuo WW, Mao QF, Lan H, Zhang Y, Hua S. Astaxanthin Normalizes Epigenetic Modifications of Bovine Somatic Cell Cloned Embryos and Decreases the Generation of Lipid Peroxidation. Reprod Domest Anim 2015; 50:793-9. [DOI: 10.1111/rda.12589] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/11/2015] [Indexed: 01/26/2023]
Affiliation(s)
- R Li
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province China
| | - H Wu
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province China
| | - WW Zhuo
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province China
| | - QF Mao
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province China
| | - H Lan
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province China
| | - Y Zhang
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province China
| | - S Hua
- College of Veterinary Medicine; Northwest A&F University; Yangling Shaanxi Province China
| |
Collapse
|
20
|
Shah SM, Saini N, Ashraf S, Zandi M, Manik RS, Singla SK, Palta P, Chauhan MS. Development, Characterization, and Pluripotency Analysis of Buffalo (Bubalus bubalis) Embryonic Stem Cell Lines Derived from In Vitro-Fertilized, Hand-Guided Cloned, and Parthenogenetic Embryos. Cell Reprogram 2015; 17:306-22. [PMID: 26168169 DOI: 10.1089/cell.2014.0098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We present the derivation, characterization, and pluripotency analysis of three buffalo embryonic stem cell (buESC) lines, from in vitro-fertilized, somatic cell nuclear-transferred, and parthenogenetic blastocysts. These cell lines were developed for later differentiation into germ lineage cells and elucidation of the signaling pathways involved. The cell lines were established from inner cell masses (ICMs) that were isolated manually from the in vitro-produced blastocysts. Most of the ICMs (45-55%) resulted in formation of primary colonies that were subcultured after 8-10 days, leading subsequently to the formation of three buESC lines, one from each blastocyst type. All the cell lines expressed stem cell markers, such as Alkaline Phosphatase, OCT4, NANOG, SSEA1, SSEA4, TRA-1-60, TRA-1-81, SOX2, REX1, CD-90, STAT3, and TELOMERASE. They differentiated into all three germ layers as determined by ectodermal, mesodermal, and endodermal RNA and protein markers. All of the cell lines showed equal expression of pluripotency markers as well as equivalent differentiation potential into all the three germ layers. The static suspension culture-derived embryoid bodies (EBs) showed greater expression of all the three germ layer markers as compared to hanging drop culture-derived EBs. When analyzed for germ layer marker expression, EBs derived from 15% fetal bovine serum (FBS)-based spontaneous differentiation medium showed greater differentiation across all the three germ layers as compared to those derived from Knock-Out Serum Replacement (KoSR)-based differentiation medium.
Collapse
Affiliation(s)
- Syed Mohmad Shah
- Animal Biotechnology Centre, National Dairy Research Institute , Karnal 132001, Haryana, India
| | - Neha Saini
- Animal Biotechnology Centre, National Dairy Research Institute , Karnal 132001, Haryana, India
| | - Syma Ashraf
- Animal Biotechnology Centre, National Dairy Research Institute , Karnal 132001, Haryana, India
| | - Mohammad Zandi
- Animal Biotechnology Centre, National Dairy Research Institute , Karnal 132001, Haryana, India
| | - Radhey Sham Manik
- Animal Biotechnology Centre, National Dairy Research Institute , Karnal 132001, Haryana, India
| | - Suresh Kumar Singla
- Animal Biotechnology Centre, National Dairy Research Institute , Karnal 132001, Haryana, India
| | - Prabhat Palta
- Animal Biotechnology Centre, National Dairy Research Institute , Karnal 132001, Haryana, India
| | - Manmohan Singh Chauhan
- Animal Biotechnology Centre, National Dairy Research Institute , Karnal 132001, Haryana, India
| |
Collapse
|
21
|
Kim D, Park S, Jung YG, Roh S. In vitro culture of stem-like cells derived from somatic cell nuclear transfer bovine embryos of the Korean beef cattle species, HanWoo. Reprod Fertil Dev 2015; 28:RD14071. [PMID: 25966803 DOI: 10.1071/rd14071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/12/2015] [Indexed: 12/27/2022] Open
Abstract
We established and maintained somatic cell nuclear transfer embryo-derived stem-like cells (SCNT-eSLCs) from the traditional Korean beef cattle species, HanWoo (Bos taurus coreanae). Each SCNT blastocyst was placed individually on a feeder layer with culture medium containing three inhibitors of differentiation (3i). Primary colonies formed after 2-3 days of culture and the intact colonies were passaged every 5-6 days. The cells in each colony showed embryonic stem cell-like morphologies with a distinct boundary and were positive to alkaline phosphatase staining. Immunofluorescence and reverse transcription-polymerase chain reaction analyses also confirmed that these colonies expressed pluripotent markers. The colonies were maintained over 50 passages for more than 270 days. The cells showed normal karyotypes consisting of 60 chromosomes at Passage 50. Embryoid bodies were formed by suspension culture to analyse in vitro differentiation capability. Marker genes representing the differentiation into three germ layers were expressed. Typical embryonal carcinoma was generated after injecting cells under the testis capsule of nude mice, suggesting that the cultured cells may also have the potential of in vivo differentiation. In conclusion, we generated eSLCs from SCNT bovine embryos, using a 3i system that sustained stemness, normal karyotype and pluripotency, which was confirmed by in vitro and in vivo differentiation.
Collapse
|
22
|
Siriboon C, Lin YH, Kere M, Chen CD, Chen LR, Chen CH, Tu CF, Lo NW, Ju JC. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning. PLoS One 2015; 10:e0118165. [PMID: 25680105 PMCID: PMC4334543 DOI: 10.1371/journal.pone.0118165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 01/05/2015] [Indexed: 01/26/2023] Open
Abstract
We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P < 0.05) attachment, outgrowth formation and primary colonization in both 2× and 3× aggregated cloned embryos (62.8, 42.6 and12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P < 0.05) in those derived from TSA-treated 3× blastocysts (36.7 and 26.7%) than from the non-treated aggregated group (23.1 and 11.5%). These cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state.
Collapse
Affiliation(s)
- Chawalit Siriboon
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, ROC
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yu-Hsuan Lin
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Michel Kere
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chun-Da Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Lih-Ren Chen
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan, ROC
| | - Chien-Hong Chen
- Agriculture Technology Research Institute 1, Ln. 51, Dahu Rd., Xiangshan Dist., Hsinchu City, 300, Taiwan, ROC
| | - Ching-Fu Tu
- Agriculture Technology Research Institute 1, Ln. 51, Dahu Rd., Xiangshan Dist., Hsinchu City, 300, Taiwan, ROC
| | - Neng-Wen Lo
- Department of Animal Science and Biotechnology, Tunghai University 181, Sec. 3, Taichung Harbor Road, Taichung, 407, Taiwan, ROC
| | - Jyh-Cherng Ju
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, ROC
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, ROC
- Core Laboratory for Stem Cell Research, Medical Research Department, China Medical University Hospital, Taichung, Taiwan, ROC
- Agricultural Biotechnology and Biotechnology Centers, National Chung Hsing University, Taichung, Taiwan, ROC
- Department of Biomedical Informatics, College of Computer Science, Asia University, Taichung, Taiwan, ROC
- * E-mail:
| |
Collapse
|
23
|
Cong S, Cao G, Liu D. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro. Cytotechnology 2014; 66:995-1005. [PMID: 24807816 PMCID: PMC4235940 DOI: 10.1007/s10616-013-9653-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/30/2013] [Indexed: 02/07/2023] Open
Abstract
To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1–5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.
Collapse
Affiliation(s)
- Shan Cong
- Department of Veterinary, Inner Mongolia Agricultural University, Hohhot, 010018, MO, People's Republic of China
| | | | | |
Collapse
|
24
|
Huang X, Han X, Uyunbilig B, Zhang M, Duo S, Zuo Y, Zhao Y, Yun T, Tai D, Wang C, Li J, Li X, Li R. Establishment of bovine trophoblast stem-like cells from in vitro-produced blastocyst-stage embryos using two inhibitors. Stem Cells Dev 2014; 23:1501-14. [PMID: 24605918 DOI: 10.1089/scd.2013.0329] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The trophoblast (TR) is the first to differentiate during mammalian embryogenesis and play a pivotal role in the development of the placenta. We used a dual inhibitor system (PD0325901 and CHIR99021) with mixed feeders to successfully obtain bovine trophoblast stem-like (bTS) cells, which were similar in phenotype to mouse trophoblast stem cells (TSCs). The bTS cells that were generated using this system continually proliferated, displayed a normal diploid karyotype, and had no signs of altered morphology or differentiation even after 150 passages. These cells exhibited alkaline phosphatase (AP) activity and expressed pluripotency markers, such as OCT4, NANOG, SOX2, SSEA-1, SSEA-4, TRA-1-60, and TRA-1-81, and TR lineage markers such as CDX2, as determined by both immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR). Additionally, these cells generated dome-like structures, formed teratomas when injected into NOD-SCID mice, and differentiated into placenta TR cells in vitro. The microarray analysis of bTS cells showed high expression levels of many TR markers, such as TEAD4, EOMES, GATA3, ETS2, TFAP2A, ELF5, SMARCA4 (BRG1), CDH3, MASH2, HSD17B1, CYP11A1, PPARG, ID2, GCM1, HAND1, TDK, PAG, IFN-τ, and THAP11. The expression of many pluripotency markers, such as OCT4, SOX2, NANOG, and GDF3, was lower in bTS cells compared with in vitro-produced blastocysts; however, compared with bovine fetal fibroblasts, the expression of these pluripotency markers was elevated in bTS cells. The DNA methylation status of the promoter regions of OCT4, NANOG, and SOX2 was investigated, which were significantly higher in bTS cells (OCT4 23.90%, NANOG 74.40%, and SOX2 8.50%) compared with blastocysts (OCT4 8.90%, NANOG 34.4%, and SOX2 3.80%). In contrast, two promoter regions of CDX2 were hypomethylated in bTS cells (13.80% and 3.90%) compared with blastocysts (18.80% and 9.10%). The TSC lines that were established in this study may be used either for basic research that is focused on peri-implantation and placenta development or as donor cells for transgenic animal production.
Collapse
Affiliation(s)
- Xianghua Huang
- 1 The Key Laboratory of National Education Ministry for Mammalian Reproductive Biology and Biotechnology, Inner Mongolia University , Hohhot, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Goissis MD, Cibelli JB. Functional Characterization of SOX2 in Bovine Preimplantation Embryos1. Biol Reprod 2014; 90:30. [DOI: 10.1095/biolreprod.113.111526] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
26
|
Lagutina I, Fulka H, Lazzari G, Galli C. Interspecies somatic cell nuclear transfer: advancements and problems. Cell Reprogram 2013; 15:374-84. [PMID: 24033141 DOI: 10.1089/cell.2013.0036] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Embryologists working with livestock species were the pioneers in the field of reprogramming by somatic cell nuclear transfer (SCNT). Without the "Dolly experiment," the field of cellular reprogramming would have been slow and induced plutipotent cells (iPSCs) would not have been conceived. The major drive of the work in mammalian cloning was the interest of the breeding industry to propagate superior genotypes. Soon it was realized that the properties of oocytes could be used also to clone endangered mammalian species or to reprogram the genomes of unrelated species through what is known as interspecies (i) SCNT, using easily available oocytes of livestock species. iSCNT for cloning animals works only for species that can interbreed, and experiments with taxonomically distant species have not been successful in obtaining live births or deriving embryonic stem cell (ESC) lines to be used for regenerative medicine. There are controversial reports in the literature, but in most cases these experiments have underlined some of the cellular and molecular mechanisms that are incomplete during cell nucleus reprogramming, including the failure to organize nucleoli, silence somatic cell genes, activate the embryonic genome, and resume mitochondrial replication and function, thus indicating nucleus-cytoplasmic incompatibility.
Collapse
Affiliation(s)
- Irina Lagutina
- 1 Avantea, Laboratorio di Tecnologie della Riproduzione , Cremona, 26100, Italy
| | | | | | | |
Collapse
|
27
|
Madeja ZE, Sosnowski J, Hryniewicz K, Warzych E, Pawlak P, Rozwadowska N, Plusa B, Lechniak D. Changes in sub-cellular localisation of trophoblast and inner cell mass specific transcription factors during bovine preimplantation development. BMC DEVELOPMENTAL BIOLOGY 2013; 13:32. [PMID: 23941255 PMCID: PMC3751447 DOI: 10.1186/1471-213x-13-32] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 08/07/2013] [Indexed: 02/27/2023]
Abstract
Background Preimplantation bovine development is emerging as an attractive experimental model, yet little is known about the mechanisms underlying trophoblast (TE)/inner cell mass (ICM) segregation in cattle. To gain an insight into these processes we have studied protein and mRNA distribution during the crucial stages of bovine development. Protein distribution of lineage specific markers OCT4, NANOG, CDX2 were analysed in 5-cell, 8–16 cell, morula and blastocyst stage embryos. ICM/TE mRNA levels were compared in hatched blastocysts and included: OCT4, NANOG, FN-1, KLF4, c-MYC, REX1, CDX2, KRT-18 and GATA6. Results At the mRNA level the observed distribution patterns agree with the mouse model. CDX2 and OCT4 proteins were first detected in 5-cell stage embryos. NANOG appeared at the morula stage and was located in the cytoplasm forming characteristic rings around the nuclei. Changes in sub-cellular localisation of OCT4, NANOG and CDX2 were noted from the 8–16 cell onwards. CDX2 initially co-localised with OCT4, but at the blastocyst stage a clear lineage segregation could be observed. Interestingly, we have observed in a small proportion of embryos (2%) that CDX2 immunolabelling overlapped with mitotic chromosomes. Conclusions Cell fate specification in cattle become evident earlier than presently anticipated – around the time of bovine embryonic genome activation. There is an intriguing possibility that for proper lineage determination certain transcription factors (such as CDX2) may need to occupy specific regions of chromatin prior to its activation in the interphase nucleus. Our observation suggests a possible role of CDX2 in the process of epigenetic regulation of embryonic cell fate.
Collapse
Affiliation(s)
- Zofia E Madeja
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, Poznan 60-673, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Furusawa T, Ohkoshi K, Kimura K, Matsuyama S, Akagi S, Kaneda M, Ikeda M, Hosoe M, Kizaki K, Tokunaga T. Characteristics of Bovine Inner Cell Mass-Derived Cell Lines and Their Fate in Chimeric Conceptuses1. Biol Reprod 2013; 89:28. [DOI: 10.1095/biolreprod.112.106641] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
29
|
Wei S, Du M, Jiang Z, Duarte MS, Fernyhough-Culver M, Albrecht E, Will K, Zan L, Hausman GJ, Elabd EMY, Bergen WG, Basu U, Dodson MV. Bovine dedifferentiated adipose tissue (DFAT) cells: DFAT cell isolation. Adipocyte 2013; 2:148-59. [PMID: 23991361 PMCID: PMC3756103 DOI: 10.4161/adip.24589] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 12/15/2022] Open
Abstract
Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repeatable methodology here we report on two different methods to establish viable DFAT cell cultures: both traditional cell culture flasks and non-traditional (flat) cell culture plates were used for ceiling culture establishment. Adipocytes (maternal cells of the DFAT cells) were easier to remove from flat culture plates than flasks and the flat plates also allowed cloning rings to be utilized for cell/cell population isolation. While additional aspects of usage of flat-bottomed cell culture plates may yet need to be optimized by definition of optimum bio-coating to enhance cell attachment, utilization of flat plate approaches will allow more efficient study of the dedifferentiation process or the DFAT progeny cells. To extend our preliminary observations, dedifferentiation of Wagyu intramuscular fat (IMF)-derived mature adipocytes and redifferentiation ability of DFAT cells utilizing the aforementioned isolation protocols were examined in traditional basal media/differentiation induction media (DMI) containing adipogenic inducement reagents. In the absence of treatment approximately 10% isolated Wagyu IMF-mature adipocytes dedifferentiated spontaneously and 70% DFAT cells displayed protracted adipogenesis 12 d after confluence in vitro. Lipid-free intracellular vesicles in the cytoplasm (vesicles possessing an intact membrane but with no any observable or stainable lipid inside) were observed during redifferentiation. One to 30% DFAT cells redifferentiated into lipid-assimilating adipocytes in the DMI media, with distinct lipid-droplets in the cytoplasm and with no observable lipid-free vesicles inside. Moreover, a high confluence level promoted the redifferentiation efficiency of DFAT cells. Wagyu IMF dedifferentiated DFAT cells exhibited unique adipogenesis modes in vitro, revealing a useful cell model for studying adipogenesis and lipid metabolism.
Collapse
|
30
|
Hall V, Hinrichs K, Lazzari G, Betts DH, Hyttel P. Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals. Vet J 2013; 197:128-42. [PMID: 23810186 DOI: 10.1016/j.tvjl.2013.05.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 01/01/2023]
Abstract
Over many decades assisted reproductive technologies, including artificial insemination, embryo transfer, in vitro production (IVP) of embryos, cloning by somatic cell nuclear transfer (SCNT), and stem cell culture, have been developed with the aim of refining breeding strategies for improved production and health in animal husbandry. More recently, biomedical applications of these technologies, in particular, SCNT and stem cell culture, have been pursued in domestic mammals in order to create models for human disease and therapy. The following review focuses on presenting important aspects of pre-implantation development in cattle, pigs, horses, and dogs. Biological aspects and impact of assisted reproductive technologies including IVP, SCNT, and culture of pluripotent stem cells are also addressed.
Collapse
Affiliation(s)
- V Hall
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
31
|
Verma V, Huang B, Kallingappa PK, Oback B. Dual Kinase Inhibition Promotes Pluripotency in Finite Bovine Embryonic Cell Lines. Stem Cells Dev 2013; 22:1728-42. [DOI: 10.1089/scd.2012.0481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Vinod Verma
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | - Ben Huang
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | | | - Björn Oback
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| |
Collapse
|
32
|
Nowak-Imialek M, Niemann H. Pluripotent cells in farm animals: state of the art and future perspectives. Reprod Fertil Dev 2013; 25:103-28. [PMID: 23244833 DOI: 10.1071/rd12265] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pluripotent cells, such as embryonic stem (ES) cells, embryonic germ cells and embryonic carcinoma cells are a unique type of cell because they remain undifferentiated indefinitely in in vitro culture, show self-renewal and possess the ability to differentiate into derivatives of the three germ layers. These capabilities make them a unique in vitro model for studying development, differentiation and for targeted modification of the genome. True pluripotent ESCs have only been described in the laboratory mouse and rat. However, rodent physiology and anatomy differ substantially from that of humans, detracting from the value of the rodent model for studies of human diseases and the development of cellular therapies in regenerative medicine. Recently, progress in the isolation of pluripotent cells in farm animals has been made and new technologies for reprogramming of somatic cells into a pluripotent state have been developed. Prior to clinical application of therapeutic cells differentiated from pluripotent stem cells in human patients, their survival and the absence of tumourigenic potential must be assessed in suitable preclinical large animal models. The establishment of pluripotent cell lines in farm animals may provide new opportunities for the production of transgenic animals, would facilitate development and validation of large animal models for evaluating ESC-based therapies and would thus contribute to the improvement of human and animal health. This review summarises the recent progress in the derivation of pluripotent and reprogrammed cells from farm animals. We refer to our recent review on this area, to which this article is complementary.
Collapse
Affiliation(s)
- Monika Nowak-Imialek
- Institut of Farm Animal Genetics, Friedrich-Loefller-Institut (FLI), Biotechnology, Höltystrasse 10, Mariensee, 31535 Neustadt, Germany.
| | | |
Collapse
|
33
|
Singh KP, Kaushik R, Garg V, Sharma R, George A, Singh MK, Manik RS, Palta P, Singla SK, Chauhan MS. Expression pattern of pluripotent markers in different embryonic developmental stages of buffalo (Bubalus bubalis) embryos and putative embryonic stem cells generated by parthenogenetic activation. Cell Reprogram 2013. [PMID: 23194456 DOI: 10.1089/cell.2012.0032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In this study, we describe the production of buffalo parthenogenetic blastocysts and subsequent isolation of parthenogenetic embryonic stem cell (PGESC)-like cells. PGESC colonies exhibited dome-shaped morphology and were clearly distinguishable from the feeder layer cells. Different stages of development of parthenogenetic embryos and derived embryonic stem cell (ESC)-like cells expressed key ESC-specific markers, including OCT-4, NANOG, SOX-2, FOXD3, REX-1, STAT-3, TELOMERASE, NUCLEOSTEMIN, and cMYC. Immunofluorescence-based studies revealed that the PGESCs were positive for surface-based pluripotent markers, viz., SSEA-3, SSEA-4, TRA 1-80, TRA 1-60, CD-9, and CD-90 and exhibited high alkaline phosphatase (ALP) activity. PGEC cell-like cells formed embryoid body (EB)-like structures in hanging drop cultures and when cultured for extended period of time spontaneously differentiated into derivatives of three embryonic germ layers as confirmed by RT-PCR for ectodermal (CYTOKERATIN8, NF-68), mesodermal (MSX1, BMP-4, ASA), and endodermal markers (AFP, HNF-4, GATA-4). Differentiation of PGESCs toward the neuronal lineage was successfully directed by supplementation of serum-containing media with retinoic acid. Our results indicate that the isolated ESC-like cells from parthenogenetic blastocyst hold properties of ESCs and express markers of pluripotency. The pluripotency markers were also expressed by early cleavage-stage of buffalo embryos.
Collapse
Affiliation(s)
- Karn P Singh
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Volk SW, Theoret C. Translating stem cell therapies: the role of companion animals in regenerative medicine. Wound Repair Regen 2013; 21:382-94. [PMID: 23627495 DOI: 10.1111/wrr.12044] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/30/2013] [Indexed: 12/24/2022]
Abstract
Veterinarians and veterinary medicine have been integral to the development of stem cell therapies. The contributions of large animal experimental models to the development and refinement of modern hematopoietic stem cell transplantation were noted nearly five decades ago. More recent advances in adult stem cell/regenerative cell therapies continue to expand knowledge of the basic biology and clinical applications of stem cells. A relatively liberal legal and ethical regulation of stem cell research in veterinary medicine has facilitated the development and in some instances clinical translation of a variety of cell-based therapies involving hematopoietic stem cells and mesenchymal stem cells, as well as other adult regenerative cells and recently embryonic stem cells and induced pluripotent stem cells. In fact, many of the pioneering developments in these fields of stem cell research have been achieved through collaborations of veterinary and human scientists. This review aims to provide an overview of the contribution of large animal veterinary models in advancing stem cell therapies for both human and clinical veterinary applications. Moreover, in the context of the "One Health Initiative," the role veterinary patients may play in the future evolution of stem cell therapies for both human and animal patients will be explored.
Collapse
Affiliation(s)
- Susan W Volk
- Department of Clinical Studies and Animal Biology, School of Veterinary Medicine, The University of Pennsylvania, Philadelphia 19104-4539, USA.
| | | |
Collapse
|
35
|
Selection of appropriate isolation method based on morphology of blastocyst for efficient derivation of buffalo embryonic stem cells. Cytotechnology 2013; 66:239-50. [PMID: 23553019 DOI: 10.1007/s10616-013-9561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 03/26/2013] [Indexed: 10/27/2022] Open
Abstract
The efficiency of embryonic stem cell (ESC) derivation from all species except for rodents and primates is very low. There are however, multiple interests in obtaining pluripotent cells from these animals with main expectations in the fields of transgenesis, cloning, regenerative medicine and tissue engineering. Researches are being carried out in laboratories throughout the world to increase the efficiency of ESC isolation for their downstream applications. Thus, the present study was undertaken to study the effect of different isolation methods based on the morphology of blastocyst for efficient derivation of buffalo ESCs. Embryos were produced in vitro through the procedures of maturation, fertilization and culture. Hatched blastocysts or isolated inner cell masses (ICMs) were seeded on mitomycin-C inactivated buffalo fetal fibroblast monolayer for the development of ESC colonies. The ESCs were analyzed for alkaline phosphatase activity, expression of pluripotency markers and karyotypic stability. Primary ESC colonies were obtained after 2-5 days of seeding hatched blastocysts or isolated ICMs on mitomycin-C inactivated feeder layer. Mechanically isolated ICMs attached and formed primary cell colonies more efficiently than ICMs isolated enzymatically. For derivation of ESCs from poorly defined ICMs intact hatched blastocyst culture was the most successful method. Results of this study implied that although ESCs can be obtained using all three methods used in this study, efficiency varies depending upon the morphology of blastocyst and isolation method used. So, appropriate isolation method must be selected depending on the quality of blastocyst for efficient derivation of ESCs.
Collapse
|
36
|
Epiblast isolation by a new four stage method (peeling) from whole bovine cloned blastocysts. Cell Biol Int 2013; 33:309-17. [DOI: 10.1016/j.cellbi.2008.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 08/06/2008] [Accepted: 12/05/2008] [Indexed: 11/20/2022]
|
37
|
Behboodi E, Lam L, Gavin WG, Bondareva A, Dobrinski I. Goat embryonic stem-like cell derivation and characterization. Methods Mol Biol 2013; 1074:51-67. [PMID: 23975805 DOI: 10.1007/978-1-62703-628-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Embryonic stem (ES) cells are derived from the inner cell masses of preimplantation embryos. ES cells are pluripotent cells with the capacity for long-term propagation and broad differentiation plasticity. These cells have an exceptional functional feature in that they can differentiate into all tissues and organs, including germ cells. Established ES cell lines have been generated in mouse, human, and nonhuman primate but derivation of ES cells in farm animals has been problematic. Several ES-like cell lines from farm animals have been reported to exhibit properties of pluripotency in vitro. However, only a few of them morphologically resemble ES cells, or express markers that are associated with established ES cell lines from mouse and humans. Methods for derivation, propagation, and differentiation of ES cells from domestic animals have not been fully established. In this chapter, we describe methods for isolation of goat ES (gES) cell lines from in vivo-derived blastocysts and characterization of markers indicative of pluripotency. In addition, we outline differentiation of gES cells into all three germ layers in vivo by forming teratomas as a hallmark of pluripotency.
Collapse
Affiliation(s)
- Esmail Behboodi
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | | | | | | | |
Collapse
|
38
|
Abstract
Isolation and culture of primary embryonic stem (ES) cell colonies are the first critical step towards establishment of stable ES cell lines. Here we introduce a novel method designated as "Separate and Seed" that contributes remarkably to efficient derivation of bovine primary ES cell colonies from blastocysts. The bovine ES cell colonies can self-renew to passage 10 with the growth factors bFGF and BIO. The bovine ES cells exhibit morphology typical of ES cells and express pluripotent molecular markers including Oct4, Nanog, SSEA1, SSEA4, and alkaline phosphatase (AP). These pluripotent markers may be used for the characterization of authentic bovine ES cell lines. Although continued efforts are required for improving long-term culture of bovine ES cells, this novel "Separate and Seed" method plus the growth factors bFGF and BIO provides an initial effective step that may eventually lead to the derivation of authentic bovine ES cells.
Collapse
Affiliation(s)
- Shanbo Cao
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | | |
Collapse
|
39
|
Kim EY, Noh EJ, Park HY, Park MJ, Noh EH, Lee JB, Jeong CJ, Lee DS, Riu KZ, Park SP. Establishment of Bovine Embryonic Stem Cell Lines Using a Minimized Feeder Cell Drop. Cell Reprogram 2012. [DOI: 10.1089/cell.2012.0038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Eun Young Kim
- Mirae Biotech, Seoul 143-854, Korea
- Jeju National University Stem Cell Research Center, Seoul 143-854, Korea
| | - Eun Ji Noh
- Jeju National University Stem Cell Research Center, Seoul 143-854, Korea
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 690-756, Korea
| | - Hyo Young Park
- Mirae Biotech, Seoul 143-854, Korea
- Jeju National University Stem Cell Research Center, Seoul 143-854, Korea
| | - Min Jee Park
- Jeju National University Stem Cell Research Center, Seoul 143-854, Korea
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 690-756, Korea
| | - Eun Hyung Noh
- Jeju National University Stem Cell Research Center, Seoul 143-854, Korea
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 690-756, Korea
| | | | | | - Dong Sun Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 690-756, Korea
| | - Key Zung Riu
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 690-756, Korea
| | - Se Pill Park
- Mirae Biotech, Seoul 143-854, Korea
- Jeju National University Stem Cell Research Center, Seoul 143-854, Korea
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju 690-756, Korea
| |
Collapse
|
40
|
Xue F, Ma Y, Chen YE, Zhang J, Lin TA, Chen CH, Lin WW, Roach M, Ju JC, Yang L, Du F, Xu J. Recombinant rabbit leukemia inhibitory factor and rabbit embryonic fibroblasts support the derivation and maintenance of rabbit embryonic stem cells. Cell Reprogram 2012; 14:364-76. [PMID: 22775411 DOI: 10.1089/cell.2012.0001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs.
Collapse
Affiliation(s)
- Fei Xue
- Renova Life Inc., University of Maryland, TAP program, College Park, MD 20740, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
In vivo differentiation potential of buffalo (Bubalus bubalis) embryonic stem cell. In Vitro Cell Dev Biol Anim 2012; 48:349-58. [PMID: 22678753 DOI: 10.1007/s11626-012-9515-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 04/17/2012] [Indexed: 01/12/2023]
Abstract
Embryonic stem cells (ESCs) derived from inner cell mass (ICM) of mammalian blastocyst are having indefinite proliferation and differentiation capability for any type of cell lineages. In the present study, ICMs of in vitro-derived buffalo blastocysts were cultured into two different culture systems using buffalo fetal fibroblast as somatic cell support and Matrigel as synthetic support to obtain pluripotent buffalo embryonic stem cell (buESC) colonies. Pluripotency of the ESCs were characterised through pluripotency markers whereas, their differentiation capability was assessed by teratoma assay using immuno-compromised mice. Cumulus ooccyte complexes from slaughter house-derived ovaries were subjected to in vitro maturation, in vitro fertilization and in vitro culture to generate blastocysts. Total 262 blastocysts were derived through IVEP with 11.83 % (31/262) hatching rate. To generate buESCs, 15 ICMs from hatched blastocysts were cultured on mitomycin-C-treated homologous fetal fibroblast feeder layer, whereas the leftover 16 ICMs were cultured on extra-cellular matrix (Matrigel). No significant differences were observed for primary ESCs colony formation between two culture systems. Primary colonies as well as passaged ESCs were characterised by alkaline phosphatase staining, karyotyping and expression of transcription-based stem cell markers, OCT-4 and cell surface antigens SSEA-4 and TRA-1-60. Batch of ESCs found positive for pluripotency markers and showing normal karyotype after fifteenth passage were inoculated into eight immuno-compromised mice through subcutaneous and intramuscular route. Subcutaneous route of inoculation was found to be better than intramuscular route. Developed teratomas were excised surgically and subjected to histological analysis. Histological findings revealed presence of all the three germinal layer derivatives in teratoma sections. Presence of germinal layer derivatives were further confirmed by reverse transcriptase-polymerase chain reaction for the presence of differentiation markers like nerve cell adhesion molecule, fetal liver kinase-1 and alpha-feto protein for ectoderm, mesoderm and endoderm, respectively.
Collapse
|
42
|
Muzaffar M, Selokar NL, Singh KP, Zandi M, Singh MK, Shah RA, Chauhan MS, Singla SK, Palta P, Manik R. Equivalency of buffalo (Bubalus bubalis) embryonic stem cells derived from fertilized, parthenogenetic, and hand-made cloned embryos. Cell Reprogram 2012; 14:267-79. [PMID: 22582863 DOI: 10.1089/cell.2011.0090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study was aimed at establishing buffalo embryonic stem cells (ESCs) from in vitro fertilized (IVF), parthenogenetic, and hand-made cloned (HMC) embryos and to check their equivalency in terms of stem cell marker expression, longevity, proliferation, and differentiation pattern. ESCs derived from all three sources were found by immunofluorescence to express the pluripotency markers SSEA-4, TRA-1-60, TRA-1-81, OCT4, and SOX2 and were able to form embryoid bodies containing cells expressing genes specific to endoderm (AFP, HNF4, and GATA4), mesoderm (MSX1, BMP4, and ASA), and ectoderm (cytokeratin 8 and NF68). Reverse transcriptase PCR (RT-PCR) showed cells from all sources to be positive for pluripotency markers OCT4, SOX2, NANOG, STAT3, REX1, FOXD3, NUCLEOSTEMIN, and TELOMERASE. Pluripotency markers OCT4, SOX2, NANOG, and c-MYC were also analyzed by real-time PCR. No significant differences were observed among ESCs from all three sources for all these genes except NANOG, whose expression was higher (p<0.05) in HMC-derived ESCs (6.897±2.3) compared to that in parthenogenesis- and IVF-derived cells (1.603±0.315 and 1±0, respectively). Pluripotent, stable buffalo ESC lines derived from IVF, parthenogenesis, and HMC embryos may be genetically manipulated to provide a powerful tool for studies involving embryonic development, genomic imprinting, gene targeting, cloning, chimera formation, and transgenic animal production.
Collapse
Affiliation(s)
- Musharifa Muzaffar
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal-132001, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Malaver-Ortega LF, Sumer H, Liu J, Verma PJ. The state of the art for pluripotent stem cells derivation in domestic ungulates. Theriogenology 2012; 78:1749-62. [PMID: 22578625 DOI: 10.1016/j.theriogenology.2012.03.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/19/2012] [Accepted: 03/22/2012] [Indexed: 12/21/2022]
Abstract
Since the successful isolation, characterization and long-term culture of embryonic stem cells (ESCs) from mice in the early 1980s and from humans a decade later, considerable effort has been made to establish ESCs lines from livestock. The derivation of validated ESCs lines is a necessary step if the generation of economically relevant transgenic animals is to be achieved. However, this is still elusive, as the isolation of true ESCs lines for livestock has not been accomplished to date. It has been demonstrated that by forced expression of a defined set of transcription factors, it is possible to reprogram somatic cells to cells that closely resemble an ES-like state. These cells were termed induced pluripotent stem cells (iPSCs). We introduce the basic concepts relating to stem cell biology and give an overview of the various attempts to isolate and generate pluripotent stem cells (PSCs) from species relevant to livestock production. Further, we point out the issues to be addressed and hurdles to be overcome to realize the promise of stem cells in agriculture.
Collapse
|
44
|
Jin M, Wu A, Dorzhin S, Yue Q, Ma Y, Liu D. Culture conditions for bovine embryonic stem cell-like cells isolated from blastocysts after external fertilization. Cytotechnology 2012; 64:379-89. [PMID: 22438181 DOI: 10.1007/s10616-011-9408-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/31/2011] [Indexed: 11/25/2022] Open
Abstract
Although isolation and characterization of embryonic stem cells have been successful in cattle, maintenance of bovine embryonic stem cells in culture remains difficult. In this study, we compared different methods of cell passaging, feeder cell layers and medium conditions for bovine embryonic stem cell-like cells. We found that a murine embryonic fibroblast feeder layer is more suitable for embryonic stem cell-like cells than bovine embryonic fibroblasts. When murine embryonic fibroblasts were used, a mechanical method of passaging led to better cell growth than passaging by trypsin digestion. We also found that exogenous supplementation with leukemia inhibitory factor maintained the embryonic stem cell-like cells in an undifferentiated state, whereas addition of stem cell factor resulted in their differentiation. Our findings provide an experimental basis for the establishment of an effective culture system for bovine embryonic stem cells.
Collapse
Affiliation(s)
- Muzi Jin
- Key Laboratory of Mammalian Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Inner Mongolia, 010021, Hohhot, China
| | | | | | | | | | | |
Collapse
|
45
|
Expression and quantification of Oct-4 gene in blastocyst and embryonic stem cells derived from in vitro produced buffalo embryos. In Vitro Cell Dev Biol Anim 2012; 48:229-35. [DOI: 10.1007/s11626-012-9491-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/05/2012] [Indexed: 01/18/2023]
|
46
|
Garg S, Dutta R, Malakar D, Jena M, Kumar D, Sahu S, Prakash B. Cardiomyocytes rhythmically beating generated from goat embryonic stem cell. Theriogenology 2012; 77:829-39. [DOI: 10.1016/j.theriogenology.2011.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 05/10/2011] [Accepted: 05/13/2011] [Indexed: 12/18/2022]
|
47
|
Chen CH, Chang WF, Liu CC, Su HY, Shyue SK, Cheng WTK, Chen YE, Wu SC, Du F, Sung LY, Xu J. Spatial and temporal distribution of Oct-4 and acetylated H4K5 in rabbit embryos. Reprod Biomed Online 2012; 24:433-42. [PMID: 22381206 DOI: 10.1016/j.rbmo.2012.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/01/2011] [Accepted: 01/03/2012] [Indexed: 11/17/2022]
Abstract
Rabbit is a unique species to study human embryology; however, there are limited reports on the key transcription factors and epigenetic events of rabbit embryos. This study examined the Oct-4 and acetylated H4K5 (H4K5ac) patterns in rabbit embryos using immunochemistry staining. The average intensity of the Oct-4 signal in the nuclei of the whole embryo spiked upon fertilization, then decreased until the 8-cell stage and increased afterwards until the compact morula (CM) stage. It decreased thereafter from the CM stage to the early blastocyst (EB) stage, with a minimum at the expanded blastocyst (EXPB) stage and came back to a level similar to that of the CM-stage embryos in the hatching blastocysts (HB). The Oct-4 signal was observed in both the inner cell mass (ICM) and the trophectoderm (TE) cells of blastocysts. The average H4K5ac signal intensity of the whole embryo increased upon fertilization, started to decrease at the 4-cell stage, reached a minimum at the 8-cell stage, increased again at the EXPB stage and peaked at the HB stage. While TE cells maintained similar levels of H4K5ac throughout the blastocyst stages, ICM cells of HB showed higher levels of H4K5ac than those of EB and EXPB. Understanding key genetic and epigenetic events during early embryo development will help to identify factors contributing to embryo losses and consequently improve embryo survival rates. As a preferred laboratory species for many human disease studies such as atherosclerosis, rabbit is also a pioneer species in the development of several embryo biotechnologies, such as IVF, transgenesis, animal cloning, embryo cryopreservation and embryonic stem cells. However, there are limited reports on key transcription factors and epigenetic events of rabbit embryos. In the present study, we documented the temporal and spatial distribution of Oct-4 protein and H4K5 acetylation during early embryo development using the immunostaining approach. We also compared the patterns of these two important biomarkers between the inner cell mass (ICM) and the trophectoderm (TE) cells in blastocyst-stage embryos. Our findings suggest that a combination of Oct-4, H4K5ac and possibly other biomarkers such as Cdx-2 is needed to accurately identify different lineages of cells in morula and blastocyst stage rabbit embryos. Importantly, we revealed a novel wave of Oct-4 intensity change in the ICM cells of rabbit blastocysts. The signal was high at the early blastocyst stage, reached a minimum at the expanded blastocyst stage and returned to a high level at the hatching blastocyst stage. We hypothesize that the signal may have reflected the regulation of Oct-4 through enhancer switching and therefore may be related to cell lineage formation in rabbit embryos. These findings enrich our understanding on key genetic and epigenetic programming events during early embryo development in rabbits.
Collapse
Affiliation(s)
- Chien-Hong Chen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kobolak J, Mamo S, Rungsiwiwut R, Ujhelly O, Csonka E, Hadlaczky G, Dinnyes A. Comparative analysis of nuclear transfer embryo-derived mouse embryonic stem cells. Part I: cellular characterization. Cell Reprogram 2011; 14:56-67. [PMID: 22204592 DOI: 10.1089/cell.2011.0056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Embryonic stem cells derived from nuclear transfer embryos (ntESCs) are particularly valuable for regenerative medicine, as they are a patient-specific and histocompatible cell source for the treatment of varying diseases. However, currently, little is known about their cellular and molecular profile. In the present study, in a mouse model different donor cell-derived ntESCs from various genetic backgrounds were compared with reference ESCs and analyzed comprehensively at the cellular level. A number of pluripotency marker genes were compared by flow cytometry and immunocytochemistry analysis. Significant differences at the protein level were observed for POU5F1, SOX2, FGF4, NANOG, and SSEA-1. However, such differences had no effect on in vitro cell differentiation and cell fate: derivatives of the three germ layers were detected in all ntESC lines. The neural and cardiac in vitro differentiation revealed minor differences between the cell lines, both at the mRNA and protein level. Karyotype analyses and cell growth studies did not reveal any significant variations. Despite some differences observed, the present study revealed that ntESC lines had similar differentiation competences compared to other ESCs. The results indicate that the observed differences may be related to the genotype rather than to the nuclear transfer technology.
Collapse
Affiliation(s)
- Julianna Kobolak
- Genetic Reprogramming Group, Agricultural Biotechnology Center, Gödöllő, Hungary
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Embryo biotechnology has become one of the prominent high businesses worldwide. This technology has evolved through three major changes, that is, traditional embryo transfer (in vivo embryo production by donor superovulation), in vitro embryo production by ovum pick up with in vitro fertilization and notably current cloning technique by somatic cell nuclear transfer and transgenic animal production. Embryo biotechnology has widely been used in dairy and beef cattle industry and commercial bovine embryo transfer has become a large international business. Currently, many developed biotechnologies during the period from early oocyte stage to pre-implantation embryos can be used to create new animal breeds and accelerate genetic progression. Based on recent advances in embryo biotechnologies and authors current studies, this review will focus on a description of the application of this technology to beef cattle improvement and discuss how to use this technology to accelerate beef cattle breeding and production. The main topics of this presentation include the following: (i) how to increase calf production numbers from gametes including sperm and oocyte; (ii) multiple ovulation and embryo transfer breeding schemes; (iii) in vitro fertilization and intracytoplasm sperm injection in bovine; (iv) pronuclear development and transgenic animals; (v) sex selection from sperm and embryos; (vi) cloning and androgenesis; (vii) blastocyst development and embryonic stem cells; (viii) preservation of beef cattle genetic resources; and (ix) conclusions.
Collapse
Affiliation(s)
- B Wu
- Arizona Center for Reproductive Endocrinology and Infertility, Tucson, AZ 85712, USA.
| | | |
Collapse
|
50
|
Sharma R, George A, Kamble NM, Singh KP, Chauhan MS, Singla SK, Manik RS, Palta P. Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cells. Cell Reprogram 2011; 13:539-49. [PMID: 22029416 DOI: 10.1089/cell.2011.0041] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A culture system capable of sustaining self-renewal of buffalo embryonic stem (ES) cell-like cells in an undifferentiated state over a long period of time was developed. Inner cell masses were seeded on KO-DMEM+15% KO-serum replacer on buffalo fetal fibroblast feeder layer. Supplementation of culture medium with 5 ng/mL FGF-2 and 1000 IU/mL mLIF gave the highest (p<0.05) rate of primary colony formation. The ES cell-like cells' colony survival rate and increase in colony size were highest (p<0.05) following supplementation with FGF-2 and LIF compared to other groups examined. FGF-2 supplementation affected the quantitative expression of NANOG, SOX-2, ACTIVIN A, BMP 4, and TGFβ1, but not OCT4 and GREMLIN. Supplementation with SU5402, an FGFR inhibitor (≥20 μM) increased (p<0.05) the percentage of colonies that differentiated. FGFR1-3 and ERK1, K-RAS, E-RAS, and SHP-2, key signaling intermediates of FGF signaling, were detected in ES cell-like cells. Under culture conditions described, three ES cell lines were derived that, to date, have been maintained for 135, 95, and 85 passages for over 27, 19, and 17 months, respectively, whereas under other conditions examined, ES cell-like cells did not survive beyond passage 10. The ES cell-like cells were regularly monitored for expression of pluripotency markers and their potency to form embryoid bodies.
Collapse
Affiliation(s)
- Ruchi Sharma
- Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | | | | | | | | | | | | | | |
Collapse
|