1
|
Parenti M, Slupsky CM. Disrupted Prenatal Metabolism May Explain the Etiology of Suboptimal Neurodevelopment: A Focus on Phthalates and Micronutrients and their Relationship to Autism Spectrum Disorder. Adv Nutr 2024; 15:100279. [PMID: 39059765 PMCID: PMC11375317 DOI: 10.1016/j.advnut.2024.100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Pregnancy is a time of high metabolic coordination, as maternal metabolism adapts to support the growing fetus. Many of these changes are coordinated by the placenta, a critical fetal endocrine organ and the site of maternal-fetal crosstalk. Dysregulation in maternal and placental metabolism during pregnancy has been linked to adverse outcomes, including altered neurodevelopment. Autism spectrum disorder (ASD) is a neurodevelopmental disorder linked to metabolic alterations in both children and their mothers. Prenatal environmental exposures have been linked to risk of ASD through dysregulated maternal, placental, and fetal metabolism. In this review, we focus on recent studies investigating the associations between prenatal metabolism in the maternal-placental-fetal unit and the impact of prenatal environmental exposures to phthalates and micronutrients on ASD risk. By identifying the mechanisms through which phthalates and other ubiquitous endocrine disrupting chemicals influence development, and how nutritional interventions can impact those mechanisms, we can identify promising ways to prevent suboptimal neurodevelopment.
Collapse
Affiliation(s)
- Mariana Parenti
- Department of Nutrition, University of California, Davis, CA, United States
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, CA, United States; Department of Food Science and Technology, University of California, Davis, CA, United States.
| |
Collapse
|
2
|
Wawrzykowski J, Jamioł M, Kankofer M. The dependence between glycodelin and selected metalloproteinases concentrations in bovine placenta during early gestation and parturition with and without retained foetal membranes. Theriogenology 2024; 218:231-238. [PMID: 38359561 DOI: 10.1016/j.theriogenology.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
Pregnancy course depends on the appropriate connection between the mother and the developing foetus. Pregnancy is completed when the placenta is timely expelled. Placental retention is one of the possible pregnancy complications. Extracellular matrix, including adhesive proteins and enzymes that can break down collagens, seems to be responsible for it. The aim of the present study was to examine the impact of one of the adhesive proteins - glycodelin (Gd) - on selected metalloproteinases degrading collagens (MMP2, MMP3, MMP7). Placental tissues from healthy pregnant cows collected during early-mid pregnancy (2nd month n = 7, 3rd month n = 8, 4th month n = 6) and in cows that properly released placenta (NR; n = 6) and cows with retained foetal membranes (R; n = 6) were experimental material. The concentrations of glycodelin and protein content of selected metalloproteinases were measured by ELISA in the maternal and foetal placental homogenates as well as in the culture of epithelial cells derived from the maternal part of the placenta. The presence of these protein molecules was confirmed by Western Blotting. In the bovine placenta, the concentrations of examined proteins exhibit significant changes during placental formation. Gd, MMP3 and MMP7 concentrations decrease with pregnancy progress (between the 2nd and 4th month), while MMP2 concentrations were on the same level in this period. During parturition, concentrations of Gd and MMP3 were significantly higher in the R group compared to the NR group. In parallel, MMP2 concentrations did not show significant differences between the groups (NR vs R), and MMP7 concentrations decreased significantly in the maternal part of the placenta in cows with retained foetal membranes (R). Obtained results show correlations between the gestational age and proteins' (Gd, MMP3, MMP7) concentration, both in the maternal and foetal part of the placenta.
Collapse
Affiliation(s)
- Jacek Wawrzykowski
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Science in Lublin, Akademicka Street 12, 20-033, Lublin, Poland
| | - Monika Jamioł
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Science in Lublin, Akademicka Street 12, 20-033, Lublin, Poland
| | - Marta Kankofer
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Life Science in Lublin, Akademicka Street 12, 20-033, Lublin, Poland.
| |
Collapse
|
3
|
Gomes VCL, Gilbert BM, Bernal C, Crissman KR, Sones JL. Estrogen and Progesterone Receptors Are Dysregulated at the BPH/5 Mouse Preeclamptic-Like Maternal-Fetal Interface. BIOLOGY 2024; 13:192. [PMID: 38534461 DOI: 10.3390/biology13030192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
The etiopathogenesis of preeclampsia, a leading hypertensive disorder of pregnancy, has been proposed to involve an abnormal circulating sex hormone profile and misexpression of placental estrogen and progesterone receptors (ER and PR, respectively). However, existing research is vastly confined to third trimester preeclamptic placentas. Consequently, the placental-uterine molecular crosstalk and the dynamic ER and PR expression pattern in the peri-conception period remain overlooked. Herein, our goal was to use the BPH/5 mouse to elucidate pre-pregnancy and early gestation Er and Pr dynamics in a preeclamptic-like uterus. BPH/5 females display low circulating estrogen concentration during proestrus, followed by early gestation hypoestrogenemia, hyperprogesteronemia, and a spontaneous preeclamptic-like phenotype. Preceding pregnancy, the gene encoding Er alpha (Erα, Esr1) is upregulated in the diestrual BPH/5 uterus. At the peak of decidualization, Esr1, Er beta (Erβ, Esr2), and Pr isoform B (Pr-B) were upregulated in the BPH/5 maternal-fetal interface. At the protein level, BPH/5 females display higher percentage of decidual cells with nuclear Erα expression, as well as Pr downregulation in the decidua, luminal and glandular epithelium. In conclusion, we provide evidence of disrupted sex hormone signaling in the peri-conception period of preeclamptic-like pregnancies, potentially shedding some light onto the intricate role of sex hormone signaling at unexplored timepoints of human preeclampsia.
Collapse
Affiliation(s)
- Viviane C L Gomes
- Department of Small Animal Clinical Sciences, Michigan State University College of Veterinary Medicine, East Lansing, MI 48824, USA
| | - Bryce M Gilbert
- Department of Small Animal Clinical Sciences, Michigan State University College of Veterinary Medicine, East Lansing, MI 48824, USA
| | - Carolina Bernal
- Department of Small Animal Clinical Sciences, Michigan State University College of Veterinary Medicine, East Lansing, MI 48824, USA
| | - Kassandra R Crissman
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, USA
| | - Jenny L Sones
- Equine Reproduction Laboratory, Colorado State University, Fort Collins, CO 80521, USA
| |
Collapse
|
4
|
Marom Y, Gengrinovitch S, Shalev E, Shilo D. Enthalpy of collagen interfibrillar bonds in fetal membranes. J Biomech 2021; 126:110632. [PMID: 34298291 DOI: 10.1016/j.jbiomech.2021.110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 06/04/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
During pregnancy, the fetal membrane (FM) is subjected to mechanical stretching that may result in preterm labor. The structural integrity of the FM is maintained by its collagenous layer. The disconnection and reconnection of molecular bonds between collagen fibrils are the fundamental processes that govern the irreversible mechanical and supermolecular changes in the FM. Here, we study the activation enthalpy of interfibrillar bonds in ex-vivo human FM. We analyze the strain-rate and temperature dependence of the irreversible deformations in FM subjected to inflation tests, which apply mechanical conditions similar to those experienced by the FM prior to and during the initiation of labor contractions. The obtained activation enthalpy of interfibrillar bonds matches the typical enthalpy values of polyvalent ionic bonds, implying on another important role that ions like Ca and Mg may play in the gestation and labor.
Collapse
Affiliation(s)
- Y Marom
- Department of Mechanical Engineering, Technion, Haifa 3200003, Israel.
| | - S Gengrinovitch
- Rappaport Faculty of Medicine, Technion, Haifa 3200003, Israel; Trottner Laboratory for research, Emek Medical center, Afula 18101, Israel
| | - E Shalev
- Rappaport Faculty of Medicine, Technion, Haifa 3200003, Israel; Trottner Laboratory for research, Emek Medical center, Afula 18101, Israel
| | - D Shilo
- Department of Mechanical Engineering, Technion, Haifa 3200003, Israel
| |
Collapse
|
5
|
Fournier SB, D'Errico JN, Stapleton PA. Uterine Vascular Control Preconception and During Pregnancy. Compr Physiol 2021; 11:1871-1893. [PMID: 34061977 DOI: 10.1002/cphy.c190015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Successful pregnancy and reproduction are dependent on adequate uterine blood flow, placental perfusion, and vascular responsivity to fetal demands. The ability to support pregnancy centers on systemic adaptation and endometrial preparation through decidualization, embryonic implantation, trophoblast invasion, arterial/arteriolar reactivity, and vascular remodeling. These adaptations occur through responsiveness to endocrine signaling and local uteroplacental mediators. The purpose of this article is to highlight the current knowledge associated with vascular remodeling and responsivity during uterine preparation for and during pregnancy. We focus on maternal cardiovascular systemic and uterine modifications, endometrial decidualization, implantation and invasion, uterine and spiral artery remodeling, local uterine regulatory mechanisms, placentation, and pathological consequences of vascular dysfunction during pregnancy. © 2021 American Physiological Society. Compr Physiol 11:1-23, 2021.
Collapse
Affiliation(s)
- Sara B Fournier
- Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA
| | - Jeanine N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| | - Phoebe A Stapleton
- Environmental and Occupational Health Sciences Institute, Piscataway, New Jersey, USA.,Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
6
|
Cañumil VA, Bogetti E, de la Cruz Borthiry FL, Ribeiro ML, Beltrame JS. Steroid hormones and first trimester vascular remodeling. VITAMINS AND HORMONES 2021; 116:363-387. [PMID: 33752825 DOI: 10.1016/bs.vh.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Successful implantation and placentation require neoangiogenesis and the remodeling of the uterine spiral arteries. Progesterone and estradiol control various of the placental functions, but their role in vascular remodeling remains controversial. Therefore, this chapter aims to summarize the current knowledge regarding the role of steroid hormones in the uteroplacental vascular remodeling during the first trimester of gestation.
Collapse
Affiliation(s)
- V A Cañumil
- Center of Pharmacological and Botanical Studies (CEFyBO), School of Medicine University of Buenos Aires (UBA)-National Research Council (CONICET), Buenos Aires, Argentina
| | - E Bogetti
- Center of Pharmacological and Botanical Studies (CEFyBO), School of Medicine University of Buenos Aires (UBA)-National Research Council (CONICET), Buenos Aires, Argentina
| | - F L de la Cruz Borthiry
- Center of Pharmacological and Botanical Studies (CEFyBO), School of Medicine University of Buenos Aires (UBA)-National Research Council (CONICET), Buenos Aires, Argentina
| | - M L Ribeiro
- Center of Pharmacological and Botanical Studies (CEFyBO), School of Medicine University of Buenos Aires (UBA)-National Research Council (CONICET), Buenos Aires, Argentina
| | - J S Beltrame
- Center of Pharmacological and Botanical Studies (CEFyBO), School of Medicine University of Buenos Aires (UBA)-National Research Council (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
7
|
Sheridan MA, Fernando RC, Gardner L, Hollinshead MS, Burton GJ, Moffett A, Turco MY. Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta. Nat Protoc 2020; 15:3441-3463. [PMID: 32908314 DOI: 10.1038/s41596-020-0381-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/07/2020] [Indexed: 12/30/2022]
Abstract
The human placenta is essential for successful reproduction. There is great variation in the anatomy and development of the placenta in different species, meaning that animal models provide limited information about human placental development and function. Until recently, it has been impossible to isolate trophoblast cells from the human placenta that proliferate in vitro. This has limited our ability to understand pregnancy disorders. Generating an in vitro model that recapitulates the unique features of the human placenta has been challenging. The first in vitro model system of human trophoblast that could be cultured long term and differentiated to syncytiotrophoblast (SCT) and extravillous trophoblast (EVT) was a two-dimensional (2D) culture system of human trophoblast stem cells. Here, we describe a protocol to isolate trophoblast from first-trimester human placentas that can be grown long term in a three-dimensional (3D) organoid culture system. Trophoblast organoids can be established within 2-3 weeks, passaged every 7-10 d, and cultured for over a year. The structural organization of these human trophoblast organoids closely resembles the villous placenta with a layer of cytotrophoblast (VCT) that differentiates into superimposed SCT. Altering the composition of the medium leads to differentiation of the trophoblast organoids into HLA-G+ EVT cells which rapidly migrate and invade through the Matrigel droplet in which they are cultured. Our previous research confirmed that there is similarity between the trophoblast organoids and in vivo placentas in their transcriptomes and ability to produce placental hormones. This organoid culture system provides an experimental model to investigate human placental development and function as well as interactions of trophoblast cells with the local and systemic maternal environment.
Collapse
Affiliation(s)
- Megan A Sheridan
- Department of Pathology, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Ridma C Fernando
- Department of Pathology, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Lucy Gardner
- Department of Pathology, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Graham J Burton
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
- Department of Physiology, Neurobiology and Development, University of Cambridge, Cambridge, UK
| | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Margherita Y Turco
- Department of Pathology, University of Cambridge, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
8
|
Lima MA, Silva SV, Jaeger RG, Freitas VM. Progesterone decreases ovarian cancer cells migration and invasion. Steroids 2020; 161:108680. [PMID: 32562708 DOI: 10.1016/j.steroids.2020.108680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/28/2020] [Accepted: 06/13/2020] [Indexed: 10/24/2022]
Abstract
The progression of cancer depends on the interaction between the cells and their microenvironment. Progesterone is a steroid and progestogen sex hormone produced by the corpus luteum, which is a transitory endocrine gland in female mammals and prepares the endometrium for implantation. Also, progesterone is involved in antitumorigenic process in different types of cancer. Our goal is to investigate the role of progesterone in cell invasion and migration. Ovarian cells were treated with different concentrations of progesterone. 500 nM or 1 μM progesterone decreased the migration of the cells in 24 h or less without affecting the viability. Immunoblot showed that treatment with 1 μM progesterone decreased the phosphorylated forms of Src and FAK, and the cells were less polarized. Our results suggest that progesterone interferes with migration and invasion of ovarian cells. Inhibitory experiments inferred the progesterone receptor playing a role in migration and invasion. Decreased phosphorylation of molecules involved in these processes was also found.
Collapse
Affiliation(s)
- Maíra A Lima
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, Ed Biomédicas 1 sala 428, São Paulo, SP 05508-000, Brazil
| | - Suély V Silva
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, Ed Biomédicas 1 sala 428, São Paulo, SP 05508-000, Brazil
| | - Ruy G Jaeger
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, Ed Biomédicas 1 sala 428, São Paulo, SP 05508-000, Brazil
| | - Vanessa M Freitas
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, Ed Biomédicas 1 sala 428, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
9
|
Xu Y, Mei J, Diao L, Li Y, Ding L. Chronic endometritis and reproductive failure: Role of syndecan-1. Am J Reprod Immunol 2020; 84:e13255. [PMID: 32329146 DOI: 10.1111/aji.13255] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic endometritis (CE) is an unusual inflammatory condition characterized by endometrial plasmacyte infiltration. It has a high prevalence in women with reproductive failure. Because of its characteristic localization patterns and molecular functions, syndecan-1 has been identified as a biomarker of plasmacyte, and syndecan-1 immunohistochemistry (IHC) becomes the most dependable diagnostic method for CE. In this review, we discuss the association between CE and reproductive failure, the clinicopathological characterization of CE, the function and expression of syndecan-1, the progress of syndecan-1 IHC in the diagnosis of CE, and the prediction of reproductive outcome.
Collapse
Affiliation(s)
- Yanhong Xu
- Center for Reproductive Medicine, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China.,Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jie Mei
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Lijun Ding
- Center for Reproductive Medicine, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, China.,Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Clinical Center for Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
10
|
Collagen bundling and alignment in equibiaxially stretched human amnion. J Biomech 2020; 108:109896. [PMID: 32636005 DOI: 10.1016/j.jbiomech.2020.109896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/10/2020] [Accepted: 06/10/2020] [Indexed: 11/20/2022]
Abstract
We study irreversible collagen arrangement processes in ex-vivo human amnions subjected to inflation tests, which simulate the mechanical conditions prior to and during the initiation of labor uterine contractions. The investigation is focused on the center of the membrane where the stresses are maximal and equibiaxial. Second harmonic generation reveals an unexpected collagen rearrangement in the compact layer that is responsible for the structural integrity of the fetal membrane. The observed bundling and alignment of the collagen fibers indicate a deviation from the expected equibiaxial stress state. The statistical analysis of the fiber orientations provides information on two driving forces for collagen alignment: microscale flaws and macroscale deviation from the equibiaxial strain. As the pressure increases, the macroscale effect becomes dominant, and a high density of fibers that are aligned along a specific direction is observed. A model that explains these observations and relates them to the material properties is presented. The results of this study indicate that a temporal increase in intrauterine pressure or uterine cervix dilatation causes irreversible changes in collagen molecular connections that may lead to biological changes, such as the initiation of term and preterm labor.
Collapse
|
11
|
Matsumoto S, Porter CJ, Ogasawara N, Iwatani C, Tsuchiya H, Seita Y, Chang YW, Okamoto I, Saitou M, Ema M, Perkins TJ, Stanford WL, Tanaka S. Establishment of macaque trophoblast stem cell lines derived from cynomolgus monkey blastocysts. Sci Rep 2020; 10:6827. [PMID: 32321940 PMCID: PMC7176671 DOI: 10.1038/s41598-020-63602-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/02/2020] [Indexed: 12/23/2022] Open
Abstract
The placenta forms a maternal-fetal junction that supports many physiological functions such as the supply of nutrition and exchange of gases and wastes. Establishing an in vitro culture model of human and non-human primate trophoblast stem/progenitor cells is important for investigating the process of early placental development and trophoblast differentiation. In this study, we have established five trophoblast stem cell (TSC) lines from cynomolgus monkey blastocysts, named macTSC #1-5. Fibroblast growth factor 4 (FGF4) enhanced proliferation of macTSCs, while other exogenous factors were not required to maintain their undifferentiated state. macTSCs showed a trophoblastic gene expression profile and trophoblast-like DNA methylation status and also exhibited differentiation capacity towards invasive trophoblast cells and multinucleated syncytia. In a xenogeneic chimera assay, these stem cells contributed to trophectoderm (TE) development in the chimeric blastocysts. macTSC are the first primate trophoblast cell lines whose proliferation is promoted by FGF4. These cell lines provide a valuable in vitro culture model to analyze the similarities and differences in placental development between human and non-human primates.
Collapse
Affiliation(s)
- Shoma Matsumoto
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Toky, 113-8657, Japan
| | | | - Naomi Ogasawara
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Toky, 113-8657, Japan
| | - Chizuru Iwatani
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Sciences, Shiga University of Medical Sciences, Shiga, 520-2192, Japan
| | - Hideaki Tsuchiya
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Sciences, Shiga University of Medical Sciences, Shiga, 520-2192, Japan
| | - Yasunari Seita
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Sciences, Shiga University of Medical Sciences, Shiga, 520-2192, Japan
| | - Yu-Wei Chang
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Ikuhiro Okamoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,Japan Science and Technology (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan.,Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto, 606-8507, Japan
| | - Masatsugu Ema
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan.,Institute for Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, 606-8501, Japan
| | | | - William L Stanford
- The Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, K1H 8M5, Canada
| | - Satoshi Tanaka
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Toky, 113-8657, Japan.
| |
Collapse
|
12
|
Shen SY, Chen QZ, Zhang LF, He JR, Lu JH, Li WD, Xiao WQ, Zhou ZH, Morse AN, Keung Cheng K, Mol BWJ, Xia HM, Qiu X. Association between serum progesterone concentration in early pregnancy and duration of pregnancy: a cohort study. J Matern Fetal Neonatal Med 2018; 33:2096-2102. [PMID: 30474453 DOI: 10.1080/14767058.2018.1540580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: To examine the association between progesterone concentration in early pregnancy and duration of pregnancy and risk of preterm delivery.Methods: Women enrolled in the Born in Guangzhou Cohort Study from 2013-2014, with a singleton pregnancy, who had serum progesterone measured at least one time between 4 and 10 weeks of gestation were included. The association between progesterone concentration both continuous and as categorical variable (quartile) and the risk of preterm delivery was assessed with Cox proportional hazards regression. Differences of length of gestation in four progesterone concentration quartiles were assessed using the Log-rank test.Results: We studied 1860 mother-newborn pairs. The mean overall progesterone concentration was 65.7 ± 21.3 nmol/L, with mean progesterone concentrations in the four quartiles of 42.4 ± 6.2 nmol/L (n = 463), 56.2 ± 3.3 nmol/L (n = 462), 68.9 ± 4.5 nmol/L (n = 470), and 95.1 ± 15.3 nmol/L (n = 465). There was no significantly difference in duration of gestation in four progesterone concentration groups (p=.511). There was no relation between progesterone level and preterm delivery (adjusted hazard ratio (HR) per 10 nmol/l progesterone level 1.00 (95% confidence interval (CI) 0.90, 1.11)). After adjusting for potential confounders, the HR of any preterm delivery for quartiles 1, 2 and 3 versus the highest quartile of progesterone level (> 77.3 nmol/L) was 1.04 (95% CI 0.52, 2.07), 1.17 (95% CI 0.60, 2.28), and 1.46 (95% CI 0.76, 2.78), respectively. When analysis was done for spontaneous preterm delivery only, also no association with first trimester progesterone was found.Conclusion: Lower first trimester serum progesterone concentration is not associated with reduction of length of gestation or increased risk of preterm delivery.
Collapse
Affiliation(s)
- Song-Ying Shen
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiao-Zhu Chen
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li-Fang Zhang
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jian-Rong He
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jin-Hua Lu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei-Dong Li
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wan-Qing Xiao
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ze-Hong Zhou
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Abraham N Morse
- Urogynecology and OBGYN Academic Program Development, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kar Keung Cheng
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Ben Willem J Mol
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Australia
| | - Hui-Min Xia
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Neonatal Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiu Qiu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Woman and Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
BMAL1 facilitates trophoblast migration and invasion via SP1-DNMT1/DAB2IP pathway in recurrent spontaneous abortion. Oncotarget 2017; 8:89451-89464. [PMID: 29163762 PMCID: PMC5685683 DOI: 10.18632/oncotarget.20702] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022] Open
Abstract
The underlying mechanism about rhythms and epigenetics leading to aberrant trophoblast migration and invasion in recurrent spontaneous abortion (RSA) remains unknown. Brain and muscle ARNT-like protein 1 (BMAL1) is considered as a crucial role in fertility, and polymorphism of BMAL1 gene has been reported to be associated with risk of miscarriage. However, the functional role of BMAL1 in RSA is not fully understood. Previous study shows the descended expression of DNA 5′-cytosine-methyltransferases 1 (DNMT1) in the villous of early pregnancy loss. Thus, understanding of the regulation of DNMT1 expression may be of significance for the elucidation of the process of RSA. Using HTR-8/SVneo and JEG-3 cell lines, we certified the induction of specificity protein 1 (SP1) to DNMT1 and DAB2 interaction protein (DAB2IP), respectively, both of which further activated matrix metallo-proteinase 2/9 (MMP2/9), bringing out changes in trophoblast migration and invasion. Notably, BMAL1 functioned as a positive upstream factor of SP1 only in HTR-8/SVneo cells but not in JEG-3 cells, inducing SP1-DNMT1/DAB2IP pathway and facilitating migration and invasion of trophoblasts. In addition, progesterone might restore the down-regulation of BMAL1 and downstream pathway in a dose-dependent manner. Last but not least, the decreased abundance of BMAL1 was correlated positively with that of SP1, DNMT1, DAB2IP, MMP2 and MMP9 in human villous specimens of RSA. Our results demonstrate that the induction of BMAL1 to SP1 contributes to the expression of DNMT1 and DAB2IP, respectively, activating trophoblast migration and invasion. The deregulation of the BMAL1-mediated pathway in RSA can be rescued by progesterone.
Collapse
|
14
|
Maliqueo M, Echiburú B, Crisosto N. Sex Steroids Modulate Uterine-Placental Vasculature: Implications for Obstetrics and Neonatal Outcomes. Front Physiol 2016; 7:152. [PMID: 27199767 PMCID: PMC4844620 DOI: 10.3389/fphys.2016.00152] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Adequate blood supply to the uterine-placental region is crucial to ensure the transport of oxygen and nutrients to the growing fetus. Multiple factors intervene to achieve appropriate uterine blood flow and the structuring of the placental vasculature during the early stages of pregnancy. Among these factors, oxygen concentrations, growth factors, cytokines, and steroid hormones are the most important. Sex steroids are present in extremely high concentrations in the maternal circulation and are important paracrine and autocrine regulators of a wide range of maternal and placental functions. In this regard, progesterone and estrogens act as modulators of uterine vessels and decrease the resistance of the spiral uterine arteries. On the other hand, androgens have the opposite effect, increasing the vascular resistance of the uterus. Moreover, progesterone and estrogens modulate the synthesis and release of angiogenic factors by placental cells, which regulates trophoblastic invasion and uterine artery remodeling. In this scenario, it is not surprising that women with pregnancy-related pathologies, such as early miscarriages, preterm delivery, preeclampsia, and fetal growth restriction, exhibit altered sex steroid concentrations.
Collapse
Affiliation(s)
- Manuel Maliqueo
- Endocrinology and Metabolism Laboratory, Department of Medicine West Division, School of Medicine, University of Chile Santiago, Chile
| | - Bárbara Echiburú
- Endocrinology and Metabolism Laboratory, Department of Medicine West Division, School of Medicine, University of Chile Santiago, Chile
| | - Nicolás Crisosto
- Endocrinology and Metabolism Laboratory, Department of Medicine West Division, School of Medicine, University of Chile Santiago, Chile
| |
Collapse
|
15
|
Lash GE. Molecular Cross-Talk at the Feto-Maternal Interface. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a023010. [PMID: 26385089 DOI: 10.1101/cshperspect.a023010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Molecular cross-talk at the feto-maternal interface occurs between many different cell types, including uterine leukocytes, extravillous trophoblast cells, and uterine spiral arteries, is essential for the establishment and maintenance of pregnancy. This review concentrates on human pregnancy and examines three main areas in which cross-talk occurs; immune tolerance, regulation of extravillous trophoblast invasion, and remodeling of the uterine spiral arteries.
Collapse
Affiliation(s)
- Gendie E Lash
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
16
|
Lee VCY, Gao J, Lee KF, Ng EHY, Yeung WSB, Ho PC. The effect of letrozole with misoprostol for medical termination of pregnancy on the expression of steroid receptors in the placenta. Hum Reprod 2013; 28:2912-9. [DOI: 10.1093/humrep/det345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Reduced Expression of 15-Hydroxy Prostaglandin Dehydrogenase in Chorion during Labor Is Associated with Decreased PRB and Increased PRA and GR Expression. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:1585-94. [DOI: 10.1016/j.ajpath.2013.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/18/2012] [Accepted: 01/15/2013] [Indexed: 01/22/2023]
|
18
|
Itoh H, Kishore AH, Lindqvist A, Rogers DE, Word RA. Transforming growth factor β1 (TGFβ1) and progesterone regulate matrix metalloproteinases (MMP) in human endometrial stromal cells. J Clin Endocrinol Metab 2012; 97:E888-97. [PMID: 22466340 PMCID: PMC3387423 DOI: 10.1210/jc.2011-3073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 03/05/2012] [Indexed: 11/19/2022]
Abstract
CONTEXT Menstruation is preceded by progesterone withdrawal and endometrial matrix remodeling predominantly through induction of matrix metalloproteinases (MMP) and recruitment of invading neutrophils. DESIGN Using endometrial tissues from women during various phases of the menstrual cycle, we found that MMP2, MMP9, and MMP11 were up-regulated in the late secretory phase/premenstrual phase. Because TGFβ-responsive genes were also up-regulated in endometrium during this time, we tested the hypothesis that TGFβ1 and progesterone regulate expression of MMP in human endometrial stromal cells (HESC). RESULTS Treatment of HESC with TGFβ1 resulted in marked increases in MMP2 and MMP11 mRNA and pro- and active MMP2 activity. Progesterone inhibited TGFβ1-induced stimulation of MMP2 and MMP11 through its nuclear hormone receptors. Interestingly, TGFβ1 also decreased progesterone receptor (PR)-A and PR-B in HESC with a more pronounced effect on PR-A. CONCLUSIONS These data support the hypothesis that TGFβ1 has endogenous anti-progestational effects in HESC and that the opposing effects of progesterone and TGFβ1 are important in regulation of matrix integrity in human endometrium.
Collapse
Affiliation(s)
- Hiroko Itoh
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75235-9032, USA
| | | | | | | | | |
Collapse
|
19
|
Chen JZJ, Wong MH, Brennecke SP, Keogh RJ. The effects of human chorionic gonadotrophin, progesterone and oestradiol on trophoblast function. Mol Cell Endocrinol 2011; 342:73-80. [PMID: 21664947 DOI: 10.1016/j.mce.2011.05.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 05/23/2011] [Accepted: 05/24/2011] [Indexed: 01/30/2023]
Abstract
Remodelling of the uterine vasculature during the first trimester of human pregnancy requires invasion of trophoblast from the placenta into decidual spiral arterioles. The pregnancy-associated hormones human chorionic gonadotropin (hCG), progesterone (P(4)) and oestradiol (E(2)) are present at high concentrations at the maternal-fetal interface during the remodelling period and thus may contribute to the regulation of trophoblast movement. This study examined the effects of these hormones on trophoblast functions. HTR8/SVneo cells were treated with hCG (5-100mIU/mL), P(4) (20nM-20μM) or E(2) (0.07-734nM). hCG significantly stimulated migration and MMP-9 activity but did not affect cell numbers. P(4) significantly inhibited migration, MMP-2 and -9 activity and reduced cell numbers. E(2) had no effect on migration, MMP activity or cell numbers. We conclude that hCG and P(4), but not E(2), play direct roles in controlling trophoblast invasion, acting as positive and negative stimuli respectively to regulate trophoblast movement during vascular remodelling in early pregnancy.
Collapse
Affiliation(s)
- Jessie Z-J Chen
- Department of Peinatal Medicine, Pregnancy Research Centre, University of Melbourne, Royal Women’s Hospital, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
20
|
Douglas AJ. Mother-offspring dialogue in early pregnancy: impact of adverse environment on pregnancy maintenance and neurobiology. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1167-77. [PMID: 20688125 DOI: 10.1016/j.pnpbp.2010.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/21/2010] [Accepted: 07/25/2010] [Indexed: 12/11/2022]
Abstract
The mother-offspring dialogue begins even before implantation and is essential to signal pregnancy, establish robust contact, and maintain embryo growth and development. Any circumstance that disrupts the dialogue risks pregnancy problems. A new look at how stress impacts on pregnancy involves its adverse effects on the key pregnancy hormones of progesterone and prolactin. These effects have far-reaching consequences on pregnancy maintenance, maternal anxiety and embryo programming. This review focuses on early pregnancy and how stress might compromise the multi-layer, two-way communication between mother and embryo.
Collapse
Affiliation(s)
- Alison J Douglas
- Laboratory of Neuroendocrinology, Centre for Integrative Physiology, University of Edinburgh, United Kingdom.
| |
Collapse
|
21
|
Miko E, Halasz M, Jericevic-Mulac B, Wicherek L, Arck P, Arató G, Skret Magierlo J, Rukavina D, Szekeres-Bartho J. Progesterone-induced blocking factor (PIBF) and trophoblast invasiveness. J Reprod Immunol 2011; 90:50-7. [PMID: 21632119 DOI: 10.1016/j.jri.2011.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/16/2011] [Accepted: 03/16/2011] [Indexed: 12/31/2022]
Abstract
Controlled trophoblast invasion is a key process during human placentation and a prerequisite for successful pregnancy. Progesterone is one of the factors to regulate trophoblast invasiveness. Progesterone-induced blocking factor (PIBF) is a progesterone-induced molecule expressed by the trophoblast, and also by tumors. The distribution of PIBF within the first-trimester decidua coincides with sites of trophoblast invasion. Another molecule that has been implicated in the control of trophoblast invasiveness is placental leptin. Leptin inhibits the secretion of progesterone by cytotrophoblast. The aim of this work was to investigate the possible interaction of PIBF and leptins in regulating trophoblast invasion. Paraffin-embedded sections from normal first-trimester placentae, partial moles, complete moles, and choriocarcinomas were reacted with PIBF, leptin, and leptin receptor specific antibodies. PIBF-deficient trophoblast cells were generated using siRNA and leptin receptor was detected on Western blot analysis. The lysates of PIBF-treated cells were used for detecting leptin expression in a protein array. PIBF was expressed in both normal first-trimester villous trophoblast and in partial mole. Compared with this, PIBF expression was markedly decreased in complete mole and absent in choriocarcinoma. Neither leptinR nor leptin were detected in partial mole, whereas both of these molecules were present in complete mole and choriocarcinoma. Leptin receptor expression was upregulated in PIBF-deficient cells, while leptin expression was decreased in PIBF-treated cells. These data suggest that PIBF affects the expression of leptin and its receptor, and that PIBF expression is inversely related to trophoblast invasiveness.
Collapse
Affiliation(s)
- E Miko
- Department of Medical Microbiology and Immunology, Medical School, Pecs University, 12 Szigeti Street, H-7624 Pecs, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Luo J, Qiao F, Yin X. Impact of silencing MMP9 gene on the biological behaviors of trophoblasts. ACTA ACUST UNITED AC 2011; 31:241. [PMID: 21505993 DOI: 10.1007/s11596-011-0260-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Indexed: 10/25/2022]
Abstract
This study examined the effect of MMP9 gene on the biological behaviors of trophoblasts and explore the relation between MMP9 gene and the "superficial implantation of placenta". In vitro cultured trophoblasts (TEV-1 cells) were transfected with synthesized double-stranded MMP9 RNA (siRNA) by using lipofectamine2000™ technique and the expressions of MMP9 mRNA and protein and the growth and invasiveness of the TEV-1 cells were determined. Our results showed that siRNA transfection could significantly inhibit the expression of MMP9 gene in the TEV-1 cells and the growth and invasiveness of the TEV-1 cells transfected RNA was significantly reduced (P<0.01). We are led to conclude that silencing of MMP9 gene with siRNA can inhibit the growth and invasiveness of trophoblasts and increasing the expression of MMP9 might help prevent and treat preeclampsia.
Collapse
Affiliation(s)
- Jianying Luo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical University, Huazhong University of Science and Technology, Wuhan, 430030, China.,Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, Jiangsu, 225001, China
| | - Fuyan Qiao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical University, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xianghua Yin
- Department of Obstetrics and Gynecology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, Jiangsu, 225001, China
| |
Collapse
|
23
|
|
24
|
Tartakover-Matalon S, Mizrahi A, Epstein G, Shneifi A, Drucker L, Pomeranz M, Fishman A, Radnay J, Lishner M. Breast cancer characteristics are modified by first trimester human placenta: in vitro co-culture study. Hum Reprod 2010; 25:2441-54. [PMID: 20719812 DOI: 10.1093/humrep/deq227] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pregnant women with breast cancer present with a more advanced disease compared with non-pregnant women. Nevertheless, breast cancer metastasis to the placenta is rare. Trophoblast/tumor implantations share the same biochemical mediators, while only the first is stringently controlled. We hypothesized that the same mechanisms that affect/restrain placental implantation may inhibit metastatic growth in the placenta. We aimed to analyze the effects of human placenta on breast cancer cells. METHODS First trimester human placental explants were co-cultured with MCF-7/T47D-eGFP tagged cells. Following culture, placenta/cancer cells/both were fixed, paraffin embedded and sliced for immunohistochemical analysis or sorted by their eGFP expression for future analysis. The tested parameters were: proliferation (immunohistochemistry)/cell cycle (FACS), apoptosis (immunohistochemistry/FACS), cell count/adhesion/distribution around the placenta (cell sorter, visual observation and counting), matrix metalloproteinase activity (zymogram) and estrogen receptor (ER) expression (western blotting, immunohistochemistry). RESULTS Reduced breast cancer cell numbers (45%↓, 48%↓ for MCF-7/T47D, respectively, P < 0.05) were observed near the placenta. The placenta elevated MCF-7 sub-G1 phase and modestly elevated apoptosis (3-17%↑ for T47D/MCF-7, respectively, P < 0.05). Our findings demonstrate breast cancer cell migration from the placenta as: (i) T47D/MCF-7 cells changed their morphology to that of motile cells; (ii) elevated MMPs activity was found in the co-culture; (iii) placental soluble factors detached breast cancer cells; and (4) the placenta reduced MCF-7/T47D cells' ER expression (a characteristic of motile cells). CONCLUSIONS MCF-7/T47D cells are eliminated from the placental surroundings. Analyzing the causes of these phenomena may suggest biological pathways for this event and raise new therapeutic targets.
Collapse
Affiliation(s)
- S Tartakover-Matalon
- Oncogenetic Laboratory, Meir Medical Center, 45 Tschernehovski St, Kfar Saba 44281, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ai Z, Wang J, Wang Y, Lu L, Tong J, Teng Y. Overexpressed epidermal growth factor receptor (EGFR)-induced progestin insensitivity in human endometrial carcinoma cells by the EGFR/mitogen-activated protein kinase signaling pathway. Cancer 2010; 116:3603-13. [DOI: 10.1002/cncr.25220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Li MQ, Hou XF, Shao J, Tang CL, Li DJ. The DSCs-expressed CD82 controls the invasiveness of trophoblast cells via integrinbeta1/MAPK/MAPK3/1 signaling pathway in human first-trimester pregnancy. Biol Reprod 2010; 82:968-79. [PMID: 20075392 DOI: 10.1095/biolreprod.109.080739] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
CD82 is recognized as a wide-spectrum tumor metastasis suppressor that inhibits cancer cell motility and invasiveness. At the human maternal-fetal interface, the decidua is believed to effectively limit the inappropriate invasion of trophoblasts. Here we have found the transcription and translation of CD82 in decidual stromal cells (DSCs), whereas trophoblast cells do not express CD82. The in-cell Western analysis reveals attenuation of CD82 translation in DSCs by human chorionic gonadotropin (hCG), but not by estrogen or progesterone. It is demonstrated that silencing of CD82 by RNA interference increases integrinbeta1, decreases TIMP1 expression in DSCs, and promotes the invasion of the first-trimester human trophoblasts in the coculture. Moreover, U0126, or anti-integrinbeta1 neutralizing antibody, reverses the decreased TIMP1 expression and the increased invasiveness of trophoblast cells, and the antibody also inhibits the MAPK3/1 phosphorylation induced by CD82 silence. After transfection with CD82, the invasive index of BeWo cells decreases significantly with TIMP1 increase. The results above indicate that the DSCs-expressed CD82 up-regulates the expression of TIMP1 in an autocrine manner and inhibits the invasiveness of human first-trimester trophoblast cells partly through the integrinbeta1/MAPK/MAPK3/1 signaling pathway. Furthermore, we have found that the mRNA and protein level of CD82 in decidua of the miscarriage is significantly higher than that of the normal early pregnancy, which implies that the abnormal higher CD82 expression in decidua restricts appropriate invasion of trophoblasts that leads to early pregnancy wastage.
Collapse
Affiliation(s)
- Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
| | | | | | | | | |
Collapse
|
27
|
Staun-Ram E, Goldman S, Shalev E. Ets-2 and p53 mediate cAMP-induced MMP-2 expression, activity and trophoblast invasion. Reprod Biol Endocrinol 2009; 7:135. [PMID: 19939245 PMCID: PMC2787504 DOI: 10.1186/1477-7827-7-135] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 11/25/2009] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We have previously shown that Matrix metalloproteinase (MMP) -2 is a key-enzyme in early trophoblast invasion and that Protein Kinase A (PKA) increases MMP-2 expression and trophoblast invasion. The aim of this study was to examine MMP -2 regulation by PKA in invasive trophoblasts: JAR choriocarcinoma cell-line and 6-8 w first trimester trophoblasts. METHODS The effect of Forskolin (PKA) on MMP-2 expression was assessed by Northern Blot and RT-PCR. Possible transcription factors binding to consensus MMP-2 promoter sequences in response to Forskolin, were detected by EMSA binding assay and their expression assessed by western blot analysis. Antisense transfection of relevant transcription factors was performed and the inhibitory effect assessed on MMP-2 expression (RT-PCR), secretion (zymography) and trophoblast invasiveness (transwell migration assay). RESULTS We found that Forskolin increased MMP-2 mRNA in JAR cells within 24 hours, and induced binding to p53, Ets, C/EBP and AP-2. Transcription factors Ets-2, phospho- p53, C/EBP epsilon, C/EBP lambda and AP-2 alpha bound to their respective binding sequences in response to Forskolin and the expressions of these transcription factors were all elevated in Forskolin- treated cells. Inhibition of Ets-2 and p53 reduced MMP-2 expression, secretion and invasiveness of Forskolin treated cells. CONCLUSION MMP-2 is regulated by PKA through several binding sites and transcription factors including Ets-2, p53, C/EBP, C/EBP lambda and AP-2 alpha. Ets-2 and p53 mediate cAMP- induced trophoblast invasiveness, through regulation of MMP-2.
Collapse
Affiliation(s)
- Elsebeth Staun-Ram
- Laboratory for Research in Reproductive Sciences, Department of Obstetrics and Gynecology, Ha'Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shlomit Goldman
- Laboratory for Research in Reproductive Sciences, Department of Obstetrics and Gynecology, Ha'Emek Medical Center, Afula, Israel
| | - Eliezer Shalev
- Laboratory for Research in Reproductive Sciences, Department of Obstetrics and Gynecology, Ha'Emek Medical Center, Afula, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
28
|
Tsai JH, Hwang JM, Ying TH, Shyu JC, Tsai CC, Hsieh YS, Wang YW, Liu JY, Kao SH. The activation of matrix metalloproteinase-2 induced by protein kinase C alpha in decidualization. J Cell Biochem 2009; 108:547-54. [PMID: 19693770 DOI: 10.1002/jcb.22285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study investigated the protein kinase C (PKC) and matrix metalloproteinase-2 (MMP-2) in the development of deciduomata in pseudo-pregnant and pregnant rats. The results showed that the expression of MMP-2 was significantly increased from day 2 to day 5 in pseudo-pregnancy and from day 7 to day 9 in pregnancy. To further investigate the correlation between MMP-2 and protein kinase C alpha (PKC alpha), the expression of MMP-2 in the 12-O-tetradecanoylphorbol 13-acetate (TPA)-treated organotypic culture of decidual tissue was determined. The results showed that the active form of MMP-2 was significantly increased in the TPA-treated cultures. Moreover, this response was inhibited by the PKC inhibitor H7, the PKC alpha specific inhibitor Gö-6976 and the translation inhibitor cycloheximide, but not by the transcription inhibitor actinomycin D or the replication inhibitor mitomycin C. In addition, TPA also reversed the MMP-2 expression after by progesterone pretreatment in the primary decidual cells. These findings indicate that PKC alpha may play an important role in the regulation of the MMP-2 expression during decidualization.
Collapse
Affiliation(s)
- Jen-Hsiang Tsai
- Department of Physical Therapy, School of Medical and Health Sciences, Fooyin University, Kaohsiung 83102, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schwartz N, Xue X, Elovitz MA, Dowling O, Metz CN. Progesterone suppresses the fetal inflammatory response ex vivo. Am J Obstet Gynecol 2009; 201:211.e1-9. [PMID: 19646573 DOI: 10.1016/j.ajog.2009.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 05/04/2009] [Accepted: 05/10/2009] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Progesterone supplementation has been shown to be efficacious in preventing preterm birth. We sought to investigate the effects of progesterone on fetal inflammatory responses. STUDY DESIGN Fetal mononuclear cells were isolated from umbilical cord blood and exposed to vehicle or progesterone (P4) for 1 hour prior to lipopolysaccharide (LPS) stimulation. Supernatants were assayed for tumor necrosis factor-alpha. Similar experiments were performed using cyclic adenosine monophosphate (cAMP) and progesterone modulators. The effect of P4 treatment on intracellular cAMP levels was also determined. RESULTS LPS treatment led to a significant increase in cytokine production by fetal mononuclear cells. Despite the lack of detectable nuclear progesterone receptors, P4 suppressed this inflammatory response. R5020 (progesterone agonist), forskolin (cAMP inducer), and dibutyryl cAMP (cAMP agonist) all achieved immunosuppression. The cAMP antagonist, Rp-cAMP, blocked the inhibitory effect of progesterone. P4 significantly increased intracellular cAMP levels. CONCLUSION Progesterone rapidly suppresses the fetal inflammatory response, possibly via nongenomic activation of the cAMP cascade.
Collapse
|
30
|
Lam KK, Chiu PC, Chung MK, Lee CL, Lee KF, Koistinen R, Koistinen H, Seppala M, Ho PC, Yeung WS. Glycodelin-A as a modulator of trophoblast invasion. Hum Reprod 2009; 24:2093-103. [DOI: 10.1093/humrep/dep205] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
31
|
Goldman S, Lovett DH, Shalev E. Mechanisms of matrix metalloproteinase-2 (mmp-2) transcriptional repression by progesterone in jar choriocarcinoma cells. Reprod Biol Endocrinol 2009; 7:41. [PMID: 19426551 PMCID: PMC2687445 DOI: 10.1186/1477-7827-7-41] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 05/09/2009] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Although the MMP-2 promoter lacks a canonical progesterone response element (PRE), the hormone inhibits MMP-2 expression and is part of treatment protocols in gynecological invasive pathologies, including endometriosis and endometrial hyperplasia. This study aimed to explore the mechanism by which progesterone inhibits MMP-2 expression. METHODS The effect of progesterone on MMP-2 expression in the JAR human choriocarcinoma cell line was analyzed by gelatin zymography. MMP-2 transcript expression was studied using Northern blot and semi-quantitative RT-PCR. Rat promoter deletion analysis, electrophoretic mobility shift and chromatin immuno-precipitation assays were performed in order to locate the DNA binding site and the transcription factors involved in MMP-2 regulation. RESULTS Progesterone significantly decreased secretion of pro-MMP-2 and MMP-2 transcript expression level in a dose-dependent manner. Progesterone (1 microM) significantly decreased both human and rat MMP-2 promoter activity (80.1% +/- 0.3 and 81.3% +/- 0.23, respectively). Progesterone acts through the SP1 family transcription factors-binding site, located between -1433 and -1342 bp region from the transcriptional start site of the rat MMP-2 promoter, which are present in the orthologous human MMP-2 promoter. Progesterone receptor (PR), SP2, SP3 and SP4 proteins are constitutively bound to this consensus sequence. CONCLUSION Progesterone reduces PR and SP4 binding to the MMP-2 promoter, thereby suppressing transcription. Progesterone also promotes SP4 degradation. These novel mechanisms of MMP-2 regulation by progesterone provide the biological rationale for the use of progesterone in clinical settings associated with increased MMP-2 expression.
Collapse
Affiliation(s)
- Shlomit Goldman
- Laboratory for Research in Reproductive Sciences, Department of Obstetrics and Gynecology, HaEmek Medical Centre, Afula, Israel
| | - David H Lovett
- The Department of Medicine, SFVAMC, University of California San Francisco, San Francisco, CA, USA
| | - Eliezer Shalev
- Laboratory for Research in Reproductive Sciences, Department of Obstetrics and Gynecology, HaEmek Medical Centre, Afula, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
32
|
Anderle C, Hammer A, Polgár B, Hartmann M, Wintersteiger R, Blaschitz A, Dohr G, Desoye G, Szekeres-Barthó J, Sedlmayr P. Human trophoblast cells express the immunomodulator progesterone-induced blocking factor. J Reprod Immunol 2008; 79:26-36. [DOI: 10.1016/j.jri.2008.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 05/15/2008] [Accepted: 06/26/2008] [Indexed: 11/30/2022]
|
33
|
Palaniyappan A, Uwiera RRE, Idikio H, Jugdutt BI. Comparison of vasopeptidase inhibitor omapatrilat and angiotensin receptor blocker candesartan on extracellular matrix, myeloperoxidase, cytokines, and ventricular remodeling during healing after reperfused myocardial infarction. Mol Cell Biochem 2008; 321:9-22. [DOI: 10.1007/s11010-008-9905-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2008] [Accepted: 08/19/2008] [Indexed: 11/24/2022]
|
34
|
Chen C, Opazo JC, Erez O, Uddin M, Santolaya-Forgas J, Goodman M, Grossman LI, Romero R, Wildman DE. The human progesterone receptor shows evidence of adaptive evolution associated with its ability to act as a transcription factor. Mol Phylogenet Evol 2008; 47:637-49. [PMID: 18375150 DOI: 10.1016/j.ympev.2007.12.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 12/06/2007] [Accepted: 12/11/2007] [Indexed: 11/15/2022]
Abstract
The gene encoding the progesterone receptor (PGR) acts as a transcription factor, and participates in the regulation of reproductive processes including menstruation, implantation, pregnancy maintenance, parturition, mammary development, and lactation. Unlike other mammals, primates do not exhibit progesterone withdrawal at the time of parturition. Because progesterone-mediated reproductive features vary among mammals, PGR is an attractive candidate gene for studies of adaptive evolution. Thus, we sequenced the progesterone receptor coding regions in a diverse range of species including apes, Old World monkeys, New World monkeys, prosimian primates, and other mammals. Adaptive evolution occurred on the human and chimpanzee lineages as evidenced by statistically significant increases in nonsynonymous substitution rates compared to synonymous substitution rates. Positive selection was rarely observed in other lineages. In humans, amino acid replacements occurred mostly in a region of the gene that has been shown to have an inhibitory function (IF) on the ability of the progesterone receptor to act as a transcription factor. Moreover, many of the nonsynonymous substitutions in primates occurred in the N-terminus. This suggests that cofactor interaction surfaces might have been altered, resulting in altered progesterone-regulated gene transcriptional effects. Further evidence that the changes conferred an adaptive advantage comes from SNP analysis indicating only one of the IF changes is polymorphic in humans. In chimpanzees, amino acid changes occurred in both the inhibitory and transactivation domains. Positive selection provides the basis for the hypothesis that changes in structure and function of the progesterone receptor during evolution contribute to the diversity of primate reproductive biology, especially in parturition.
Collapse
Affiliation(s)
- Caoyi Chen
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Goldman S, Shalev E. Progesterone receptor isoforms profile, modulate matrix metalloproteinase 2 expression in the decidua. Am J Obstet Gynecol 2007; 197:604.e1-8. [PMID: 17678863 DOI: 10.1016/j.ajog.2007.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 03/12/2007] [Accepted: 04/12/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study explores the effect of progesterone and the role of the progesterone receptor (PR) profile on matrix metalloproteinase (MMP)-2 expression in human decidua. STUDY DESIGN Zymography was conducted for MMP secretion. Semiquantitative reverse transcriptase-polymerase chain reaction was performed to examine MMP2 transcripts. Progesterone's effect on the MMP2 promoter was determined testing luciferase activity. The role of PR isoform on MMP2 expression was studied using human PR complementary DNA encoding PR isoforms PRA, PRB, or PRC. RESULTS In decidua with overexpressed PRB, progesterone decreased MMP2 expression. Progesterone increased pro-MMP2 expression in decidua with overexpressed PRA or PRC. MMP2 promoter activity was unchanged following transfection with human PRA in the absence or presence of progesterone. Decreased promoter activity was observed following transfection with human PRB or human PRC. Progesterone increased promoter activity with overexpressed human PRC. CONCLUSION Progesterone hampers MMP2 expression in the decidua via PRB. PRA has a repressive effect on PRB, whereas PRC seems to have a repressive effect on both PRA and PRB.
Collapse
Affiliation(s)
- Shlomit Goldman
- Laboratory for Research in Reproductive Sciences, Department of Obstetrics and Gynecology, Ha'Emek Medical Center, Afula, Israel
| | | |
Collapse
|
36
|
Goldman S, Weiss A, Shalev E. The effect of progesterone on gelatinase expression in the decidua and fetal membranes before and after contractions. Am J Obstet Gynecol 2007; 197:521.e1-7. [PMID: 17980194 DOI: 10.1016/j.ajog.2007.03.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 03/13/2007] [Accepted: 03/26/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE This study was aimed to explore the effect of progesterone on gelatinase expression in the decidua and fetal membranes before and after contractions. STUDY DESIGN Zymography was conducted for matrix metalloproteinase (MMP) secretion. Semiquantitative reverse transcriptase-polymerase chain reaction was performed to examine MMP2 transcripts, and the effect of progesterone on MMP2 promoter activity was determined with the use of luciferase activity. RESULTS Progesterone decreased pro-MMP2 secretion, expression, and promoter activity in decidua before contractions began. The effect of progesterone was reversed completely by mifepristone (RU486). Progesterone failed to inhibit MMP2 expression in the amnion and chorion before contractions began. After contractions, progesterone failed to inhibit MMP2 expression in both the decidua and fetal membranes. CONCLUSION MMP2 expression is inhibited by progesterone only in the decidua and only before contractions begin.
Collapse
|
37
|
Goldman S, Shalev E. A proposed mechanism for progesterone regulation of trophoblast MMP2 transcription independent of classical progesterone response elements on its promoter. JOURNAL OF EXPERIMENTAL & CLINICAL ASSISTED REPRODUCTION 2006; 3:4. [PMID: 16600042 PMCID: PMC1459195 DOI: 10.1186/1743-1050-3-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2005] [Accepted: 04/06/2006] [Indexed: 01/04/2023]
Abstract
Background Progesterone receptor act as ligand-inducible transcription factor in the respective target cells by binding to specific progesterone response elements in the promoter of the target genes. However, despite the lack of the classical progesterone response elements on matrix-metalloproteinase-2 promoter, progesterone has been shown to decrease the activity of this promoter Presentation of the hypothesis It has recently been suggested that in addition to interacting with their classical co-activators and co-repressors, progesterone receptor are capable of binding to several transcription factors. By interacting with other classes of transcription factors, progesterone receptor is capable of transcriptional activation through the transcription factors cognate DNA binding site. Testing the hypothesis Exploring transcription factors and transcription binding sites, interacting with the progesterone receptor in modulation of the matrix-metalloproteinase promoter. Implications of the hypothesis Identification of additional endogenous progesterone target genes makes it possible to further explore the signaling mechanisms by which the hormone regulates biological actions. Furthermore, the concepts of ligand-driven conformational diversity and selective tissue actions can be exploited in the future for drug development which selectively regulate orphan receptors from the nuclear receptor family.
Collapse
Affiliation(s)
- Shlomit Goldman
- Laboratory for Research in Reproductive Sciences, Department of Obstetrics and Gynecology, Ha'Emek Medical Center, 18101, Afula, Israel
| | - Eliezer Shalev
- Laboratory for Research in Reproductive Sciences, Department of Obstetrics and Gynecology, Ha'Emek Medical Center, 18101, Afula, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
38
|
Staun-Ram E, Shalev E. Human trophoblast function during the implantation process. Reprod Biol Endocrinol 2005; 3:56. [PMID: 16236179 PMCID: PMC1289292 DOI: 10.1186/1477-7827-3-56] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 10/20/2005] [Indexed: 12/17/2022] Open
Abstract
The implantation process involves complex and synchronized molecular and cellular events between the uterus and the implanting embryo. These events are regulated by paracrine and autocrine factors. Trophoblast invasion and migration through the uterine wall is mediated by molecular and cellular interactions, controlled by the trophoblast and the maternal microenvironment. This review is focused on the molecular constituents of the human trophoblast, their actions and interactions, including interrelations with the uterine endometrium.
Collapse
Affiliation(s)
- Elsebeth Staun-Ram
- Laboratory for Research in Reproductive Sciences, Department of Obstetrics and Gynecology, Ha'Emek Medical Center, 18101, Afula, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eliezer Shalev
- Laboratory for Research in Reproductive Sciences, Department of Obstetrics and Gynecology, Ha'Emek Medical Center, 18101, Afula, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|