1
|
Chaqour J, Ozcan MCH, De La Cruz P, Woodman-Sousa MF, McAdams JN, Grive KJ. Effects of maternal taxane chemotherapy exposure on daughters' ovarian reserve and fertility potential. F&S SCIENCE 2024; 5:141-153. [PMID: 39382048 DOI: 10.1016/j.xfss.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/10/2024]
Abstract
OBJECTIVE To investigate the long-term effects of in utero taxane exposure on exposed daughters' ovarian reserve and reproductive potential. DESIGN Pregnant dams were treated with a single, human-relevant animal-equivalent dose of saline, docetaxel, or paclitaxel at embryonic day 16.5. In utero-exposed daughters were aged to multiple postnatal time points for ovarian and endocrine analysis or were bred to assess fertility and fecundity. Granddaughters of treated dams were assessed also for ovarian follicle composition and atresia. SETTING Laboratory study. ANIMALS C57BL/6 mice. INTERVENTION(S) In utero exposure to saline, docetaxel, or paclitaxel. MAIN OUTCOME MEASURE(S) Ovarian follicle composition, rates of follicle atresia, and rates of multioocyte follicles were analyzed in all exposure groups. Serum hormone levels and oocyte retrieval outcomes following ovarian hyperstimulation were also assessed. Finally, animals from all exposure groups were bred with the number of litters, pups per litter, live births, interlitter time interval, and age at the last litter analyzed. RESULT(S) We found that docetaxel and paclitaxel exposure in utero results in ovarian toxicity later in life, significantly affecting folliculogenesis as well as increasing the rate of follicular abnormalities, including follicle atresia and multioocyte follicles. Furthermore, viability staining indicates that the ovaries of daughters exposed to taxanes in utero demonstrate a significantly higher number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive follicles. Hormone measurements also revealed that serum follicle-stimulating hormone concentration was significantly altered in taxane-exposed daughters, with the ratio of luteinizing hormone to follicle-stimulating hormone significantly elevated, specifically after paclitaxel exposure, coincident with the inability of these animals to properly respond to ovarian stimulation. Breeding studies over the course of a year also suggest that these taxane-exposed mice are fertile, although the duration of their fertility is shortened and they produce significantly fewer litters. Finally, ovarian effects are apparent in granddaughters of mice treated with docetaxel, suggesting persistent and multigenerational effects of taxane exposure. CONCLUSION(S) Our studies demonstrate that in utero exposure to taxane-based therapy during late gestation has a significant effect on the long-term reproductive health of exposed daughters (as well as their daughters) and will be instrumental in helping clinicians better understand which chemotherapies for maternal malignancy are least detrimental to a developing fetus.
Collapse
Affiliation(s)
- Julienne Chaqour
- Division of Biology and Medicine, Brown University, Providence, Rhode Island
| | - Meghan C H Ozcan
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and Infertility Fellowship Program, Women and Infants Hospital of Rhode Island, Providence, Rhode Island; Department of Obstetrics and Gynecology, Warren Alpert Medical School of Brown University, Providence, Rhode Island; Department of Obstetrics and Gynecology, Wright State University, Dayton, Ohio
| | - Payton De La Cruz
- Pathobiology Graduate Program, Brown University, Providence, Rhode Island; Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital of Rhode Island, Providence, Rhode Island
| | - Morgan F Woodman-Sousa
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital of Rhode Island, Providence, Rhode Island; Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, Rhode Island
| | - Julia N McAdams
- Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital of Rhode Island, Providence, Rhode Island
| | - Kathryn J Grive
- Department of Obstetrics and Gynecology, Warren Alpert Medical School of Brown University, Providence, Rhode Island; Department of Obstetrics and Gynecology, Program in Women's Oncology, Women and Infants Hospital of Rhode Island, Providence, Rhode Island.
| |
Collapse
|
2
|
Szukiewicz D. Current Insights in Prolactin Signaling and Ovulatory Function. Int J Mol Sci 2024; 25:1976. [PMID: 38396659 PMCID: PMC10889014 DOI: 10.3390/ijms25041976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Prolactin (PRL) is a pleiotropic hormone released from lactotrophic cells of the anterior pituitary gland that also originates from extrapituitary sources and plays an important role in regulating lactation in mammals, as well as other actions. Acting in an endocrine and paracrine/autocrine manner, PRL regulates the hypothalamic-pituitary-ovarian axis, thus influencing the maturation of ovarian follicles and ovulation. This review provides a detailed discussion of the current knowledge on the role of PRL in the context of ovulation and ovulatory disorders, particularly with regard to hyperprolactinemia, which is one of the most common causes of infertility in women. Much attention has been given to the PRL structure and the PRL receptor (PRLR), as well as the diverse functions of PRLR signaling under normal and pathological conditions. The hormonal regulation of the menstrual cycle in connection with folliculogenesis and ovulation, as well as the current classifications of ovulation disorders, are also described. Finally, the state of knowledge regarding the importance of TIDA (tuberoinfundibular dopamine), KNDγ (kisspeptin/neurokinin B/dynorphin), and GnRH (gonadotropin-releasing hormone) neurons in PRL- and kisspeptin (KP)-dependent regulation of the hypothalamic-pituitary-gonadal (HPG) axis in women is reviewed. Based on this review, a rationale for influencing PRL signaling pathways in therapeutic activities accompanying ovulation disorders is presented.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
3
|
Fanis P, Neocleous V, Papapetrou I, Phylactou LA, Skordis N. Gonadotropin-Releasing Hormone Receptor (GnRHR) and Hypogonadotropic Hypogonadism. Int J Mol Sci 2023; 24:15965. [PMID: 37958948 PMCID: PMC10650312 DOI: 10.3390/ijms242115965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Human sexual and reproductive development is regulated by the hypothalamic-pituitary-gonadal (HPG) axis, which is primarily controlled by the gonadotropin-releasing hormone (GnRH) acting on its receptor (GnRHR). Dysregulation of the axis leads to conditions such as congenital hypogonadotropic hypogonadism (CHH) and delayed puberty. The pathophysiology of GnRHR makes it a potential target for treatments in several reproductive diseases and in congenital adrenal hyperplasia. GnRHR belongs to the G protein-coupled receptor family and its GnRH ligand, when bound, activates several complex and tissue-specific signaling pathways. In the pituitary gonadotrope cells, it triggers the G protein subunit dissociation and initiates a cascade of events that lead to the production and secretion of the luteinizing hormone (LH) and follicle-stimulating hormone (FSH) accompanied with the phospholipase C, inositol phosphate production, and protein kinase C activation. Pharmacologically, GnRHR can be modulated by synthetic analogues. Such analogues include the agonists, antagonists, and the pharmacoperones. The agonists stimulate the gonadotropin release and lead to receptor desensitization with prolonged use while the antagonists directly block the GnRHR and rapidly reduce the sex hormone production. Pharmacoperones include the most recent GnRHR therapeutic approaches that directly correct the misfolded GnRHRs, which are caused by genetic mutations and hold serious promise for CHH treatment. Understanding of the GnRHR's genomic and protein structure is crucial for the most appropriate assessing of the mutation impact. Such mutations in the GNRHR are linked to normosmic hypogonadotropic hypogonadism and lead to various clinical symptoms, including delayed puberty, infertility, and impaired sexual development. These mutations vary regarding their mode of inheritance and can be found in the homozygous, compound heterozygous, or in the digenic state. GnRHR expression extends beyond the pituitary gland, and is found in reproductive tissues such as ovaries, uterus, and prostate and non-reproductive tissues such as heart, muscles, liver and melanoma cells. This comprehensive review explores GnRHR's multifaceted role in human reproduction and its clinical implications for reproductive disorders.
Collapse
Affiliation(s)
- Pavlos Fanis
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.F.); (V.N.)
| | - Vassos Neocleous
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.F.); (V.N.)
| | - Irene Papapetrou
- School of Medicine, University of Nicosia, Nicosia 1678, Cyprus;
| | - Leonidas A. Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (P.F.); (V.N.)
| | - Nicos Skordis
- School of Medicine, University of Nicosia, Nicosia 1678, Cyprus;
- Division of Paediatric Endocrinology, Paedi Center for Specialized Paediatrics, Nicosia 2024, Cyprus
| |
Collapse
|
4
|
Biniari G, Markatos C, Nteli A, Tzoupis H, Simal C, Vlamis-Gardikas A, Karageorgos V, Pirmettis I, Petrou P, Venihaki M, Liapakis G, Tselios T. Rational Design, Synthesis and Binding Affinity Studies of Anthraquinone Derivatives Conjugated to Gonadotropin-Releasing Hormone (GnRH) Analogues towards Selective Immunosuppression of Hormone-Dependent Cancer. Int J Mol Sci 2023; 24:15232. [PMID: 37894912 PMCID: PMC10607160 DOI: 10.3390/ijms242015232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is pivotal in regulating human reproduction and fertility through its specific receptors. Among these, gonadotropin-releasing hormone receptor type I (GnRHR I), which is a member of the G-protein-coupled receptor family, is expressed on the surface of both healthy and malignant cells. Its presence in cancer cells has positioned this receptor as a primary target for the development of novel anti-cancer agents. Moreover, the extensive regulatory functions of GnRH have underscored decapeptide as a prominent vehicle for targeted drug delivery, which is accomplished through the design of appropriate conjugates. On this basis, a rationally designed series of anthraquinone/mitoxantrone-GnRH conjugates (con1-con8) has been synthesized herein. Their in vitro binding affinities range from 0.06 to 3.42 nM, with six of them (con2-con7) demonstrating higher affinities for GnRH than the established drug leuprolide (0.64 nM). Among the mitoxantrone based GnRH conjugates, con3 and con7 show the highest affinities at 0.07 and 0.06 nM, respectively, while the disulfide bond present in the conjugates is found to be readily reduced by the thioredoxin (Trx) system. These findings are promising for further pharmacological evaluation of the synthesized conjugates with the prospect of performing future clinical studies.
Collapse
Affiliation(s)
- Georgia Biniari
- Department of Chemistry, University of Patras, 26504 Rion, Greece; (G.B.); (A.N.); (H.T.); (C.S.); (A.V.-G.)
| | - Christos Markatos
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.M.); (V.K.)
| | - Agathi Nteli
- Department of Chemistry, University of Patras, 26504 Rion, Greece; (G.B.); (A.N.); (H.T.); (C.S.); (A.V.-G.)
| | - Haralambos Tzoupis
- Department of Chemistry, University of Patras, 26504 Rion, Greece; (G.B.); (A.N.); (H.T.); (C.S.); (A.V.-G.)
| | - Carmen Simal
- Department of Chemistry, University of Patras, 26504 Rion, Greece; (G.B.); (A.N.); (H.T.); (C.S.); (A.V.-G.)
| | - Alexios Vlamis-Gardikas
- Department of Chemistry, University of Patras, 26504 Rion, Greece; (G.B.); (A.N.); (H.T.); (C.S.); (A.V.-G.)
| | - Vlasios Karageorgos
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.M.); (V.K.)
| | - Ioannis Pirmettis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (I.P.); (P.P.)
| | - Panagiota Petrou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research “Demokritos”, 15341 Athens, Greece; (I.P.); (P.P.)
| | - Maria Venihaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - George Liapakis
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (C.M.); (V.K.)
| | - Theodore Tselios
- Department of Chemistry, University of Patras, 26504 Rion, Greece; (G.B.); (A.N.); (H.T.); (C.S.); (A.V.-G.)
| |
Collapse
|
5
|
Wang T, Wang HQ, Yuan B, Zhao GK, Ma YR, Zhao PS, Xie WY, Gao F, Gao W, Ren WZ. Integrative Proteomics and Phosphoproteomics Analysis of the Rat Adenohypophysis after GnRH Treatment. Int J Mol Sci 2023; 24:ijms24043339. [PMID: 36834752 PMCID: PMC9961725 DOI: 10.3390/ijms24043339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
The regulation of mammalian reproductive activity is tightly dependent on the HPG axis crosstalk, in which several reproductive hormones play important roles. Among them, the physiological functions of gonadotropins are gradually being uncovered. However, the mechanisms by which GnRH regulates FSH synthesis and secretion still need to be more extensively and deeply explored. With the gradual completion of the human genome project, proteomes have become extremely important in the fields of human disease and biological process research. To explore the changes of protein and protein phosphorylation modifications in the adenohypophysis after GnRH stimulation, proteomics and phosphoproteomics analyses of rat adenohypophysis after GnRH treatment were performed by using TMT markers, HPLC classification, LC/MS, and bioinformatics analysis in this study. A total of 6762 proteins and 15,379 phosphorylation sites contained quantitative information. Twenty-eight upregulated proteins and fifty-three downregulated proteins were obtained in the rat adenohypophysis after GnRH treatment. The 323 upregulated phosphorylation sites and 677 downregulated phosphorylation sites found in the phosphoproteomics implied that a large number of phosphorylation modifications were regulated by GnRH and were involved in FSH synthesis and secretion. These data constitute a protein-protein phosphorylation map in the regulatory mechanism of "GnRH-FSH," which provides a basis for future studies on the complex molecular mechanisms of FSH synthesis and secretion. The results will be helpful for understanding the role of GnRH in the development and reproduction regulated by the pituitary proteome in mammals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Gao
- Correspondence: (W.G.); (W.-Z.R.)
| | | |
Collapse
|
6
|
Plain Z, Voliotis M, McArdle CA, Tsaneva-Atanasova K. Modelling KNDy neurons and gonadotropin-releasing hormone pulse generation. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 27:100407. [PMID: 36632147 PMCID: PMC9823092 DOI: 10.1016/j.coemr.2022.100407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The pulsatile release of gonadotropin-releasing hormone (GnRH) and its frequency are crucial for healthy reproductive function. To understand what drives GnRH pulses, a combination of experimental and mathematical modelling approaches has been used. Early work focussed on the possibility that GnRH pulse generation is an intrinsic feature of GnRH neurons, with autocrine feedback generating pulsatility. However, there is now ample evidence suggesting that a network of upstream neurons secreting kisspeptin, neurokinin-B and dynorphin are the source of this GnRH pulse generator. The interplay of slow positive and negative feedback via neurokinin-B and dynorphin, respectively, allows the network to act as a relaxation oscillator, driving pulsatile secretion of kisspeptin, and consequently, of GnRH and LH. Here, we review the mathematical modelling approaches exploring both scenarios and suggest that with pulsatile GnRH secretion driven by the KNDy pulse generator, autocrine feedback still has the potential to modulate GnRH output.
Collapse
Affiliation(s)
- Zoe Plain
- Department of Mathematics and Living Systems Institute, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Margaritis Voliotis
- Department of Mathematics and Living Systems Institute, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK,Corresponding author: Voliotis, Margaritis
| | | | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
7
|
Constantin S, Bjelobaba I, Stojilkovic SS. Pituitary gonadotroph-specific patterns of gene expression and hormone secretion. Curr Opin Pharmacol 2022; 66:102274. [PMID: 35994915 PMCID: PMC9509429 DOI: 10.1016/j.coph.2022.102274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
Pituitary gonadotrophs play a key role in reproductive functions by secreting luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The LH secretory activity of gonadotroph is controlled by hypothalamic gonadotropin-releasing hormone (GnRH) via GnRH receptors and is accompanied by only minor effects on high basal Lhb gene expression. The secretory profiles of GnRH and LH are highly synchronized, with the latter reflecting a depletion of prestored LH in secretory vesicles by regulated exocytosis. In contrast, FSH is predominantly released by constitutive exocytosis, and secretory activity reflects the kinetics of Fshb gene expression controlled by GnRH, activin, and inhibin. Here is a review of recent data to improve the understanding of multiple patterns of gonadotroph gene expression and hormone secretion.
Collapse
Affiliation(s)
- Stephanie Constantin
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivana Bjelobaba
- Department for Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000, Belgrade, Serbia
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Lalonde-Larue A, Boyer A, Dos Santos EC, Boerboom D, Bernard DJ, Zamberlam G. The Hippo Pathway Effectors YAP and TAZ Regulate LH Release by Pituitary Gonadotrope Cells in Mice. Endocrinology 2022; 163:bqab238. [PMID: 34905605 PMCID: PMC8670590 DOI: 10.1210/endocr/bqab238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 01/08/2023]
Abstract
The Hippo transcriptional coactivators YAP and TAZ exert critical roles in morphogenesis, organ size determination and tumorigenesis in many tissues. Although Hippo kinase cascade activity was recently reported in the anterior pituitary gland in mice, the role of the Hippo effectors in regulating gonadotropin production remains unknown. The objective of this study was therefore to characterize the roles of YAP and TAZ in gonadotropin synthesis and secretion. Using a conditional gene targeting approach (cKO), we found that gonadotrope-specific inactivation of Yap and Taz resulted in increased circulating levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in adult male mice, along with increased testosterone levels and testis weight. Female cKO mice had increased circulating LH (but not FSH) levels, which were associated with a hyperfertility phenotype characterized by higher ovulation rates and larger litter sizes. Unexpectedly, the loss of YAP/TAZ did not appear to affect the expression of gonadotropin subunit genes, yet both basal and GnRH-induced LH secretion were increased in cultured pituitary cells from cKO mice. Likewise, pharmacologic inhibition of YAP binding to the TEAD family of transcription factors increased both basal and GnRH-induced LH secretion in LβT2 gonadotrope-like cells in vitro without affecting Lhb expression. Conversely, mRNA levels of ChgA and SgII, which encode key secretory granule cargo proteins, were decreased following pharmacologic inhibition of YAP/TAZ, suggesting a mechanism whereby YAP/TAZ regulate the LH secretion machinery in gonadotrope cells. Together, these findings represent the first evidence that Hippo signaling may play a role in regulating pituitary LH secretion.
Collapse
Affiliation(s)
- Ariane Lalonde-Larue
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| | - Alexandre Boyer
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| | - Esdras Corrêa Dos Santos
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| | - Derek Boerboom
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Gustavo Zamberlam
- Centre de recherche en reproduction et fertilité (CRRF), Faculté de médecine Vétérinaire, Université de Montréal, Montréal, Quebec J2S 7C6, Canada
| |
Collapse
|
9
|
Crespo D, Skaftnesmo KO, Kjærner-Semb E, Yilmaz O, Norberg B, Olausson S, Vogelsang P, Bogerd J, Kleppe L, Edvardsen RB, Andersson E, Wargelius A, Hansen TJ, Fjelldal PG, Schulz RW. Pituitary Gonadotropin Gene Expression During Induced Onset of Postsmolt Maturation in Male Atlantic Salmon: In Vivo and Tissue Culture Studies. Front Endocrinol (Lausanne) 2022; 13:826920. [PMID: 35370944 PMCID: PMC8964956 DOI: 10.3389/fendo.2022.826920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 12/25/2022] Open
Abstract
Precocious male maturation causes reduced welfare and increased production costs in Atlantic salmon (Salmo salar) aquaculture. The pituitary produces and releases follicle-stimulating hormone (Fsh), the gonadotropin triggering puberty in male salmonids. However, little is known about how Fsh production is regulated in Atlantic salmon. We examined, in vivo and ex vivo, transcriptional changes of gonadotropin-related genes accompanying the initial steps of testis maturation, in pituitaries of males exposed to photoperiod and temperature conditions promoting maturation (constant light and 16°C). Pituitary fshb, lhb and gnrhr2bba transcripts increased in vivo in maturing males (gonado-somatic index > 0.1%). RNA sequencing (RNAseq) analysis using pituitaries from genetically similar males carrying the same genetic predisposition to mature, but differing by responding or not responding to stimulatory environmental conditions, revealed 144 differentially expressed genes, ~2/3rds being up-regulated in responders, including fshb and other pituitary hormones, steroid-related and other puberty-associated transcripts. Functional enrichment analyses confirmed gene involvement in hormone/steroid production and gonad development. In ex vivo studies, whole pituitaries were exposed to a selection of hormones and growth factors. Gonadotropin-releasing hormone (Gnrh), 17β-estradiol (E2) and 11-ketotestosterone (11-KT) up-regulated gnrhr2bba and lhb, while fshb was up-regulated by Gnrh but down-regulated by 11-KT in pituitaries from immature males. Also pituitaries from maturing males responded to Gnrh and sex steroids by increased gnrhr2bba and lhb transcript levels, but fshb expression remained unchanged. Growth factors (inhibin A, activin A and insulin-like growth factor 1) did not change gnrhr2bba, lhb or fshb transcript levels in pituitaries either from immature or maturing males. Additional pituitary ex vivo studies on candidates identified by RNAseq showed that these transcripts were preferentially regulated by Gnrh and sex steroids, but not by growth factors, and that Gnrh/sex steroids were less effective when incubating pituitaries from maturing males. Our results suggest that a yet to be characterized mechanism up-regulating fshb expression in the salmon pituitary is activated in response to stimulatory environmental conditions prior to morphological signs of testis maturation, and that the transcriptional program associated with this mechanism becomes unresponsive or less responsive to most stimulators ex vivo once males had entered pubertal developmental in vivo.
Collapse
Affiliation(s)
- Diego Crespo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
- *Correspondence: Diego Crespo,
| | - Kai Ove Skaftnesmo
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Erik Kjærner-Semb
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Ozlem Yilmaz
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Birgitta Norberg
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Sara Olausson
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Petra Vogelsang
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
| | - Lene Kleppe
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Rolf B. Edvardsen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Eva Andersson
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Anna Wargelius
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
| | - Tom J. Hansen
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Per Gunnar Fjelldal
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Matre Research Station, Matredal, Norway
| | - Rüdiger W. Schulz
- Research Group Reproduction and Developmental Biology, Institute of Marine Research, Bergen, Norway
- Reproductive Biology Group, Division Developmental Biology, Department Biology, Science Faculty, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Molecular Targets and Associated Signaling Pathways of Jingshu Granules in Ovarian Cysts Based on Systemic Pharmacological Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6660087. [PMID: 33623786 PMCID: PMC7875638 DOI: 10.1155/2021/6660087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/09/2021] [Indexed: 11/18/2022]
Abstract
Background More than a third of women could develop ovarian cysts during their lifetime. Jingshu granules are used for the treatment of gynecological disease of primary dysmenorrhea. However, the molecular mechanisms of Jingshu granules in ovarian cysts are still unreported. We aimed to find the active ingredients, molecular targets, and potential signaling pathways of Jingshu granules in ovarian cysts by using the systemic pharmacological analysis. Methods Firstly, the effect of Jingshu granules on female hormones and reproductive organs of young female rats was evaluated. Secondly, candidate pharmaceutical ingredients of Jingshu granules were retrieved from the traditional Chinese medicine systems pharmacology (TCMSP) database and analysis platform. Potential protein targets for the active ingredients in Jingshu granules were then identified according to the oral bioavailability and drug-likeness indices. Thirdly, ovarian cyst-related gene targets were screened based on different databases. Finally, enrichment analysis was used to analyze the potential biological function of intersection targets between Jingshu granules and ovarian cysts. Results In young female rats, Jingshu granules reduced the secretion of estradiol, progesterone, and prolactin and could affect the development of the uterus. This suggested that Jingshu granules played roles in hormone secretion and reproduction. From the TCMSP, a total of 1021 pharmaceutical ingredients of Jingshu granules were retrieved. After further screening, a total of 166 active ingredients and 159 protein targets of Jingshu granules were identified. In addition, 4488 gene targets of ovarian cysts were screened out. After taking the intersection, a total of 110 intersection targets were identified between potential protein targets of Jingshu granules and gene targets of ovarian cysts. In the functional analysis of 110 intersection targets, 8 signaling pathways including progesterone-mediated oocyte maturation (MAPK8 and CDK1 involved), GnRH signaling pathway (JUN involved), T cell receptor signaling pathway and Toll-like receptor signaling pathway (MAPK1 involved), NOD-like receptor signaling pathway (TNF, IL6, and IL1B involved), p53 signaling pathway (CDK2 and CDK4 involved), VEGF signaling pathway (MAPK14 involved), and PPAR signaling pathway (PPARG involved) were obtained. Conclusion Our study revealed that Jingshu granules could function in patients with ovarian cysts through a number of molecular targets and signaling pathways. Our study may provide a new field into the mechanisms of Jingshu granules in ovarian cysts, from the molecular to the signaling pathway level.
Collapse
|
11
|
Tzoupis H, Nteli A, Androutsou ME, Tselios T. Gonadotropin-Releasing Hormone and GnRH Receptor: Structure, Function and Drug Development. Curr Med Chem 2021; 27:6136-6158. [PMID: 31309882 DOI: 10.2174/0929867326666190712165444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Gonadotropin-Releasing Hormone (GnRH) is a key element in sexual maturation and regulation of the reproductive cycle in the human organism. GnRH interacts with the pituitary cells through the activation of the Gonadotropin Releasing Hormone Receptors (GnRHR). Any impairments/dysfunctions of the GnRH-GnRHR complex lead to the development of various cancer types and disorders. Furthermore, the identification of GnRHR as a potential drug target has led to the development of agonist and antagonist molecules implemented in various treatment protocols. The development of these drugs was based on the information derived from the functional studies of GnRH and GnRHR. OBJECTIVE This review aims at shedding light on the versatile function of GnRH and GnRH receptor and offers an apprehensive summary regarding the development of different agonists, antagonists and non-peptide GnRH analogues. CONCLUSION The information derived from these studies can enhance our understanding of the GnRH-GnRHR versatile nature and offer valuable insight into the design of new more potent molecules.
Collapse
Affiliation(s)
| | - Agathi Nteli
- Department of Chemistry, University of Patras, Rion GR-26504, Greece
| | - Maria-Eleni Androutsou
- Vianex S.A., Tatoiou Str., 18th km Athens-Lamia National Road, Nea Erythrea 14671, Greece
| | - Theodore Tselios
- Department of Chemistry, University of Patras, Rion GR-26504, Greece
| |
Collapse
|
12
|
Zhang Z, Tang J, He X, Di R, Zhang X, Zhang J, Hu W, Chu M. Identification and Characterization of Hypothalamic Alternative Splicing Events and Variants in Ovine Fecundity-Related Genes. Animals (Basel) 2020; 10:ani10112111. [PMID: 33203033 PMCID: PMC7698220 DOI: 10.3390/ani10112111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Previous studies revealed that alternative splicing (AS) events and gene variants played key roles in reproduction. However, their location and distribution in hypothalamic fecundity-related genes in sheep without the FecB mutation remain largely unknown. In this study, we performed a correlation analysis of transcriptomics and proteomics, and the results suggested several differentially expressed genes (DEGs)/differentially expressed proteins (DEPs), including galectin 3 (LGALS3), aspartoacylase (ASPA) and transthyretin (TTR), could be candidate genes influencing ovine litter size. Further analysis suggested that AS events, single nucleotide polymorphisms (SNPs) and microRNA (miRNA)-binding sites existed in key DEGs/DEPs, such as ASPA and TTR. This study provides a new insight into ovine and even other mammalian reproduction. Abstract Previous studies revealed that alternative splicing (AS) events and gene variants played key roles in reproduction; however, their location and distribution in hypothalamic fecundity-related genes in sheep without the FecB mutation remain largely unknown. Therefore, in this study, we described the hypothalamic AS events and variants in differentially expressed genes (DEGs) in Small Tail Han sheep without the FecB mutation at polytocous sheep in the follicular phase vs. monotocous sheep in the follicular phase (PF vs. MF) and polytocous sheep in the luteal phase vs. monotocous sheep in the luteal phase (PL vs. ML) via an RNA-seq study for the first time. We found 39 DEGs with AS events (AS DEGs) in PF vs. MF, while 42 AS DEGs were identified in PL vs. ML. No DEGs with single nucleotide polymorphisms (SNPs) were observed in PF vs. MF, but five were identified in PL vs. ML. We also performed a correlation analysis of transcriptomics and proteomics, and the results suggested several key DEGs/differentially expressed proteins (DEPs), such as galectin 3 (LGALS3) in PF vs. MF and aspartoacylase (ASPA) and transthyretin (TTR) in PL vs. ML, could be candidate genes influencing ovine litter size. In addition, further analyses suggested that AS events, SNPs and miRNA-binding sites existed in key DEGs/DEPs, such as ASPA and TTR. All in all, this study provides a new insight into ovine and even other mammalian reproduction.
Collapse
Affiliation(s)
- Zhuangbiao Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.)
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.)
| | - Wenping Hu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
- Correspondence: (W.H.); (M.C.); Tel.: +86-010-6281-6002 (W.H.); +86-010-6281-9850 (M.C.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
- Correspondence: (W.H.); (M.C.); Tel.: +86-010-6281-6002 (W.H.); +86-010-6281-9850 (M.C.)
| |
Collapse
|
13
|
Fontaine R, Ciani E, Haug TM, Hodne K, Ager-Wick E, Baker DM, Weltzien FA. Gonadotrope plasticity at cellular, population and structural levels: A comparison between fishes and mammals. Gen Comp Endocrinol 2020; 287:113344. [PMID: 31794734 DOI: 10.1016/j.ygcen.2019.113344] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Often referred to as "the master gland", the pituitary is a key organ controlling growth, maturation, and homeostasis in vertebrates. The anterior pituitary, which contains several hormone-producing cell types, is highly plastic and thereby able to adjust the production of the hormones governing these key physiological processes according to the changing needs over the life of the animal. Hypothalamic neuroendocrine control and feedback from peripheral tissues modulate pituitary cell activity, adjusting levels of hormone production and release according to different functional or environmental requirements. However, in some physiological processes (e.g. growth, puberty, or metamorphosis), changes in cell activity may be not sufficient to meet the needs and a general reorganization of cell composition and pituitary structure may occur. Focusing on gonadotropes, this review examines plasticity at the cellular level, which allows precise and rapid control of hormone production and secretion, as well as plasticity at the population and structural levels, which allows more substantial changes in hormone production. Further, we compare current knowledge of the anterior pituitary plasticity in fishes and mammals in order to assess what has been conserved or not throughout evolution, and highlight important remaining questions.
Collapse
Affiliation(s)
- Romain Fontaine
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Elia Ciani
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Trude Marie Haug
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Eirill Ager-Wick
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Dianne M Baker
- Department of Biological Sciences, University of Mary Washington, VA22401 Fredericksburg, VA, USA
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
14
|
Tzoupis H, Nteli A, Platts J, Mantzourani E, Tselios T. Refinement of the gonadotropin releasing hormone receptor I homology model by applying molecular dynamics. J Mol Graph Model 2019; 89:147-155. [DOI: 10.1016/j.jmgm.2019.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
|
15
|
Lehnert J, Khadra A. How Pulsatile Kisspeptin Stimulation and GnRH Autocrine Feedback Can Drive GnRH Secretion: A Modeling Investigation. Endocrinology 2019; 160:1289-1306. [PMID: 30874725 DOI: 10.1210/en.2018-00947] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/09/2019] [Indexed: 02/03/2023]
Abstract
Pulsatile secretion of GnRH from hypothalamic GnRH neurons tightly regulates the release of mammalian reproductive hormones. Although key factors such as electrical activity and stimulation by kisspeptin have been extensively studied, the underlying mechanisms that regulate GnRH release are still not fully understood. Previously developed mathematical models studied hormonal release and electrical properties of GnRH neurons separately, but they never integrated both components. Herein, we present a more complete biophysical model to investigate how electrical activity and hormonal release interact. The model consists of two components: an electrical submodel comprised of a modified Izhikevich formalism incorporating several key ionic currents to reproduce GnRH neuronal bursting behavior, and a hormonal submodel that incorporates pulsatile kisspeptin stimulation and a GnRH autocrine feedback mechanism. Using the model, we examine the electrical activity of GnRH neurons and how kisspeptin affects GnRH pulsatility. The model reproduces the noise-driven bursting behavior of GnRH neurons as well as the experimentally observed electrophysiological effects induced by GnRH and kisspeptin. Specifically, the model reveals that external application of GnRH causes a transient hyperpolarization followed by an increase in firing frequency, whereas administration of kisspeptin leads to long-lasting depolarization of the neuron. The model also shows that GnRH release follows a pulsatile profile similar to that observed experimentally and that kisspeptin and GnRH exhibit ∼7-1 locking in their pulsatility. These results suggest that external kisspeptin stimulation with a period of ∼8 minutes drives the autocrine mechanism beyond a threshold to generate pronounced GnRH pulses every hour.
Collapse
Affiliation(s)
- Jonas Lehnert
- Department of Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
| | - Anmar Khadra
- Department of Quantitative Life Sciences, McGill University, Montreal, Quebec, Canada
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Tian C, Li Z, Dong Z, Huang Y, Du T, Chen H, Jiang D, Deng S, Zhang Y, Wanida S, Shi H, Wu T, Zhu C, Li G. Transcriptome Analysis of Male and Female Mature Gonads of Silver Sillago ( Sillago sihama). Genes (Basel) 2019; 10:E129. [PMID: 30754713 PMCID: PMC6409516 DOI: 10.3390/genes10020129] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 01/14/2023] Open
Abstract
Silver sillago (Sillago sihama) is an emerging commercial marine aquaculture species in China. To date, fundamental information on S. sihama, such as genomic information, is lacking, and no data are available on the gonad transcriptome of S. sihama. Here, the first gonadal transcriptomes of S. sihama have been constructed and genes potentially involved in gonadal development and reproduction identified. Illumina sequencing generated 60.18 million clean reads for the testis and 59.10 million for the ovary. All reads were assembled into 74,038 unigenes with a mean length of 1,004 bp and N50 value of 2,190 bp. Among all the predictable unigenes, a total of 34,104 unigenes (46%) were searched against multiple databases, including 33,244 unigenes annotated in the RefSeq Non- Redundant database at NCBI, and 28,924 in Swiss-Prot. By comparing the ovary and testis, 35,367 unigenes were identified as being differentially expressed between males and females, of which 29,127 were upregulated in the testis and 6,240 were upregulated in the ovary. Numerous differentially expressed genes (DEGs) known to be involved in gonadal development and gametogenesis were identified, including amh, dmrt1, gsdf, cyp19a1a, gnrhr, and zps. Using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, the top 20 KEGG pathways with highest number of DEGs were found to be involved in regulating gonadal development and gametogenesis in S. sihama. Moreover, 22,666 simple sequence repeats (SSRs) were identified in 14,577 SSR-containing sequences. The findings provide a valuable dataset for future functional analyses of sex-associated genes and molecular marker assisted selection in S. sihama.
Collapse
Affiliation(s)
- Changxu Tian
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Zhiyuan Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Zhongdian Dong
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yang Huang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Tao Du
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Huapu Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Dongneng Jiang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Siping Deng
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yulei Zhang
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Saetan Wanida
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Hongjuan Shi
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Tianli Wu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Guangli Li
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Key Laboratory of Marine Ecology and Aquaculture Environment of Zhanjiang, Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
17
|
Abstract
The hypothalamic decapeptide, GnRH, is the gatekeeper of mammalian reproductive development and function. Activation of specific, high-affinity cell surface receptors (GnRH receptors) on gonadotropes by GnRH triggers signal transduction cascades to stimulate the coordinated synthesis and secretion of the pituitary gonadotropins FSH and LH. These hormones direct gonadal steroidogenesis and gametogenesis, making their tightly regulated production and secretion essential for normal sexual maturation and reproductive health. FSH and LH are glycoprotein heterodimers comprised of a common α-subunit and a unique β-subunit (FSHβ and LHβ, respectively), which determines the biological specificity of the gonadotropins. The unique β-subunit is the rate-limiting step for the production of the mature gonadotropins. Therefore, FSH synthesis is regulated at the transcriptional level by Fshb gene expression. The overarching goal of this review is to expand our understanding of the mechanisms and pathways underlying the carefully orchestrated control of FSH synthesis and secretion by GnRH, focusing on the transcriptional regulation of the Fshb gene. Identification of these regulatory mechanisms is not only fundamental to our understanding of normal reproductive function but will also provide a context for the elucidation of the pathophysiology of reproductive disorders and infertility to lead to potential new therapeutic approaches.
Collapse
Affiliation(s)
- George A Stamatiades
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
- Yale New Haven Health, Bridgeport Hospital, Bridgeport, Connecticut
- School of Medicine, University of Crete, Heraklion, Greece
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in Mammalian Physiology. Physiol Rev 2019; 99:739-780. [DOI: 10.1152/physrev.00002.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activins are dimeric glycoproteins belonging to the transforming growth factor beta superfamily and resulting from the assembly of two beta subunits, which may also be combined with alpha subunits to form inhibins. Activins were discovered in 1986 following the isolation of inhibins from porcine follicular fluid, and were characterized as ovarian hormones that stimulate follicle stimulating hormone (FSH) release by the pituitary gland. In particular, activin A was shown to be the isoform of greater physiological importance in humans. The current understanding of activin A surpasses the reproductive system and allows its classification as a hormone, a growth factor, and a cytokine. In more than 30 yr of intense research, activin A was localized in female and male reproductive organs but also in other organs and systems as diverse as the brain, liver, lung, bone, and gut. Moreover, its roles include embryonic differentiation, trophoblast invasion of the uterine wall in early pregnancy, and fetal/neonate brain protection in hypoxic conditions. It is now recognized that activin A overexpression may be either cytostatic or mitogenic, depending on the cell type, with important implications for tumor biology. Activin A also regulates bone formation and regeneration, enhances joint inflammation in rheumatoid arthritis, and triggers pathogenic mechanisms in the respiratory system. In this 30-yr review, we analyze the evidence for physiological roles of activin A and the potential use of activin agonists and antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Pasquapina Ciarmela
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Cynthia Dela Cruz
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Stefano Luisi
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Felice Petraglia
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Fernando M. Reis
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| |
Collapse
|
19
|
Bjelobaba I, Janjic MM, Prévide RM, Abebe D, Kucka M, Stojilkovic SS. Distinct Expression Patterns of Osteopontin and Dentin Matrix Protein 1 Genes in Pituitary Gonadotrophs. Front Endocrinol (Lausanne) 2019; 10:248. [PMID: 31057484 PMCID: PMC6478748 DOI: 10.3389/fendo.2019.00248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/29/2019] [Indexed: 01/06/2023] Open
Abstract
Cell-matrix interactions play important roles in pituitary development, physiology, and pathogenesis. In other tissues, a family of non-collagenous proteins, termed SIBLINGs, are known to contribute to cell-matrix interactions. Anterior pituitary gland expresses two SIBLING genes, Dmp1 (dentin matrix protein-1) and Spp1 (secreted phosphoprotein-1) encoding DMP1 and osteopontin proteins, respectively, but their expression pattern and roles in pituitary functions have not been clarified. Here we provide novel evidence supporting the conclusion that Spp1/osteopontin, like Dmp1/DMP1, are expressed in gonadotrophs in a sex- and age-specific manner. Other anterior pituitary cell types do not express these genes. In contrast to Dmp1, Spp1 expression is higher in males; in females, the expression reaches the peak during the diestrus phase of estrous cycle. In further contrast to Dmp1 and marker genes for gonadotrophs, the expression of Spp1 is not regulated by gonadotropin-releasing hormone in vivo and in vitro. However, Spp1 expression increases progressively after pituitary cell dispersion in both female and male cultures. We may speculate that gonadotrophs signal to other pituitary cell types about changes in the structure of pituitary cell-matrix network by osteopontin, a function consistent with the role of this secretory protein in postnatal tissue remodeling, extracellular matrix reorganization after injury, and tumorigenesis.
Collapse
Affiliation(s)
- Ivana Bjelobaba
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Marija M. Janjic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
- Institute for Biological Research Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Rafael Maso Prévide
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniel Abebe
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Marek Kucka
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Stanko S. Stojilkovic
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
- *Correspondence: Stanko S. Stojilkovic
| |
Collapse
|
20
|
Changes in pituitary gene expression may underlie multiple domesticated traits in chickens. Heredity (Edinb) 2018; 122:195-204. [PMID: 29789643 DOI: 10.1038/s41437-018-0092-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 04/05/2018] [Accepted: 04/26/2018] [Indexed: 12/29/2022] Open
Abstract
Domesticated animals share a unique set of morphological and behavioral traits, jointly referred to as the domesticated phenotype. Striking similarities amongst a range of unrelated domesticated species suggest that similar regulatory mechanisms may underlie the domesticated phenotype. These include color pattern, growth, reproduction, development and stress response. Although previous studies have focused on the brain to find mechanisms underlying domestication, the potential role of the pituitary gland as a target of domestication is highly overlooked. Here, we study gene expression in the pituitary gland of the domesticated White Leghorn chicken and its wild ancestor, the Red Junglefowl. By overlapping differentially expressed genes with a previously published list of functionally important genes in the pituitary gland, we narrowed down to 34 genes. Amongst them, expression levels of genes with inhibitory function on pigmentation (ASIP), main stimulators of metabolism and sexual maturity (TSHB and DIO2), and a potential inhibitor of broodiness (PRLR), were higher in the domesticated breed. Additionally, expression of 2 key inhibitors of the stress response (NR3C1, CRHR2) was higher in the domesticated breed. We suggest that changes in the transcription of important modulatory genes in the pituitary gland can account not only for domestication of the stress response in domestic chickens, but also for changes in pigmentation, development, and reproduction. Given the pivotal role of the pituitary gland in the regulation of multiple shared domesticated traits, we suggest that similar changes in pituitary transcriptome may contribute to the domesticated phenotype in other species as well.
Collapse
|
21
|
Voliotis M, Garner KL, Alobaid H, Tsaneva-Atanasova K, McArdle CA. Gonadotropin-releasing hormone signaling: An information theoretic approach. Mol Cell Endocrinol 2018; 463:106-115. [PMID: 28760599 DOI: 10.1016/j.mce.2017.07.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 12/16/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a peptide hormone that mediates central control of reproduction, acting via G-protein coupled receptors that are primarily Gq coupled and mediate GnRH effects on the synthesis and secretion of luteinizing hormone and follicle-stimulating hormone. A great deal is known about the GnRH receptor signaling network but GnRH is secreted in short pulses and much less is known about how gonadotropes decode this pulsatile signal. Similarly, single cell measures reveal considerable cell-cell heterogeneity in responses to GnRH but the impact of this variability on signaling is largely unknown. Ordinary differential equation-based mathematical models have been used to explore the decoding of pulse dynamics and information theory-derived statistical measures are increasingly used to address the influence of cell-cell variability on the amount of information transferred by signaling pathways. Here, we describe both approaches for GnRH signaling, with emphasis on novel insights gained from the information theoretic approach and on the fundamental question of why GnRH is secreted in pulses.
Collapse
Affiliation(s)
- Margaritis Voliotis
- Department of Mathematics and Living Systems Institute, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| | - Kathryn L Garner
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Hussah Alobaid
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK; EPSRC Centre for Predictive Modeling in Healthcare, University of Exeter, Exeter, EX4 4QF, UK
| | - Craig A McArdle
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK.
| |
Collapse
|
22
|
Stamatiades GA, Kaiser UB. Gonadotropin regulation by pulsatile GnRH: Signaling and gene expression. Mol Cell Endocrinol 2018; 463:131-141. [PMID: 29102564 PMCID: PMC5812824 DOI: 10.1016/j.mce.2017.10.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
The precise orchestration of hormonal regulation at all levels of the hypothalamic-pituitary-gonadal axis is essential for normal reproductive function and fertility. The pulsatile secretion of hypothalamic gonadotropin-releasing hormone (GnRH) stimulates the synthesis and release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) by pituitary gonadotropes. GnRH acts by binding to its high affinity seven-transmembrane receptor (GnRHR) on the cell surface of anterior pituitary gonadotropes. Different signaling cascades and transcriptional mechanisms are activated, depending on the variation in GnRH pulse frequency, to stimulate the synthesis and release of FSH and LH. While changes in GnRH pulse frequency may explain some of the differential regulation of FSH and LH, other factors, such as activin, inhibin and sex steroids, also contribute to gonadotropin production. In this review, we focus on the transcriptional regulation of the gonadotropin subunit genes and the signaling pathways activated by pulsatile GnRH.
Collapse
Affiliation(s)
- George A Stamatiades
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
23
|
Mugami S, Dobkin-Bekman M, Rahamim-Ben Navi L, Naor Z. Differential roles of PKC isoforms (PKCs) in GnRH stimulation of MAPK phosphorylation in gonadotrope derived cells. Mol Cell Endocrinol 2018; 463:97-105. [PMID: 28392410 DOI: 10.1016/j.mce.2017.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/30/2022]
Abstract
The role of protein kinase C (PKC) isoforms (PKCs) in GnRH-stimulated MAPK [ERK1/2, JNK1/2 and p38) phosphorylation was examined in gonadotrope derived cells. GnRH induced a protracted activation of ERK1/2 and a slower and more transient activation of JNK1/2 and p38MAPK. Gonadotropes express conventional PKCα and PKCβII, novel PKCδ, PKCε and PKCθ, and atypical PKC-ι/λ. The use of green fluorescent protein (GFP)-PKCs constructs revealed that GnRH induced rapid translocation of PKCα and PKCβII to the plasma membrane, followed by their redistribution to the cytosol. PKCδ and PKCε localized to the cytoplasm and Golgi, followed by the rapid redistribution by GnRH of PKCδ to the perinuclear zone and of PKCε to the plasma membrane. The use of dominant negatives for PKCs and peptide inhibitors for the receptors for activated C kinase (RACKs) has revealed differential role for PKCα, PKCβII, PKCδ and PKCε in ERK1/2, JNK1/2 and p38MAPK phosphorylation in a ligand-and cell context-dependent manner. The paradoxical findings that PKCs activated by GnRH and PMA play a differential role in MAPKs phosphorylation may be explained by persistent vs. transient redistribution of selected PKCs or redistribution of a given PKC to the perinuclear zone vs. the plasma membrane. Thus, we have identified the PKCs involved in GnRH stimulated MAPKs phosphorylation in gonadotrope derived cells. Once activated, the MAPKs will mediate the transcription of the gonadotropin subunits and GnRH receptor genes.
Collapse
Affiliation(s)
- Shany Mugami
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Masha Dobkin-Bekman
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Liat Rahamim-Ben Navi
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
24
|
Abstract
Gonadotropin-releasing hormone (GnRH) acts via G-protein coupled receptors on pituitary gonadotropes. These are Gq-coupled receptors that mediate acute effects of GnRH on the exocytotic secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the chronic regulation of their synthesis. FSH and LH control steroidogenesis and gametogenesis in the gonads so GnRH mediates control of reproduction by the central nervous system. GnRH is secreted in short pulses and the effects of GnRH on its target cells are dependent on the dynamics of these pulses. Here we provide a brief overview of the signaling network activated by GnRH with emphasis on the use of high content imaging for their examination. We also describe computational approaches that we have used to simulate GnRH signaling in order to explore dynamics, noise, and information transfer in this system.
Collapse
|
25
|
Løtvedt P, Fallahshahroudi A, Bektic L, Altimiras J, Jensen P. Chicken domestication changes expression of stress-related genes in brain, pituitary and adrenals. Neurobiol Stress 2017; 7:113-121. [PMID: 28879214 PMCID: PMC5577413 DOI: 10.1016/j.ynstr.2017.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/25/2017] [Accepted: 08/19/2017] [Indexed: 01/21/2023] Open
Abstract
Domesticated species have an attenuated behavioral and physiological stress response compared to their wild counterparts, but the genetic mechanisms underlying this change are not fully understood. We investigated gene expression of a panel of stress response-related genes in five tissues known for their involvement in the stress response: hippocampus, hypothalamus, pituitary, adrenal glands and liver of domesticated White Leghorn chickens and compared it with the wild ancestor of all domesticated breeds, the Red Junglefowl. Gene expression was measured both at baseline and after 45 min of restraint stress. Most of the changes in gene expression related to stress were similar to mammals, with an upregulation of genes such as FKBP5, C-FOS and EGR1 in hippocampus and hypothalamus and StAR, MC2R and TH in adrenal glands. We also found a decrease in the expression of CRHR1 in the pituitary of chickens after stress, which could be involved in negative feedback regulation of the stress response. Furthermore, we observed a downregulation of EGR1 and C-FOS in the pituitary following stress, which could be a potential link between stress and its effects on reproduction and growth in chickens. We also found changes in the expression of important genes between breeds such as GR in the hypothalamus, POMC and PC1 in the pituitary and CYP11A1 and HSD3B2 in the adrenal glands. These results suggest that the domesticated White Leghorn may have a higher capacity for negative feedback of the HPA axis, a lower capacity for synthesis of ACTH in the pituitary and a reduced synthesis rate of corticosterone in the adrenal glands compared to Red Junglefowl. All of these findings could explain the attenuated stress response in the domesticated birds.
Collapse
Affiliation(s)
| | | | | | | | - Per Jensen
- AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, 58183 Linköping, Sweden
| |
Collapse
|
26
|
Pratap A, Garner KL, Voliotis M, Tsaneva-Atanasova K, McArdle CA. Mathematical modeling of gonadotropin-releasing hormone signaling. Mol Cell Endocrinol 2017; 449:42-55. [PMID: 27544781 PMCID: PMC5446263 DOI: 10.1016/j.mce.2016.08.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/11/2016] [Indexed: 12/12/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) acts via G-protein coupled receptors on pituitary gonadotropes to control reproduction. These are Gq-coupled receptors that mediate acute effects of GnRH on the exocytotic secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the chronic regulation of their synthesis. GnRH is secreted in short pulses and GnRH effects on its target cells are dependent upon the dynamics of these pulses. Here we overview GnRH receptors and their signaling network, placing emphasis on pulsatile signaling, and how mechanistic mathematical models and an information theoretic approach have helped further this field.
Collapse
Affiliation(s)
- Amitesh Pratap
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Kathryn L Garner
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK
| | - Margaritis Voliotis
- EPSRC Centre for Predictive Modeling in Healthcare, University of Exeter, Exeter, EX4 4QF, UK
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK; EPSRC Centre for Predictive Modeling in Healthcare, University of Exeter, Exeter, EX4 4QF, UK
| | - Craig A McArdle
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Whitson Street, Bristol, BS1 3NY, UK.
| |
Collapse
|
27
|
Mugami S, Kravchook S, Rahamim-Ben Navi L, Seger R, Naor Z. Differential roles of PKC isoforms (PKCs) and Ca 2+ in GnRH and phorbol 12-myristate 13-acetate (PMA) stimulation of p38MAPK phosphorylation in immortalized gonadotrope cells. Mol Cell Endocrinol 2017; 439:141-154. [PMID: 27810601 DOI: 10.1016/j.mce.2016.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Abstract
We examined the role of PKCs and Ca2+ in GnRH-stimulated p38MAPK phosphorylation in the gonadotrope derived αT3-1 and LβT2 cell lines. GnRH induced a slow and rapid increase in p38MAPK phosphorylation in αT3-1 and LβT2 cells respectively, while PMA gave a slow response. The use of dominant negatives for PKCs and peptide inhibitors for the receptors for activated C kinase (RACKs), has revealed differential role for PKCα, PKCβII, PKCδ and PKCε in p38MAPK phosphorylation in a ligand-and cell context-dependent manner. The paradoxical findings that PKCs activated by GnRH and PMA play a differential role in p38MAPK phosphorylation may be explained by differential localization of the PKCs. Basal, GnRH- and PMA- stimulation of p38MAPK phosphorylation in αT3-1 cells is mediated by Ca2+ influx via voltage-gated Ca2+ channels and Ca2+ mobilization, while in the differentiated LβT2 gonadotrope cells it is mediated only by Ca2+ mobilization. p38MAPK resides in the cell membrane and is relocated to the nucleus by GnRH (∼5 min). Thus, we have identified the PKCs and the Ca2+ pools involved in GnRH stimulated p38MAPK phosphorylation.
Collapse
Affiliation(s)
- Shany Mugami
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Shani Kravchook
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Liat Rahamim-Ben Navi
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Rony Seger
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zvi Naor
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel.
| |
Collapse
|
28
|
Janjic MM, Stojilkovic SS, Bjelobaba I. Intrinsic and Regulated Gonadotropin-Releasing Hormone Receptor Gene Transcription in Mammalian Pituitary Gonadotrophs. Front Endocrinol (Lausanne) 2017; 8:221. [PMID: 28928715 PMCID: PMC5591338 DOI: 10.3389/fendo.2017.00221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/16/2017] [Indexed: 12/14/2022] Open
Abstract
The hypothalamic decapeptide gonadotropin-releasing hormone (GnRH), acting via its receptors (GnRHRs) expressed in pituitary gonadotrophs, represents a critical molecule in control of reproductive functions in all vertebrate species. GnRH-activated receptors regulate synthesis of gonadotropins in a frequency-dependent manner. The number of GnRHRs on the plasma membrane determines the responsiveness of gonadotrophs to GnRH and varies in relation to age, sex, and physiological status. This is achieved by a complex control that operates at transcriptional, translational, and posttranslational levels. This review aims to overview the mechanisms of GnRHR gene (Gnrhr) transcription in mammalian gonadotrophs. In general, Gnrhr exhibits basal and regulated transcription activities. Basal Gnrhr transcription appears to be an intrinsic property of native and immortalized gonadotrophs that secures the presence of a sufficient number GnRHRs to preserve their functionality independently of the status of regulated transcription. On the other hand, regulated transcription modulates GnRHR expression during development, reproductive cycle, and aging. GnRH is crucial for regulated Gnrhr transcription in native gonadotrophs but is ineffective in immortalized gonadotrophs. In rat and mouse, both basal and GnRH-induced Gnrhr transcription rely primarily on the protein kinase C signaling pathway, with subsequent activation of mitogen-activated protein kinases. Continuous GnRH application, after a transient stimulation, shuts off regulated but not basal transcription, suggesting that different branches of this signaling pathway control transcription. Pituitary adenylate cyclase-activating polypeptide, but not activins, contributes to the regulated transcription utilizing the protein kinase A signaling pathway, whereas a mechanisms by which steroid hormones modulate Gnrhr transcription has not been well characterized.
Collapse
Affiliation(s)
- Marija M. Janjic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Ivana Bjelobaba
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”, University of Belgrade, Belgrade, Serbia
- *Correspondence: Ivana Bjelobaba,
| |
Collapse
|
29
|
Ulloa-Aguirre A, Lira-Albarrán S. Clinical Applications of Gonadotropins in the Male. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:121-174. [PMID: 27697201 DOI: 10.1016/bs.pmbts.2016.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pituitary gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) play a pivotal role in reproduction. The synthesis and secretion of gonadotropins are regulated by complex interactions among several endocrine, paracrine, and autocrine factors of diverse chemical structure. In men, LH regulates the synthesis of androgens by the Leydig cells, whereas FSH promotes Sertoli cell function and thereby influences spermatogenesis. Gonadotropins are complex molecules composed of two subunits, the α- and β-subunit, that are noncovalently associated. Gonadotropins are decorated with glycans that regulate several functions of the protein including folding, heterodimerization, stability, transport, conformational maturation, efficiency of heterodimer secretion, metabolic fate, interaction with their cognate receptor, and selective activation of signaling pathways. A number of congenital and acquired abnormalities lead to gonadotropin deficiency and hypogonadotropic hypogonadism, a condition amenable to treatment with exogenous gonadotropins. Several natural and recombinant preparations of gonadotropins are currently available for therapeutic purposes. The difference between natural and the currently available recombinant preparations (which are massively produced in Chinese hamster ovary cells for commercial purposes) mainly lies in the abundance of some of the carbohydrates that conform the complex glycans attached to the protein core. Whereas administration of exogenous gonadotropins in patients with isolated congenital hypogonadotropic hypogonadism is a well recognized therapeutic approach, their role in treating men with normogonadotropic idiopathic infertility is still controversial. This chapter concentrates on the main structural and functional features of the gonadotropin hormones and how basic concepts have been translated into the clinical arena to guide therapy for gonadotropin deficit in males.
Collapse
Affiliation(s)
- A Ulloa-Aguirre
- Research Support Network, Universidad Nacional Autónoma de México (UNAM)-National Institutes of Health, Mexico City, Mexico.
| | - S Lira-Albarrán
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
30
|
Thompson IR, Ciccone NA, Zhou Q, Xu S, Khogeer A, Carroll RS, Kaiser UB. GnRH Pulse Frequency Control of Fshb Gene Expression Is Mediated via ERK1/2 Regulation of ICER. Mol Endocrinol 2016; 30:348-60. [PMID: 26835742 DOI: 10.1210/me.2015-1222] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The pulsatile release of GnRH regulates the synthesis and secretion of pituitary FSH and LH. Two transcription factors, cAMP-response element-binding protein (CREB) and inducible cAMP early repressor (ICER), have been implicated in the regulation of rat Fshb gene expression. We previously showed that the protein kinase A pathway mediates GnRH-stimulated CREB activation. We hypothesized that CREB and ICER are activated by distinct signaling pathways in response to pulsatile GnRH to modulate Fshb gene expression, which is preferentially stimulated at low vs high pulse frequencies. In the LβT2 gonadotrope-derived cell line, GnRH stimulation increased ICER mRNA and protein. Blockade of ERK activation with mitogen-activated protein kinase kinase I/II (MEKI/II) inhibitors significantly attenuated GnRH induction of ICER mRNA and protein, whereas protein kinase C, calcium/calmodulin-dependent protein kinase II, and protein kinase A inhibitors had minimal effects. GnRH also stimulated ICER in primary mouse pituitary cultures, attenuated similarly by a MEKI/II inhibitor. In a perifusion paradigm, MEKI/II inhibition in LβT2 cells stimulated with pulsatile GnRH abrogated ICER induction at high GnRH pulse frequencies, with minimal effect at low frequencies. MEKI/II inhibition reduced GnRH stimulation of Fshb at high and low pulse frequencies, suggesting that the ERK pathway has additional effects on GnRH regulation of Fshb, beyond those mediated by ICER. Indeed, induction of the activating protein 1 proteins, cFos and cJun, positive modulators of Fshb transcription, by pulsatile GnRH was also abrogated by inhibition of the MEK/ERK signaling pathway. Collectively, these studies indicate that the signaling pathways mediating GnRH activation of CREB and ICER are distinct, contributing to the decoding of the pulsatile GnRH to regulate FSHβ expression.
Collapse
Affiliation(s)
- Iain R Thompson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Nick A Ciccone
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Qiongjie Zhou
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Shuyun Xu
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Ahmad Khogeer
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Rona S Carroll
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
31
|
Herndon MK, Nilson JH. Maximal expression of Foxl2 in pituitary gonadotropes requires ovarian hormones. PLoS One 2015; 10:e0126527. [PMID: 25955311 PMCID: PMC4425675 DOI: 10.1371/journal.pone.0126527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/03/2015] [Indexed: 12/30/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) and activin regulate synthesis of FSH and ultimately fertility. Recent in vivo studies cast SMAD4 and FOXL2 as master transcriptional mediators of activin signaling that act together and independently of GnRH to regulate Fshb gene expression and female fertility. Ovarian hormones regulate GnRH and its receptor (GNRHR) through negative and positive feedback loops. In contrast, the role of ovarian hormones in regulating activin, activin receptors, and components of the activin signaling pathway, including SMAD4 and FOXL2, remains understudied. The widespread distribution of activin and many of its signaling intermediates complicates analysis of the effects of ovarian hormones on their synthesis in gonadotropes, one of five pituitary cell types. We circumvented this complication by using a transgenic model that allows isolation of polyribosomes selectively from gonadotropes of intact females and ovariectomized females treated with or without a GnRH antagonist. This paradigm allows assessment of ovarian hormonal feedback and distinguishes responses that are either independent or dependent on GnRH. Surprisingly, our results indicate that Foxl2 levels in gonadotropes decline significantly in the absence of ovarian input and independently of GnRH. Expression of the genes encoding other members of the activin signaling pathway are unaffected by loss of ovarian hormonal feedback, highlighting their selective effect on Foxl2. Expression of Gnrhr, a known target of FOXL2, also declines upon ovariectomy consistent with reduced expression of Foxl2 and loss of ovarian hormones. In contrast, Fshb mRNA increases dramatically post-ovariectomy due to increased compensatory input from GnRH. Together these data suggest that ovarian hormones regulate expression of Foxl2 thereby expanding the number of genes controlled by the hypothalamic-pituitary-gonadal axis that ultimately dictate reproductive fitness.
Collapse
Affiliation(s)
- Maria K. Herndon
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - John H. Nilson
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
32
|
Qiu X, Dao H, Wang M, Heston A, Garcia KM, Sangal A, Dowling AR, Faulkner LD, Molitor SC, Elias CF, Hill JW. Insulin and Leptin Signaling Interact in the Mouse Kiss1 Neuron during the Peripubertal Period. PLoS One 2015; 10:e0121974. [PMID: 25946091 PMCID: PMC4422586 DOI: 10.1371/journal.pone.0121974] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/05/2015] [Indexed: 11/18/2022] Open
Abstract
Reproduction requires adequate energy stores for parents and offspring to survive. Kiss1 neurons, which are essential for fertility, have the potential to serve as the central sensors of metabolic factors that signal to the reproductive axis the presence of stored calories. Paradoxically, obesity is often accompanied by infertility. Despite excess circulating levels of insulin and leptin, obese individuals exhibit resistance to both metabolic factors in many neuron types. Thus, resistance to insulin or leptin in Kiss1 neurons could lead to infertility. Single deletion of the receptors for either insulin or the adipokine leptin from Kiss1 neurons does not impair adult reproductive dysfunction. However, insulin and leptin signaling pathways may interact in such a way as to obscure their individual functions. We hypothesized that in the presence of genetic or obesity-induced concurrent insulin and leptin resistance, Kiss1 neurons would be unable to maintain reproductive function. We therefore induced a chronic hyperinsulinemic and hyperleptinemic state in mice lacking insulin receptors in Kiss1 neurons through high fat feeding and examined the impact on fertility. In an additional, genetic model, we ablated both leptin and insulin signaling in Kiss1 neurons (IR/LepRKiss mice). Counter to our hypothesis, we found that the addition of leptin insensitivity did not alter the reproductive phenotype of IRKiss mice. We also found that weight gain, body composition, glucose and insulin tolerance were normal in mice of both genders. Nonetheless, leptin and insulin receptor deletion altered pubertal timing as well as LH and FSH levels in mid-puberty in a reciprocal manner. Our results confirm that Kiss1 neurons do not directly mediate the critical role that insulin and leptin play in reproduction. However, during puberty kisspeptin neurons may experience a critical window of susceptibility to the influence of metabolic factors that can modify the onset of fertility.
Collapse
Affiliation(s)
- Xiaoliang Qiu
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York, United States of America
| | - Hoangha Dao
- Department of Bioengineering, University of Toledo, Toledo, Ohio, United States of America
| | - Mengjie Wang
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Amelia Heston
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Kaitlyn M. Garcia
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Alisha Sangal
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Abigail R. Dowling
- Center for Reproductive Genomics, Cornell University, Ithaca, NY, United States of America
| | - Latrice D. Faulkner
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
| | - Scott C. Molitor
- Department of Bioengineering, University of Toledo, Toledo, Ohio, United States of America
| | - Carol F. Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jennifer W. Hill
- Center for Diabetes and Endocrine Research, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- Department of Obstetrics-Gynecology, University of Toledo College of Medicine, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
33
|
Bagchi D, Andrade J, Shupnik MA. A new role for wilms tumor protein 1: differential activities of + KTS and -KTS variants to regulate LHβ transcription. PLoS One 2015; 10:e0116825. [PMID: 25617744 PMCID: PMC4305298 DOI: 10.1371/journal.pone.0116825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/15/2014] [Indexed: 01/08/2023] Open
Abstract
Luteinizing hormone (LH) is synthesized and secreted throughout the reproductive cycle from gonadotrope cells in the anterior pituitary, and is required for steroidogenesis and ovulation. LH contains an α-subunit common with FSH, and a unique LHβ subunit that defines biological activity. Basal LHβ transcription is low and stimulated by hypothalamic GnRH, which induces synthesis of early growth response protein-1 (Egr1), and stimulates binding of transcription factors Egr1 and steroidogenic factor-1 (SF1) on the promoter. WT1 (Wilms tumor protein1) is a zinc finger transcription factor with an essential role in urogenital system development, and which regulates several reproductive genes via interactions with SF1 or binding to GC-rich elements such as Egr1 binding sites. We investigated a potential role for WT1 in LHβ transcription in clonal mouse gonadotrope LβT2 cells. WT1 was present in LβT2 and mouse pituitary cells, and protein bound to the endogenous LHβ promoter. Interestingly, mRNAs for WT1(+KTS), which contains a three amino-acid insertion between the 3rd and 4th zinc fingers, and the WT1 (-KTS) variant were both expressed at significant levels. WT1 mRNAs and protein were decreased approximately 50% by GnRH treatment, under conditions where Egr1 mRNA and protein, and LHβ transcription, were stimulated. Decreasing expression of mRNA for WT1 (-KTS) decreased stimulation of LHβ and Egr1 by GnRH, whereas decreasing both WT1 (-KTS) and (+KTS) increased endogenous LHβ transcription, and prevented LHβ but not Egr1 stimulation by GnRH, suggesting differing biological activities for the WT1 isoforms. Overexpression of WT1 showed that WT1(-KTS) enhanced LHβ promoter GnRH stimulation 2-to-3-fold and required the 3'Egr1 site, but WT1(+KTS) repressed both basal and GnRH-stimulated LHβ promoter activity by approximately 70%. Our data suggest that WT1 can modulate LHβ transcription, with differential roles for the two WT1 variants; WT1 (-KTS) enhances and WT1 (+KTS) suppresses transcription.
Collapse
Affiliation(s)
- Debalina Bagchi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Josefa Andrade
- Department of Medicine, Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Margaret A. Shupnik
- Department of Medicine, Division of Endocrinology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
34
|
Wolfe A, Divall S, Wu S. The regulation of reproductive neuroendocrine function by insulin and insulin-like growth factor-1 (IGF-1). Front Neuroendocrinol 2014; 35:558-72. [PMID: 24929098 PMCID: PMC4175134 DOI: 10.1016/j.yfrne.2014.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 04/01/2014] [Accepted: 05/27/2014] [Indexed: 12/27/2022]
Abstract
The mammalian reproductive hormone axis regulates gonadal steroid hormone levels and gonadal function essential for reproduction. The neuroendocrine control of the axis integrates signals from a wide array of inputs. The regulatory pathways important for mediating these inputs have been the subject of numerous studies. One class of proteins that have been shown to mediate metabolic and growth signals to the CNS includes Insulin and IGF-1. These proteins are structurally related and can exert endocrine and growth factor like action via related receptor tyrosine kinases. The role that insulin and IGF-1 play in controlling the hypothalamus and pituitary and their role in regulating puberty and nutritional control of reproduction has been studied extensively. This review summarizes the in vitro and in vivo models that have been used to study these neuroendocrine structures and the influence of these growth factors on neuroendocrine control of reproduction.
Collapse
Affiliation(s)
- Andrew Wolfe
- Johns Hopkins University School of Medicine, Department of Pediatrics, Division of Endocrinology, Baltimore, MD 21287, United States.
| | - Sara Divall
- Johns Hopkins University School of Medicine, Department of Pediatrics, Division of Endocrinology, Baltimore, MD 21287, United States
| | - Sheng Wu
- Johns Hopkins University School of Medicine, Department of Pediatrics, Division of Endocrinology, Baltimore, MD 21287, United States
| |
Collapse
|
35
|
Jung JW, Ahn C, Shim SY, Gray PC, Kwiatkowski W, Choe S. Regulation of FSHβ induction in LβT2 cells by BMP2 and an Activin A/BMP2 chimera, AB215. J Endocrinol 2014; 223:35-45. [PMID: 25100748 DOI: 10.1530/joe-14-0317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Activins and bone morphogenetic proteins (BMPs) share activin type 2 signaling receptors but utilize different type 1 receptors and Smads. We designed AB215, a potent BMP2-like Activin A/BMP2 chimera incorporating the high-affinity type 2 receptor-binding epitope of Activin A. In this study, we compare the signaling properties of AB215 and BMP2 in HEK293T cells and gonadotroph LβT2 cells in which Activin A and BMP2 synergistically induce FSHβ. In HEK293T cells, AB215 is more potent than BMP2 and competitively blocks Activin A signaling, while BMP2 has a partial blocking activity. Activin A signaling is insensitive to BMP pathway antagonism in HEK293T cells but is strongly inhibited by constitutively active (CA) BMP type 1 receptors. By contrast, the potencies of AB215 and BMP2 are indistinguishable in LβT2 cells and although AB215 blocks Activin A signaling, BMP2 has no inhibitory effect. Unlike HEK293T, Activin A signaling is strongly inhibited by BMP pathway antagonism in LβT2 cells but is largely unaffected by CA BMP type 1 receptors. BMP2 increases phospho-Smad3 levels in LβT2 cells, in both the absence and the presence of Activin A treatment, and augments Activin A-induced FSHβ. AB215 has the opposite effect and sharply decreases basal phospho-Smad3 levels and blocks Smad2 phosphorylation and FSHβ induction resulting from Activin A treatment. These findings together demonstrate that while AB215 activates the BMP pathway, it has opposing effects to those of BMP2 on FSHβ induction in LβT2 cells apparently due to its ability to block Activin A signaling.
Collapse
Affiliation(s)
- Jae Woo Jung
- Joint Center for BiosciencesSongdo Global University Campus, 187 Songdo-dong, Yeonsu-gu, Incheon 406-840, KoreaStructural Biology LaboratoryClayton Foundation Laboratories for Peptide BiologyThe Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Chihoon Ahn
- Joint Center for BiosciencesSongdo Global University Campus, 187 Songdo-dong, Yeonsu-gu, Incheon 406-840, KoreaStructural Biology LaboratoryClayton Foundation Laboratories for Peptide BiologyThe Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Sun Young Shim
- Joint Center for BiosciencesSongdo Global University Campus, 187 Songdo-dong, Yeonsu-gu, Incheon 406-840, KoreaStructural Biology LaboratoryClayton Foundation Laboratories for Peptide BiologyThe Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Peter C Gray
- Joint Center for BiosciencesSongdo Global University Campus, 187 Songdo-dong, Yeonsu-gu, Incheon 406-840, KoreaStructural Biology LaboratoryClayton Foundation Laboratories for Peptide BiologyThe Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Witek Kwiatkowski
- Joint Center for BiosciencesSongdo Global University Campus, 187 Songdo-dong, Yeonsu-gu, Incheon 406-840, KoreaStructural Biology LaboratoryClayton Foundation Laboratories for Peptide BiologyThe Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA Joint Center for BiosciencesSongdo Global University Campus, 187 Songdo-dong, Yeonsu-gu, Incheon 406-840, KoreaStructural Biology LaboratoryClayton Foundation Laboratories for Peptide BiologyThe Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Senyon Choe
- Joint Center for BiosciencesSongdo Global University Campus, 187 Songdo-dong, Yeonsu-gu, Incheon 406-840, KoreaStructural Biology LaboratoryClayton Foundation Laboratories for Peptide BiologyThe Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA Joint Center for BiosciencesSongdo Global University Campus, 187 Songdo-dong, Yeonsu-gu, Incheon 406-840, KoreaStructural Biology LaboratoryClayton Foundation Laboratories for Peptide BiologyThe Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
36
|
Jin JM, Yang WX. Molecular regulation of hypothalamus-pituitary-gonads axis in males. Gene 2014; 551:15-25. [PMID: 25168889 DOI: 10.1016/j.gene.2014.08.048] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 07/24/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
Abstract
The hypothalamic-pituitary-gonadal axis (HPG) plays vital roles in reproduction and steroid hormone production in both sexes. The focus of this review is upon gene structures, receptor structures and the signaling pathways of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The hormones' functions in reproduction as well as consequences resulting from mutations are also summarized. Specific characteristics of hormones such as the pulsatile secretions of GnRH are also covered. The different regulators of the HPG axis are introduced including kisspeptin, activin, inhibin, follistatin, androgens and estrogen. This review includes not only their basic information, but also their unique function in the HPG axis. Here we view the HPG axis as a whole, so relations between ligands and receptors are well described crossing different levels of the HPG axis. Hormone interactions and transformations are also considered. The major information of this article is depicted in three figures summarizing the current discoveries on the HPG axis. This article systematically introduces the basic knowledge of the HPG axis and provides information of the current advances relating to reproductive hormones.
Collapse
Affiliation(s)
- Jia-Min Jin
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
37
|
Lightman S, Terry JR. The importance of dynamic signalling for endocrine regulation and drug development: relevance for glucocorticoid hormones. Lancet Diabetes Endocrinol 2014; 2:593-9. [PMID: 24731665 DOI: 10.1016/s2213-8587(13)70182-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glucocorticoid hormones are heavily prescribed for several indications, including hormone replacement, anti-inflammatory effects, and antineoplastic effects. The pharmaceutical industry has put much effort into the development of novel potent glucocorticoid agonists, whereas there has been little enthusiasm for development of temporal aspects of glucocorticoid drugs. Glucocorticoids are normally secreted in a highly dynamic fashion, not only in the well known 24 h circadian rhythm, but also in an approximately hourly ultradian rhythm. These rhythms are crucial for normal gene regulation and for optimum cognitive function. In this Personal View, we discuss how understanding normal oscillatory patterns of glucocorticoid secretion could help investigators to develop novel glucocorticoid therapeutics that maximise the beneficial effect and diminish unwanted side-effects.
Collapse
Affiliation(s)
- Stafford Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, UK.
| | - John R Terry
- College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
38
|
Choi SG, Wang Q, Jia J, Pincas H, Turgeon JL, Sealfon SC. Growth differentiation factor 9 (GDF9) forms an incoherent feed-forward loop modulating follicle-stimulating hormone β-subunit (FSHβ) gene expression. J Biol Chem 2014; 289:16164-75. [PMID: 24778184 DOI: 10.1074/jbc.m113.537696] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is secreted in brief pulses from the hypothalamus and regulates follicle-stimulating hormone β-subunit (FSHβ) gene expression in pituitary gonadotropes in a frequency-sensitive manner. The mechanisms underlying its preferential and paradoxical induction of FSHβ by low frequency GnRH pulses are incompletely understood. Here, we identify growth differentiation factor 9 (GDF9) as a GnRH-suppressed autocrine inducer of FSHβ gene expression. GDF9 gene transcription and expression were preferentially decreased by high frequency GnRH pulses. GnRH regulation of GDF9 was concentration-dependent and involved ERK and PKA. GDF9 knockdown or immunoneutralization reduced FSHβ mRNA expression. Conversely, exogenous GDF9 induced FSHβ expression in immortalized gonadotropes and in mouse primary pituitary cells. GDF9 exposure increased FSH secretion in rat primary pituitary cells. GDF9 induced Smad2/3 phosphorylation, which was impeded by ALK5 knockdown and by activin receptor-like kinase (ALK) receptor inhibitor SB-505124, which also suppressed FSHβ expression. Smad2/3 knockdown indicated that FSHβ induction by GDF9 involved Smad2 and Smad3. FSHβ mRNA induction by GDF9 and GnRH was synergistic. We hypothesized that GDF9 contributes to a regulatory loop that tunes the GnRH frequency-response characteristics of the FSHβ gene. To test this, we determined the effects of GDF9 knockdown on FSHβ induction at different GnRH pulse frequencies using a parallel perifusion system. Reduction of GDF9 shifted the characteristic pattern of GnRH pulse frequency sensitivity. These results identify GDF9 as contributing to an incoherent feed-forward loop, comprising both intracellular and secreted components, that regulates FSHβ expression in response to activation of cell surface GnRH receptors.
Collapse
Affiliation(s)
- Soon Gang Choi
- From the Center for Translational Systems Biology and Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| | - Qian Wang
- From the Center for Translational Systems Biology and Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| | - Jingjing Jia
- From the Center for Translational Systems Biology and Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| | - Hanna Pincas
- From the Center for Translational Systems Biology and Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| | - Judith L Turgeon
- the Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of California, Davis, California 95616
| | - Stuart C Sealfon
- From the Center for Translational Systems Biology and Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| |
Collapse
|
39
|
Thompson IR, Kaiser UB. GnRH pulse frequency-dependent differential regulation of LH and FSH gene expression. Mol Cell Endocrinol 2014; 385:28-35. [PMID: 24056171 PMCID: PMC3947649 DOI: 10.1016/j.mce.2013.09.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 12/14/2022]
Abstract
The pituitary gonadotropin hormones, FSH and LH, are essential for fertility. Containing an identical α-subunit (CGA), they are comprised of unique β-subunits, FSHβ and LHβ, respectively. These two hormones are regulated by the hypothalamic decapeptide, GnRH, which is released in a pulsatile manner from GnRH neurons located in the hypothalamus. Varying frequencies of pulsatile GnRH stimulate distinct signaling pathways and transcriptional machinery after binding to the receptor, GnRHR, on the cell surface of anterior pituitary gonadotropes. This ligand-receptor binding and activation orchestrates the synthesis and release of FSH and LH, in synergy with other effectors of gonadotropin production, such as activin, inhibin and steroids. Current research efforts aim to discover the mechanisms responsible for the decoding of the GnRH pulse signal by the gonadotrope. Modulating the response to GnRH has the potential to lead to new therapies for patients with altered gonadotropin secretion, such as those with hypothalamic amenorrhea or polycystic ovarian syndrome.
Collapse
Affiliation(s)
- Iain R Thompson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
40
|
Perrett RM, Voliotis M, Armstrong SP, Fowkes RC, Pope GR, Tsaneva-Atanasova K, McArdle CA. Pulsatile hormonal signaling to extracellular signal-regulated kinase: exploring system sensitivity to gonadotropin-releasing hormone pulse frequency and width. J Biol Chem 2014; 289:7873-83. [PMID: 24482225 PMCID: PMC3953298 DOI: 10.1074/jbc.m113.532473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is secreted in brief pulses that stimulate synthesis and secretion of pituitary gonadotropin hormones and thereby mediate control of reproduction. It acts via G-protein-coupled receptors to stimulate effectors, including ERK. Information could be encoded in GnRH pulse frequency, width, amplitude, or other features of pulse shape, but the relative importance of these features is unknown. Here we examine this using automated fluorescence microscopy and mathematical modeling, focusing on ERK signaling. The simplest scenario is one in which the system is linear, and response dynamics are relatively fast (compared with the signal dynamics). In this case integrated system output (ERK activation or ERK-driven transcription) will be roughly proportional to integrated input, but we find that this is not the case. Notably, we find that relatively slow response kinetics lead to ERK activity beyond the GnRH pulse, and this reduces sensitivity to pulse width. More generally, we show that the slowing of response kinetics through the signaling cascade creates a system that is robust to pulse width. We, therefore, show how various levels of response kinetics synergize to dictate system sensitivity to different features of pulsatile hormone input. We reveal the mathematical and biochemical basis of a dynamic GnRH signaling system that is robust to changes in pulse amplitude and width but is sensitive to changes in receptor occupancy and frequency, precisely the features that are tightly regulated and exploited to exert physiological control in vivo.
Collapse
Affiliation(s)
- Rebecca M Perrett
- From the Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
41
|
Do MHT, Kim T, He F, Dave H, Intriago RE, Astorga UA, Jain S, Lawson MA. Polyribosome and ribonucleoprotein complex redistribution of mRNA induced by GnRH involves both EIF2AK3 and MAPK signaling. Mol Cell Endocrinol 2014; 382:346-357. [PMID: 24161835 PMCID: PMC4042833 DOI: 10.1016/j.mce.2013.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 01/03/2023]
Abstract
The neuropeptide gonadotropin-releasing hormone stimulates synthesis and secretion of the glycoprotein gonadotropic hormones and activates the unfolded protein response, which causes a transient reduction of endoplasmic reticulum-associated mRNA translation. Hormone-treated cell extracts were fractionated to resolve mRNA in active polyribosomes from mRNA in inactive complexes. Quantitative real-time PCR and expression array analysis were used to determine hormone-induced redistribution of mRNAs between fractions and individual mRNAs were found to be redistributed differentially. Among the affected mRNAs relevant to gonadotropin synthesis, the luteinizing hormone subunit genes Lhb and Cga were enriched in the ribonucleoprotein pool. The MAP kinase phosphatase Dusp1 was enriched in the polyribosome pool. Enrichment of Dusp1 mRNA in the polyribosome pool was independent of the unfolded protein response, sensitive to ERK inhibition, and dependent on the 3'untranslated region. The results show that GnRH exerts translational control to modulate physiologically relevant gene expression through two distinct signaling pathways.
Collapse
Affiliation(s)
- Minh-Ha T Do
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Taeshin Kim
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Feng He
- Department of Family and Preventive Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Hiral Dave
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Rachel E Intriago
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Uriah A Astorga
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Sonia Jain
- Department of Family and Preventive Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Mark A Lawson
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
42
|
Perrett RM, McArdle CA. Molecular mechanisms of gonadotropin-releasing hormone signaling: integrating cyclic nucleotides into the network. Front Endocrinol (Lausanne) 2013; 4:180. [PMID: 24312080 PMCID: PMC3834291 DOI: 10.3389/fendo.2013.00180] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/06/2013] [Indexed: 01/21/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is the primary regulator of mammalian reproductive function in both males and females. It acts via G-protein coupled receptors on gonadotropes to stimulate synthesis and secretion of the gonadotropin hormones luteinizing hormone and follicle-stimulating hormone. These receptors couple primarily via G-proteins of the Gq/ll family, driving activation of phospholipases C and mediating GnRH effects on gonadotropin synthesis and secretion. There is also good evidence that GnRH causes activation of other heterotrimeric G-proteins (Gs and Gi) with consequent effects on cyclic AMP production, as well as for effects on the soluble and particulate guanylyl cyclases that generate cGMP. Here we provide an overview of these pathways. We emphasize mechanisms underpinning pulsatile hormone signaling and the possible interplay of GnRH and autocrine or paracrine regulatory mechanisms in control of cyclic nucleotide signaling.
Collapse
Affiliation(s)
- Rebecca M. Perrett
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Craig A. McArdle
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
- *Correspondence: Craig A. McArdle, Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, 1 Whitson Street, Bristol BS1 3NY, UK e-mail:
| |
Collapse
|
43
|
A mathematical model of pulse-coded hormone signal responses in pituitary gonadotroph cells. Math Biosci 2013; 246:38-46. [PMID: 24095971 DOI: 10.1016/j.mbs.2013.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 09/09/2013] [Accepted: 09/20/2013] [Indexed: 11/23/2022]
Abstract
Cells in the pituitary that synthesize luteinizing and follicle-stimulating hormones regulate the relative production of these two key reproductive hormones in response to signals from the hypothalamus. These signals are encoded in the frequency of gonadotrophin-releasing-hormone pulses. In vitro experiments with a murine-derived cell line have identified key elements of the processes that decode the signal to regulate transcription of the subunits encoding these hormones. The mathematical model described in this paper is based on the results of those experiments and advances quantitative understanding of the biochemical decoder. The model consists of non-linear differential equations for each of six processes that lead to the synthesis of follicle-stimulating hormone. Simulations of the model exhibit key characteristics found in the experiments, including a preference for follicle-stimulating hormone synthesis at low pulse frequencies and a loss of this characteristic when a mutation is introduced.
Collapse
|
44
|
Kucka M, Bjelobaba I, Clokie SJH, Klein DC, Stojilkovic SS. Female-specific induction of rat pituitary dentin matrix protein-1 by GnRH. Mol Endocrinol 2013; 27:1840-55. [PMID: 24085820 DOI: 10.1210/me.2013-1068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hypothalamic GnRH is the primary regulator of reproduction in vertebrates, acting via the G protein-coupled GnRH receptor (GnRHR) in pituitary gonadotrophs to control synthesis and release of gonadotropins. To identify elements of the GnRHR-coupled gene network, GnRH was applied in a pulsatile manner for 6 hours to a mixed population of perifused pituitary cells from cycling females, mRNA was extracted, and RNA sequencing analysis was performed. This revealed 83 candidate-regulated genes, including a large number coding for secreted proteins. Most notably, GnRH induces a greater than 600-fold increase in expression of dentin matrix protein-1 (Dmp1), one of five members of the small integrin-binding ligand N-linked glycoprotein gene family. The Dmp1 response is mediated by the GnRHR, not elicited by other hypothalamic releasing factors, and is approximately 20-fold smaller in adult male pituitary cells. The sex-dependent Dmp1 response is established during the peripubertal period and independent of the developmental pattern of Gnrhr expression. In vitro, GnRH-induced expression of this gene is coupled with release of DMP1 in extracellular medium through the regulated secretory pathway. In vivo, pituitary Dmp1 expression in identified gonadotrophs is elevated after ovulation. Cell signaling studies revealed that the GnRH induction of Dmp1 is mediated by the protein kinase C signaling pathway and reflects opposing roles of ERK1/2 and p38 MAPK; in addition, the response is facilitated by progesterone. These results establish that DMP1 is a novel secretory protein of female rat gonadotrophs, the synthesis and release of which are controlled by the hypothalamus through the GnRHR signaling pathway. This advance raises intriguing questions about the intrapituitary and downstream effects of this new player in GnRH signaling.
Collapse
Affiliation(s)
- Marek Kucka
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510. ; or
| | | | | | | | | |
Collapse
|
45
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of integral membrane protein receptors in the human genome. We examined here the reports whether the GnRH receptor (GnRHR) interacts with a single or multiple types of G proteins. It seems that the GnRHR, as other GPCRs, alternates between various conformations and is stabilized by its ligands, other modulators and intracellular partners in selective conformations culminating in coupling with a single type or multiple G proteins in a cell- and context-specific manner.
Collapse
Affiliation(s)
- Zvi Naor
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | | |
Collapse
|
46
|
Andrade J, Quinn J, Becker RZ, Shupnik MA. AMP-activated protein kinase is a key intermediary in GnRH-stimulated LHβ gene transcription. Mol Endocrinol 2013; 27:828-39. [PMID: 23518923 DOI: 10.1210/me.2012-1323] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GnRH regulation of pituitary gonadotropin gene transcription is critical for fertility, and metabolic dysregulation is associated with reproductive disorders and altered hypothalamic-pituitary responses. Here, we examined signaling pathways in gonadotropes through which GnRH modulates gonadotropin levels, and potential common signaling pathways with insulin. Using LβT2 cells, we show that GnRH rapidly (5 minutes) triggers activating phosphorylation of AMP-activated protein kinase (AMPK) up to 5-fold; this stimulation is enhanced by insulin through increased total AMPKα levels and activity. GnRH also stimulated c-Jun N-terminal kinase (JNK) and ERK activation, whereas insulin alone stimulated Akt. Inhibition of AMPK activity by compound C, or diminishing AMPK levels by small interfering RNA against AMPKα, prevented GnRH-stimulated transcription of the endogenous LHβ gene and transfected LHβ promoter. Egr-1 (early growth response-1), a transcription factor required for LHβ expression, is synthesized in response to GnRH, and compound C prevents this induction. However, overexpression of Egr-1 in the presence of compound C did not restore GnRH stimulation of LHβ, suggesting that AMPK stimulation of transcription also occurs through additional mechanisms or signaling pathways. One such pathway may be JNK activation, because GnRH stimulation of JNK activity and LHβ transcription occurs more slowly than stimulation of AMPK activity, and AMPK inhibition by compound C or small interfering RNA also prevented GnRH-stimulated JNK phosphorylation. Finally, in primary mouse pituitary cells, GnRH also stimulates AMPK, and AMPK inhibition suppresses GnRH-stimulated LHβ transcription. These studies indicate a novel role for AMPK in GnRH-stimulated transcription in pituitary gonadotropes and a potential common mechanism for GnRH and metabolic modulation of fertility.
Collapse
Affiliation(s)
- Josefa Andrade
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | | | | | | |
Collapse
|
47
|
Fraietta R, Zylberstejn DS, Esteves SC. Hypogonadotropic hypogonadism revisited. Clinics (Sao Paulo) 2013; 68 Suppl 1:81-8. [PMID: 23503957 PMCID: PMC3583156 DOI: 10.6061/clinics/2013(sup01)09] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 06/25/2012] [Indexed: 12/01/2022] Open
Abstract
Impaired testicular function, i.e., hypogonadism, can result from a primary testicular disorder (hypergonadotropic) or occur secondary to hypothalamic-pituitary dysfunction (hypogonadotropic). Hypogonadotropic hypogonadism can be congenital or acquired. Congenital hypogonadotropic hypogonadism is divided into anosmic hypogonadotropic hypogonadism (Kallmann syndrome) and congenital normosmic isolated hypogonadotropic hypogonadism (idiopathic hypogonadotropic hypogonadism). The incidence of congenital hypogonadotropic hypogonadism is approximately 1-10:100,000 live births, and approximately 2/3 and 1/3 of cases are caused by Kallmann syndrome (KS) and idiopathic hypogonadotropic hypogonadism, respectively. Acquired hypogonadotropic hypogonadism can be caused by drugs, infiltrative or infectious pituitary lesions, hyperprolactinemia, encephalic trauma, pituitary/brain radiation, exhausting exercise, abusive alcohol or illicit drug intake, and systemic diseases such as hemochromatosis, sarcoidosis and histiocytosis X. The clinical characteristics of hypogonadotropic hypogonadism are androgen deficiency and a lack/delay/stop of pubertal sexual maturation. Low blood testosterone levels and low pituitary hormone levels confirm the hypogonadotropic hypogonadism diagnosis. A prolonged stimulated intravenous GnRH test can be useful. In Kallmann syndrome, cerebral MRI can show an anomalous morphology or even absence of the olfactory bulb. Therapy for hypogonadotropic hypogonadism depends on the patient's desire for future fertility. Hormone replacement with testosterone is the classic treatment for hypogonadism. Androgen replacement is indicated for men who already have children or have no desire to induce pregnancy, and testosterone therapy is used to reverse the symptoms and signs of hypogonadism. Conversely, GnRH or gonadotropin therapies are the best options for men wishing to have children. Hypogonadotropic hypogonadism is one of the rare conditions in which specific medical treatment can reverse infertility. When an unassisted pregnancy is not achieved, assisted reproductive techniques ranging from intrauterine insemination to in vitro fertilization to the acquisition of viable sperm from the ejaculate or directly from the testes through testicular sperm extraction or testicular microdissection can also be used, depending on the woman's potential for pregnancy and the quality and quantity of the sperm.
Collapse
Affiliation(s)
- Renato Fraietta
- Division of Urology, Department of Surgery, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | | | | |
Collapse
|
48
|
Reddy GR, Xie C, Lindaman LL, Coss D. GnRH increases c-Fos half-life contributing to higher FSHβ induction. Mol Endocrinol 2012; 27:253-65. [PMID: 23275456 DOI: 10.1210/me.2012-1168] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
GnRH is a potent hypothalamic regulator of gonadotropin hormones, LH and FSH, which are both expressed within the pituitary gonadotrope and are necessary for the stimulation of gametogenesis and steroidogenesis in the gonads. Differential regulation of LH and FSH, which is essential for reproductive fitness, is achieved, in part, through the varying of GnRH pulse frequency. However, the mechanism controlling the increase in FSH during the periods of low GnRH has not been elucidated. Here, we uncover another level of regulation by GnRH that contributes to differential expression of the gonadotropins and may play an important role for the generation of the secondary rise of FSH that stimulates folliculogenesis. GnRH stimulates LHβ and FSHβ subunit transcription via induction of the immediate early genes, Egr1 and c-Fos, respectively. Here, we determined that GnRH induces rapidly both Egr1 and c-Fos, but specifically decreases the rate of c-Fos degradation. In particular, GnRH modulates the rate of c-Fos protein turnover by inducing c-Fos phosphorylation through the ERK1/2 pathway. This extends the half-life of c-Fos, which is normally rapidly degraded. Confirming the role of phosphorylation in promoting increased protein activity, we show that a c-Fos mutant that cannot be phosphorylated by GnRH induces lower expression of the FHSβ promoter than wild-type c-Fos. Our studies expand upon the role of GnRH in the regulation of gonadotropin gene expression by highlighting the role of c-Fos posttranslational modification that may cause higher levels of FSH during the time of low GnRH pulse frequency to stimulate follicular growth.
Collapse
Affiliation(s)
- Gaddameedi R Reddy
- Department of Reproductive Medicine, University of California San Diego, La Jolla, California 92093-0674, USA
| | | | | | | |
Collapse
|
49
|
Melamed P, Savulescu D, Lim S, Wijeweera A, Luo Z, Luo M, Pnueli L. Gonadotrophin-releasing hormone signalling downstream of calmodulin. J Neuroendocrinol 2012; 24:1463-75. [PMID: 22775470 DOI: 10.1111/j.1365-2826.2012.02359.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/24/2012] [Accepted: 07/03/2012] [Indexed: 01/26/2023]
Abstract
Gonadotrophin-releasing hormone (GnRH) regulates reproduction via binding a G-protein coupled receptor on the surface of the gonadotroph, through which it transmits signals, mostly via the mitogen-activated protein (MAPK) cascade, to increase synthesis of the gonadotrophin hormones: luteinising hormone (LH) and follicle-stimulating hormone (FSH). Activation of the MAPK cascade requires an elevation in cytosolic Ca(2+) levels, which is a result of both calcium influx and mobilisation from intracellular stores. However, Ca(2+) also transmits signals via an MAPK-independent pathway, through binding calmodulin (CaM), which is then able to bind a number of proteins to impart diverse downstream effects. Although the ability of GnRH to activate CaM was recognised over 20 years ago, only recently have some of the downstream effects been elucidated. GnRH was shown to activate the CaM-dependent phosphatase, calcineurin, which targets gonadotrophin gene expression both directly and indirectly via transcription factors such as nuclear factor of activated T-cells and Nur77, the Transducer of Regulated CREB (TORC) co-activators and also the prolyl isomerase, Pin1. Gonadotrophin gene expression is also regulated by GnRH-induced CaM-dependent kinases (CaMKs); CaMKI is able to derepress the histone deacetylase-inhibition of β-subunit gene expression, whereas CaMKII appears to be essential for the GnRH-activation of all three subunit genes. Asides from activating gonadotrophin gene expression, GnRH also exerts additional effects on gonadotroph function, some of which clearly occur via CaM, including the proliferation of immature gonadotrophs, which is dependent on calcineurin. In this review, we summarise these pathways, and discuss the additional functions that have been proposed for CaM with respect to modifying GnRH-induced signalling pathways via the regulation of the small GTP-binding protein, Gem, and/or the regulator of G-protein signalling protein 2.
Collapse
Affiliation(s)
- P Melamed
- Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
GnRH (gonadotropin-releasing hormone) mediates control of reproduction. It is secreted in pulses and acts via intracellular effectors to activate gene expression. Submaximal GnRH pulse frequency can elicit maximal responses, yielding bell-shaped frequency-response curves characteristic of genuine frequency decoders. GnRH frequency decoding is therapeutically important (pulsatile GnRH can drive ovulation in assisted reproduction, whereas sustained activation can treat breast and prostate cancers), but the mechanisms are unknown. In the present paper, we review recent work in this area, placing emphasis on the regulation of transcription, and showing how mathematical modelling of GnRH effects on two effectors [ERK (extracellular-signal-regulated kinase) and NFAT (nuclear factor of activated T-cells)] reveals the potential for genuine frequency decoding as an emergent feature of the GnRH signalling network, rather than an intrinsic feature of a given protein or pathway within it.
Collapse
|