1
|
Sfakianoudis K, Zikopoulos A, Grigoriadis S, Seretis N, Maziotis E, Anifandis G, Xystra P, Kostoulas C, Giougli U, Pantos K, Simopoulou M, Georgiou I. The Role of One-Carbon Metabolism and Methyl Donors in Medically Assisted Reproduction: A Narrative Review of the Literature. Int J Mol Sci 2024; 25:4977. [PMID: 38732193 PMCID: PMC11084717 DOI: 10.3390/ijms25094977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
One-carbon (1-C) metabolic deficiency impairs homeostasis, driving disease development, including infertility. It is of importance to summarize the current evidence regarding the clinical utility of 1-C metabolism-related biomolecules and methyl donors, namely, folate, betaine, choline, vitamin B12, homocysteine (Hcy), and zinc, as potential biomarkers, dietary supplements, and culture media supplements in the context of medically assisted reproduction (MAR). A narrative review of the literature was conducted in the PubMed/Medline database. Diet, ageing, and the endocrine milieu of individuals affect both 1-C metabolism and fertility status. In vitro fertilization (IVF) techniques, and culture conditions in particular, have a direct impact on 1-C metabolic activity in gametes and embryos. Critical analysis indicated that zinc supplementation in cryopreservation media may be a promising approach to reducing oxidative damage, while female serum homocysteine levels may be employed as a possible biomarker for predicting IVF outcomes. Nonetheless, the level of evidence is low, and future studies are needed to verify these data. One-carbon metabolism-related processes, including redox defense and epigenetic regulation, may be compromised in IVF-derived embryos. The study of 1-C metabolism may lead the way towards improving MAR efficiency and safety and ensuring the lifelong health of MAR infants.
Collapse
Affiliation(s)
- Konstantinos Sfakianoudis
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Athanasios Zikopoulos
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
- Obstetrics and Gynecology, Royal Cornwall Hospital, Treliske, Truro TR1 3LJ, UK
| | - Sokratis Grigoriadis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Nikolaos Seretis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - George Anifandis
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41222 Larisa, Greece;
| | - Paraskevi Xystra
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Urania Giougli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Konstantinos Pantos
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| |
Collapse
|
2
|
Tutt DAR, Guven-Ates G, Kwong WY, Simmons R, Sang F, Silvestri G, Canedo-Ribeiro C, Handyside AH, Labrecque R, Sirard MA, Emes RD, Griffin DK, Sinclair KD. Developmental, cytogenetic and epigenetic consequences of removing complex proteins and adding melatonin during in vitro maturation of bovine oocytes. Front Endocrinol (Lausanne) 2023; 14:1280847. [PMID: 38027209 PMCID: PMC10647927 DOI: 10.3389/fendo.2023.1280847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background In vitro maturation (IVM) of germinal vesicle intact oocytes prior to in vitro fertilization (IVF) is practiced widely in animals. In human assisted reproduction it is generally reserved for fertility preservation or where ovarian stimulation is contraindicated. Standard practice incorporates complex proteins (CP), in the form of serum and/or albumin, into IVM media to mimic the ovarian follicle environment. However, the undefined nature of CP, together with batch variation and ethical concerns regarding their origin, necessitate the development of more defined formulations. A known component of follicular fluid, melatonin, has multifaceted roles including that of a metabolic regulator and antioxidant. In certain circumstances it can enhance oocyte maturation. At this stage in development, the germinal-vesicle intact oocyte is prone to aneuploidy and epigenetic dysregulation. Objectives To determine the developmental, cytogenetic and epigenetic consequences of removing CP and including melatonin during bovine IVM. Materials and methods The study comprised a 2 x 2 factorial arrangement comparing (i) the inclusion or exclusion of CP, and (ii) the addition (100 nM) or omission of melatonin, during IVM. Cumulus-oocyte complexes (COCs) were retrieved from stimulated cycles. Following IVM and IVF, putative zygotes were cultured to Day 8 in standard media. RNAseq was performed on isolated cumulus cells, cytogenetic analyses (SNP-based algorithms) on isolated trophectoderm cells, and DNA methylation analysis (reduced representation bisulfite sequencing) on isolated cells of the inner-cell mass. Results Removal of CP during IVM led to modest reductions in blastocyst development, whilst added melatonin was beneficial in the presence but detrimental in the absence of CP. The composition of IVM media did not affect the nature or incidence of chromosomal abnormalities but cumulus-cell transcript expression indicated altered metabolism (primarily lipid) in COCs. These effects preceded the establishment of distinct metabolic and epigenetic signatures several days later in expanded and hatching blastocysts. Conclusions These findings highlight the importance of lipid, particularly sterol, metabolism by the COC during IVM. They lay the foundation for future studies that seek to develop chemically defined systems of IVM for the generation of transferrable embryos that are both cytogenetically and epigenetically normal.
Collapse
Affiliation(s)
- Desmond A. R. Tutt
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Gizem Guven-Ates
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Wing Yee Kwong
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Rob Simmons
- Paragon Veterinary Group, Carlisle, United Kingdom
| | - Fei Sang
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | | | - Alan H. Handyside
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | - Marc-André Sirard
- CRDSI, Département des Sciences Animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Quebec City, QC, Canada
| | - Richard D. Emes
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Kevin D. Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
3
|
Hojeij B, Rousian M, Sinclair KD, Dinnyes A, Steegers-Theunissen RPM, Schoenmakers S. Periconceptional biomarkers for maternal obesity: a systematic review. Rev Endocr Metab Disord 2023; 24:139-175. [PMID: 36520252 PMCID: PMC10023635 DOI: 10.1007/s11154-022-09762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2022] [Indexed: 12/23/2022]
Abstract
Periconceptional maternal obesity is linked to adverse maternal and neonatal outcomes. Identifying periconceptional biomarkers of pathways affected by maternal obesity can unravel pathophysiologic mechanisms and identify individuals at risk of adverse clinical outcomes. The literature was systematically reviewed to identify periconceptional biomarkers of the endocrine, inflammatory and one-carbon metabolic pathways influenced by maternal obesity. A search was conducted in Embase, Ovid Medline All, Web of Science Core Collection and Cochrane Central Register of Controlled Trials databases, complemented by manual search in PubMed until December 31st, 2020. Eligible studies were those that measured biomarker(s) in relation to maternal obesity, overweight/obesity or body mass index (BMI) during the periconceptional period (14 weeks preconception until 14 weeks post conception). The ErasmusAGE score was used to assess the quality of included studies. Fifty-one articles were included that evaluated over 40 biomarkers. Endocrine biomarkers associated with maternal obesity included leptin, insulin, thyroid stimulating hormone, adiponectin, progesterone, free T4 and human chorionic gonadotropin. C-reactive protein was associated with obesity as part of the inflammatory pathway, while the associated one-carbon metabolism biomarkers were folate and vitamin B12. BMI was positively associated with leptin, C-reactive protein and insulin resistance, and negatively associated with Free T4, progesterone and human chorionic gonadotropin. Concerning the remaining studied biomarkers, strong conclusions could not be established due to limited or contradictory data. Future research should focus on determining the predictive value of the optimal set of biomarkers for their use in clinical settings. The most promising biomarkers include leptin, adiponectin, human chorionic gonadotropin, insulin, progesterone and CRP.
Collapse
Affiliation(s)
- Batoul Hojeij
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Melek Rousian
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, 3015GD, The Netherlands
| | - Kevin D Sinclair
- School of Biosciences, Sutton Bonnington Campus, University of Nottingham, Leicestershire, LE12 6HD, UK
| | - Andras Dinnyes
- BioTalentum Ltd., Godollo, 2100, Hungary
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, 6720, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Godollo, 2100, Hungary
| | | | - Sam Schoenmakers
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, 3015GD, The Netherlands.
| |
Collapse
|
4
|
Otávio KS, Passos JRS, Silva RF, Lima LF, Cadenas J, Paes VM, Correia HHV, Ferreira ACA, Canafístula FG, Bezerra MJB, Oliveira LLB, Carvalho GGC, Paier CRK, Pessoa C, Guerreiro DG, Moraes MEA, Figueiredo JR, Moura AA. Comprehensive proteomic profiling of early antral follicles from sheep. Anim Reprod Sci 2023; 248:107153. [PMID: 36502761 DOI: 10.1016/j.anireprosci.2022.107153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
The present study evaluates the proteome of early antral follicles from Ovis aries. Fifty follicles were collected from ovaries of adult ewes and extracted proteins were trypsin-digested, desalted and analyzed by LC-MS/MS. Genes were screened for potential modulation by miRNAs and protein data, subjected to functional enrichment analysis. Label-free mass spectrometry allowed the identification of 2503 follicle proteins, confirming vimentin, actin, lamin, heat shock proteins and histones as the most abundant ones. In silico analyses indicated that miRNAs modulate the expression of genes coding proteins of the sheep follicles involved in cell cycle, cell differentiation, aging, apoptosis, cell death, adipocyte differentiation, cell division. The most important biological processes associated with the follicle proteins were innate immune response, translation, adaptive immune response and protein folding, while molecular functions linked to the proteome of sheep antral follicles related to metal ion binding, ATP binding, oxygen binding, RNA binding and GTP binding, among others. Upload of 2503 Uniport accession codes through DAVID platform matched 1274 genes, associated with translation, metabolic process, proteolysis involved in cellular protein catabolic process, zona pellucida receptor complex and others. KEEG pathways analysis indicated genes correlated with ovine follicular development, with major pathways listed as carbon metabolism, biosynthesis of amino acids, glutathione metabolism, oxidative phosphorylation, fatty acid degradation and oocyte meiosis. This represents a comprehensive atlas of proteins expressed in sheep early antral follicles and will contribute to future identification of biomarkers for follicular development and oocyte maturation.
Collapse
Affiliation(s)
- Kamila S Otávio
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - José R S Passos
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Renato F Silva
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | - Laritza F Lima
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | - Jesús Cadenas
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | - Victor M Paes
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | - Hudson H V Correia
- School of Veterinary Medicine, State University of Ceará, Fortaleza, Brazil
| | | | | | | | - Laís L B Oliveira
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Guilherme G C Carvalho
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Carlos R K Paier
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Claudia Pessoa
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Denise G Guerreiro
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Maria Elisabete A Moraes
- Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil; Drug Research and Development Center, School of Medicine, Federal University of Ceará, Fortaleza, Brazil.
| |
Collapse
|
5
|
Bacon ER, Brinton RD. Epigenetics of the developing and aging brain: Mechanisms that regulate onset and outcomes of brain reorganization. Neurosci Biobehav Rev 2021; 125:503-516. [PMID: 33657435 DOI: 10.1016/j.neubiorev.2021.02.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Brain development is a life-long process that encompasses several critical periods of transition, during which significant cognitive changes occur. Embryonic development, puberty, and reproductive senescence are all periods of transition that are hypersensitive to environmental factors. Rather than isolated episodes, each transition builds upon the last and is influenced by consequential changes that occur in the transition before it. Epigenetic marks, such as DNA methylation and histone modifications, provide mechanisms by which early events can influence development, cognition, and health outcomes. For example, parental environment influences imprinting patterns in gamete cells, which ultimately impacts gene expression in the embryo which may result in hypersensitivity to poor maternal nutrition during pregnancy, raising the risks for cognitive impairment later in life. This review explores how epigenetics induce and regulate critical periods, and also discusses how early environmental interactions prime a system towards a particular health outcome and influence susceptibility to disease or cognitive impairment throughout life.
Collapse
Affiliation(s)
- Eliza R Bacon
- Department of Neuroscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; The Center for Precision Medicine, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Roberta Diaz Brinton
- Department of Neuroscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA; Center for Innovation in Brain Science, School of Medicine, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
6
|
Lv Y, Du S, Huang X, Hao C. Follicular fluid estradiol is an improved predictor of in vitro fertilization/intracytoplasmic sperm injection and embryo transfer outcomes. Exp Ther Med 2020; 20:131. [PMID: 33082863 PMCID: PMC7557525 DOI: 10.3892/etm.2020.9256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 08/20/2019] [Indexed: 11/25/2022] Open
Abstract
The present study is a clinical trial analyzing follicular fluid. The current study aimed to assess whether a correlation exists among estradiol (E2), anti-Mullerian hormone (AMH) and prokineticin 1 (PROK1) levels in the follicular fluid. A total of 81 infertile patients (53 with primary infertility and 28 with secondary infertility) who received routine in vitro fertilization (IVF) and embryo transfer (ET) or intracytoplasmic sperm injection at Yuhuangding Hospital (Yantai, China) were included in the present study. On the day of egg retrieval, follicular puncture and follicular fluid extraction were performed on patients using double lumen needles under the guidance of a vaginal ultrasound. In 77 cases, follicular fluid was collected from the follicle with the largest diameter. A total of 53 cases underwent ET and subsequent pregnancy outcomes were traced. Concentrations of E2, AMH and PROK1 in the single follicular fluid specimens were determined. The concentration of E2 in follicular fluid from the largest follicles in absolute pregnancy group was significantly lower than that in absolute non-pregnancy group. The concentrations of PROK1 and AMH in follicular fluid from the largest follicles in absolute pregnancy group were not significantly different from those in absolute non-pregnancy group. The concentration of E2 was associated with the dosage of gonadotropin, but was not associated with age, AMH and PROK1 levels in follicular fluid, fertilization rate or number of usable blastocysts. The area under curve revealed that E2 level in the follicular fluid exhibited a low predictive value for pregnancy outcome. The present study demonstrated that E2 level is a better predictor for the outcome of IVF-ET than AMH or PROK1 levels in the follicular fluid.
Collapse
Affiliation(s)
- Yan Lv
- Clinical Medical College of Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Gynecology and Reproductive Medicine, Jinan People's Hospital, Jinan, Shandong 271100, P.R. China
| | - Shengye Du
- Department of Obstetrics, Jinan People's Hospital, Jinan, Shandong 271100, P.R. China
| | - Xin Huang
- Reproduction Medical Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Cuifang Hao
- Reproduction Medical Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
7
|
Fu YX, Wang FM, Ou-Yang XE, Yang HM, Hu T, Wang YF, Wang YF, Wang H, Hu R. Anti-Müllerian Hormone Regulates Stem Cell Factor via cAMP/PKA Signaling Pathway in Human Granulosa Cells by Inhibiting the Phosphorylation of CREB. Reprod Sci 2020; 27:325-333. [PMID: 32046389 DOI: 10.1007/s43032-019-00033-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/03/2019] [Indexed: 10/25/2022]
Abstract
Anti-Müllerian hormone (AMH) downregulates the level of stem cell factor (SCF) via the cAMP/PKA signaling pathway in human granulosa cells (GCs). Little information is available on the molecular mechanism underlying the interaction. This study is aimed at determining whether AMH regulates expression of SCF via the cAMP-PKA-CREB signaling pathway in human GCs. In the present study, we verified the binding of cAMP-response element-binding protein (CREB) to promoter of SCF in human GCs. Furthermore, the effect of CREB was tested on the SCF promoter, and the site of CREB binding to SCF promoter was identified using truncations as well as assays of SCF-promoted mutation and CREB mutation. To investigate the correlation among AMH, SCF promoter, and CREB, pGL-Basic-SCF+CREB was transfected into overexpressed AMH GCs (AMH-high GCs), low expressed AMH GCs (AMH-low GCs), and normal GCs (GCs), respectively. Finally, immunofluorescence, double immunostaining, and Western blot were carried out in AMH-high and AMH-low GCs to confirm the AMH-mediated regulation of SCF expression by inhibiting the phosphorylation of CREB (pCREB) in GCs. Results indicated CREB interacted with SCF promoter and significantly enhanced the transcription level of SCF. The CREB binding site was localized at 318-321 bp of SCF gene promote. AMH inhibits the expression of SCF by phosphorylation of CREB via the PKA signaling pathway in GCs. These findings provide an in-depth understanding of the molecular mechanism underlying AMH suppressing the follicle growth, which would aid in the development of a novel therapy.
Collapse
Affiliation(s)
- Yun-Xing Fu
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Fei-Miao Wang
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | | | - Hui-Min Yang
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ting Hu
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ya-Fei Wang
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yan-Fei Wang
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hui Wang
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Rong Hu
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
8
|
Perveen H, Dey A, Nilavar NM, Chandra GK, Islam SS, Chattopadhyay S. Dietary CCPS from bitter gourd attenuates sodium arsenite induced female reproductive ailments cum infertility in wistar rats: anti-inflammatory and anti-apoptotic role. Food Chem Toxicol 2019; 131:110545. [PMID: 31163222 DOI: 10.1016/j.fct.2019.05.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 11/26/2022]
Abstract
This investigation explored a dietary therapy of pectic polysaccharide (CCPS) (2 mg/ Kg BW) against female repro-toxicity and infertility triggered by sodium arsenite (As3+) (10 mg/ Kg BW) in Wistar rats. The isolated CCPS consists of D-galactose and D-methyl galacturonate with a molar ratio of 1: 4. FTIR spectral analysis of CCPS and CCPS- sodium arsenite (As3+) complex indicated a possible chelating property of CCPS in presence of binding sites (OH-/COOH) for As3+. Series of negatively charged galacturonate residues in CCPS provide better potential for cation chelation. CCPS significantly mitigated As3+ induced ovarian, uterine lipid peroxidation, and reactive oxygen species (ROS) generation by the restoration of superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activities. CCPS post-treatment enhanced ovarian steroidogenesis along with a restoration of normal tissue histoarchitecture in As3+ fed rats by regulating the estradiol receptor alpha (ER-α). CCPS suppressed anti-inflammatory properties effectively found since a down-regulation of NF-kappa B (NF-қB), pro-inflammatory tumor necrosis-α (TNF-α) and interleukin-6 (IL-6) were observed in arsenicated rats with CCPS. This study confirmed the up-regulation of uterine pro-apoptotic/ apoptotic proteins caspase-3, poly ADP ribose polymerase (PARP), proliferating cell nuclear antigen (PCNA), phospho p53 and Bax, followed by down-regulation of Bcl-2 and protein Kinase B (AKT) signaling pathway along with uterine tissue regeneration in As3+ exposed rats. Oral CCPS attenuated the above apoptotic expressional changes significantly and dietary CCPS ensured successful fertility with the birth of healthy pups in lieu of infertile condition in As3+ fed rats. Moreover, this study also supports that CCPS treatment attenuated the As3+ toxicity by modulating the S-adenosine methionine (SAM) pool components, B12, folate and homocysteine.
Collapse
Affiliation(s)
- Hasina Perveen
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics Division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Arindam Dey
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics Division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Namrata M Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Goutam Kumar Chandra
- Department of Physics, National Institute of Technology Calicut, Calicut, 673 601, Kerala, India
| | - Syed Sirajul Islam
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, 721102, West Bengal, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics Division, (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721102, India.
| |
Collapse
|
9
|
Perveen H, Chattopadhyay S, Maity M, Dash M, Islam SS. Involvement of proinflammatory cytokines and metallothionein in the repairing of arsenic-mediated uterine tissue damage by curcumin. J Basic Clin Physiol Pharmacol 2019; 30:jbcpp-2017-0179. [PMID: 31199764 DOI: 10.1515/jbcpp-2017-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Background Curcumin is extensively used as a therapeutic intervention for treating several ailments. The antioxidant curcumin has an anti-inflammatory and chelating property with arsenic to exhibit a strong therapeutic effect on reproductive organs. This study was undertaken to describe the protective effect of noninvasive administration of curcumin against sodium-arsenite-mediated uterine hazards in female Wistar rats. Methods Twenty-four female Wistar rats were randomly divided into four groups. The treatment was continued for 8 days and given orally sodium arsenite (10 mg/kg body weight) in combination with curcumin (20 mg/kg body weight). Results Our evaluation revealed that 8 days of sodium arsenite (10 mg/kg body weight) treatment reduced the activities of the uterine enzymatic antioxidants superoxide dismutase, catalase, and peroxidase. Blood levels of vitamin B12 and folic acid decreased followed by an increased serum lactate dehydrogenase, homocysteine level, and hepatic metallothionein-1 in arsenic-treated rats. Necrosis of uterine tissue along with the disruption of ovarian steroidogenesis was marked in arsenic-treated rats with an upregulation of uterine NF-κB and IL-6 along with a raised level of serum TNF-α. Oral administration of curcumin (20 mg/kg body weight/day) in arsenic-treated rats significantly reinstated these alterations of the antioxidant system followed by an improvement of ovarian steroidogenesis and the circulating level of B12 and folate along with the downregulation of serum homocysteine, metallothionein-1, and cytokines. Conclusions The findings of this study clearly and strongly elucidated that arsenic-induced oxidative stress in uterus is linked to an alteration of inflammation-signaling biomarkers and these have been protected through the co-administration of curcumin due to its anti-inflammatory, free radical scavenging, and antioxidant activity by the possible regulation of an S-adenosine methionine pool.
Collapse
Affiliation(s)
- Hasina Perveen
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics Division, UGC Innovative Department, Vidyasagar University, Midnapore, West Bengal, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics Division, UGC Innovative Department, Vidyasagar University, Midnapore-721102, West Bengal, India
| | - Moulima Maity
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics Division, UGC Innovative Department, Vidyasagar University, Midnapore, West Bengal, India
| | - Moumita Dash
- Department of Biomedical Laboratory Science and Management, and Clinical Nutrition and Dietetics Division, UGC Innovative Department, Vidyasagar University, Midnapore, West Bengal, India
| | - Syed Sirajul Islam
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore, West Bengal, India
| |
Collapse
|
10
|
Clare CE, Brassington AH, Kwong WY, Sinclair KD. One-Carbon Metabolism: Linking Nutritional Biochemistry to Epigenetic Programming of Long-Term Development. Annu Rev Anim Biosci 2019; 7:263-287. [DOI: 10.1146/annurev-animal-020518-115206] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
One-carbon (1C) metabolism comprises a series of interlinking metabolic pathways that include the methionine and folate cycles that are central to cellular function, providing 1C units (methyl groups) for the synthesis of DNA, polyamines, amino acids, creatine, and phospholipids. S-adenosylmethionine is a potent aminopropyl and methyl donor within these cycles and serves as the principal substrate for methylation of DNA, associated proteins, and RNA. We propose that 1C metabolism functions as a key biochemical conduit between parental environment and epigenetic regulation of early development and that interindividual and ethnic variability in epigenetic-gene regulation arises because of genetic variants within 1C genes, associated epigenetic regulators, and differentially methylated target DNA sequences. We present evidence to support these propositions, drawing upon studies undertaken in humans and animals. We conclude that future studies should assess the epigenetic effects of cumulative (multigenerational) dietary imbalances contemporaneously in both parents, as this better represents the human experience.
Collapse
Affiliation(s)
- Constance E. Clare
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Amey H. Brassington
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Wing Yee Kwong
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| | - Kevin D. Sinclair
- School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, United Kingdom
| |
Collapse
|
11
|
Rizzo A, Sciorsci RL. Role of homocysteine metabolism in animal reproduction: A review. Res Vet Sci 2018; 122:29-35. [PMID: 30448392 DOI: 10.1016/j.rvsc.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 01/15/2023]
Abstract
Homocysteine (Hcy) is a thiol-containing essential amino acid, important for the growth of cells and tissues. Several hypotheses exist regarding Hcy toxicity in humans; Hcy is involved in protein structural modifications, oxidative stress, and neurotoxicity induction and is therefore associated with several pathological conditions in humans. In veterinary science, knowledge regarding Hcy has increased recently due to several studies; however, many aspects remain undiscovered. Many details remain unknown regarding the effect of Hcy levels on pregnancy and the optimal management of pathological conditions associated with Hcy levels during pregnancy in various species. In this review, we aimed to compile various studies on Hcy metabolism to elucidate its current status in the veterinary field, particularly for ovine, bovine, equine, porcine, canine, and feline species.
Collapse
Affiliation(s)
- A Rizzo
- Department of Veterinary Medicine, Section of Obstetric Clinic, University of Bari Aldo Moro, S.P. per Casamassima km 3, 70010 Valenzano, BA, Italy
| | - R L Sciorsci
- Department of Veterinary Medicine, Section of Obstetric Clinic, University of Bari Aldo Moro, S.P. per Casamassima km 3, 70010 Valenzano, BA, Italy.
| |
Collapse
|
12
|
Maity M, Perveen H, Dash M, Jana S, Khatun S, Dey A, Mandal AK, Chattopadhyay S. Arjunolic Acid Improves the Serum Level of Vitamin B 12 and Folate in the Process of the Attenuation of Arsenic Induced Uterine Oxidative Stress. Biol Trace Elem Res 2018; 182:78-90. [PMID: 28660490 DOI: 10.1007/s12011-017-1077-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 06/08/2017] [Indexed: 01/13/2023]
Abstract
Continuation of prolonged treatment against arsenicosis with conventional chelating therapy is a global challenge. The present study was intended to evaluate the defensive effect of arjunolic acid against arsenic-induced oxidative stress and female reproductive dysfunction. Wistar strain adult female rats were given sodium arsenite (10 mg/kg body weight) in combination with arjunolic acid (10 mg/kg body weight) orally for two estrous cycles. Electrozymographic analysis explored that arjunolic acid co-treatment counteracted As3+-induced ROS production in uterine tissue by stimulating the activities of endogenous enzymatic antioxidants. Arjunolic acid was able to enhance the protection against mutagenic uterine DNA breakage, necrosis, and ovarian-uterine tissue damages in arsenicated rats by improving the ovarian steroidogenesis. The mechanisms might be coupled with the augmentation of antioxidant defense system, partly through the elimination of arsenic with the involvement of S-adenosyl methionine pool where circulating levels of vitamin B12, folic acid, and homocysteine play critical roles as evidenced from our present investigation.
Collapse
Affiliation(s)
- Moulima Maity
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
- Clinical Nutrition and Dietetics Division (Funded under UGC Innovative Programme), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Hasina Perveen
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
- Clinical Nutrition and Dietetics Division (Funded under UGC Innovative Programme), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Moumita Dash
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
- Clinical Nutrition and Dietetics Division (Funded under UGC Innovative Programme), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Suryashis Jana
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
- Clinical Nutrition and Dietetics Division (Funded under UGC Innovative Programme), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Shamima Khatun
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
- Clinical Nutrition and Dietetics Division (Funded under UGC Innovative Programme), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Arindam Dey
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India
- Clinical Nutrition and Dietetics Division (Funded under UGC Innovative Programme), Vidyasagar University, Midnapore, West Bengal, 721102, India
| | - Amit Kumar Mandal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal, 721102, India
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University, Uttar Dinajpur, West Bengal, 733134, India
| | - Sandip Chattopadhyay
- Department of Biomedical Laboratory Science and Management, Vidyasagar University, Midnapore, West Bengal, 721102, India.
- Clinical Nutrition and Dietetics Division (Funded under UGC Innovative Programme), Vidyasagar University, Midnapore, West Bengal, 721102, India.
| |
Collapse
|
13
|
Gregson E, Webb R, Sheldrick EL, Campbell BK, Mann GE, Liddell S, Sinclair KD. Molecular determinants of a competent bovine corpus luteum: first- vs final-wave dominant follicles. Reproduction 2016; 151:563-75. [PMID: 26940100 DOI: 10.1530/rep-15-0415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 03/03/2016] [Indexed: 11/08/2022]
Abstract
Reproductive management in cattle requires the synchrony of follicle development and oestrus before insemination. However, ovulation of follicles that have not undergone normal physiological maturation can lead to suboptimal luteal function. Here, we investigated the expression of a targeted set of 47 genes in (a) a first-wave vs final-wave dominant follicle (DF; the latter destined to ovulate spontaneously) and (b) 6-day-old corpora lutea (CLs) following either spontaneous ovulation or induced ovulation of a first-wave DF to ascertain their functional significance for competent CL development. Both the mass and progesterone-synthesising capacity of a CL formed following induced ovulation of a first-wave DF were impaired. These impaired CLs had reduced expression of steroidogenic enzymes (e.g. STAR and HSD3B1), luteotrophic receptors (LHCGR) and angiogenic regulators (e.g. VEGFA) and increased expression of BMP2 (linked to luteolysis). Relative to final-wave DFs, characteristic features of first-wave DFs included reduced oestradiol concentrations and a reduced oestradiol:progesterone ratio in the face of increased expression of key steroidogenic enzymes (i.e. CYP11A1, HSD3B1 and CYP19A1) in granulosa cells and reduced expression of the HDL receptor SCARB1 in thecal cells. Transcripts for further components of the TGF and IGF systems (e.g. INHA, INHBA, IGF2R and IGFBP2) varied between the first- and final-wave DFs. These results highlight the importance of hormones such as progesterone interacting with local components of both the TGF and IGF systems to affect the maturation of the ovulatory follicle and functional competency of the subsequent CL.
Collapse
Affiliation(s)
- E Gregson
- School of BiosciencesUniversity of Nottingham, Loughborough, UK
| | - R Webb
- School of BiosciencesUniversity of Nottingham, Loughborough, UK
| | - E L Sheldrick
- School of BiosciencesUniversity of Nottingham, Loughborough, UK
| | - B K Campbell
- School of Clinical SciencesUniversity of Nottingham, Nottingham, UK
| | - G E Mann
- School of BiosciencesUniversity of Nottingham, Loughborough, UK
| | - S Liddell
- School of BiosciencesUniversity of Nottingham, Loughborough, UK
| | - K D Sinclair
- School of BiosciencesUniversity of Nottingham, Loughborough, UK
| |
Collapse
|
14
|
Barbato O, Chiaradia E, Barile VL, Pierri F, de Sousa NM, Terracina L, Canali C, Avellini L. Investigation into homocysteine [corrected], vitamin E and malondialdehyde as indicators of successful artificial insemination in synchronized buffalo cows (Bubalus bubalis). Res Vet Sci 2015; 104:100-5. [PMID: 26850546 DOI: 10.1016/j.rvsc.2015.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 11/17/2015] [Accepted: 11/29/2015] [Indexed: 01/11/2023]
Abstract
The aim of this study was to describe modifications in plasma homocysteine (Hcy), vitamin E (VitE) and malondialdehyde (MDA) concentrations in the first 56 days after artificial insemination (AI) in buffalo. Thirty-five buffalo cows were divided, ex post, into three groups on the basis of pregnancy diagnosis: pregnant, not pregnant, with embryonic mortality. Pregnancy was diagnosed by ultrasonography and plasma concentrations of pregnancy-associated glycoproteins (PAGs). Our results showed that, in pregnant buffaloes, included those with embryonic mortality, MDA increased progressively while VitE decreased. In non-pregnant buffaloes, MDA and Vit E were unchanged. Hcy concentrations also remained unchanged within each group throughout the study period, but were lower in non-pregnant buffaloes than in the pregnant ones and in those with embryonic mortality. In conclusion, present data suggest that successful pregnancy in buffalo cows might be linked to Hcy metabolism and oxidative stress involvement.
Collapse
Affiliation(s)
- Olimpia Barbato
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Elisabetta Chiaradia
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Vittoria Lucia Barile
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Animal Production Research Centre (CRA-PCM), Via Salaria, 31, 00015 Monterotondo, Rome, Italy
| | - Francesca Pierri
- Department of Economics, Statistical Section University of Perugia, Via A. Pascoli 20, 06123 Perugia, Italy
| | - Noelita Melo de Sousa
- Fundamental and Applied Research for Animals & Health (FARAH), Laboratory of Animal Endocrinology and Reproduction, Faculty of Veterinary Medicine, University of Liege, B-4000 Liege, Belgium
| | - Luigi Terracina
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Claudio Canali
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy
| | - Luca Avellini
- Department of Veterinary Medicine, University of Perugia, Via S. Costanzo 4, 06126 Perugia, Italy.
| |
Collapse
|
15
|
Twigt JM, Bezstarosti K, Demmers J, Lindemans J, Laven JSE, Steegers-Theunissen RP. Preconception folic acid use influences the follicle fluid proteome. Eur J Clin Invest 2015; 45:833-41. [PMID: 26094490 DOI: 10.1111/eci.12478] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 06/08/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND The investigation of the human follicle fluid proteome has gained much interest in the search of new markers as predictors for in vitro fertilization and intracytoplasmic sperm injection (IVF/ICSI) treatment outcome. Follicular fluid folate, as substrate of one carbon (1-C) metabolism, affects follicular metabolism and oocyte and embryo quality. From this background, we aim to identify a folate-related follicle fluid proteome that associates with IVF/ICSI treatment outcome. METHODS In a nested case-control study embedded in a periconception cohort, we performed qualitative and quantitative proteomic analyses using nanoflow LC-MS/MS and TMT labelling in 30 monofollicular fluid samples from women undergoing IVF/ICSI treatment of which 15 used and 15 did not use a folic acid supplement. The protein data are analysed using scaffold proteome Software and differential abundances are expressed as Log2-fold change. Blood samples were obtained before and after treatment for determination of biomarkers of 1-C metabolism and estradiol. RESULTS We identified 227 uniquely expressed proteins in follicular fluid. In folic acid supplement users compared to nonusers, we established a lower abundance of C-reactive protein (-2.03; P = < 0.01) and higher abundances of apolipoproteins from high-density lipoprotein (HDL), most notably A-I (+1.28; P = < 0.01) and C-I (+1.11; P = 0.016). CONCLUSION Preconception folic acid supplement use is associated with suppression of the inflammatory pathway and upregulation of the HDL pathway in human follicular fluid, being a preferential source of cholesterol for steroid hormone synthesis. Studies are needed on the tissue specificity and on the beneficial effects of embryo quality and IVF/ICSI treatment outcome of the proteome of these pathways.
Collapse
Affiliation(s)
- John M Twigt
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics center, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Jeroen Demmers
- Proteomics center, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Jan Lindemans
- Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Joop S E Laven
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Régine P Steegers-Theunissen
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.,Department of Clinical Genetics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
16
|
Abstract
There is now considerable epidemiological and experimental evidence indicating that early-life environmental conditions, including nutrition, affect subsequent development in later life. These conditions induce highly integrated responses in endocrine-related homeostasis, resulting in persistent changes in the developmental trajectory producing an altered adult phenotype. Early-life events trigger processes that prepare the individual for particular circumstances that are anticipated in the postnatal environment. However, where the intrauterine and postnatal environments differ markedly, such modifications to the developmental trajectory may prove maladaptive in later life. Reproductive maturation and function are similarly influenced by early-life events. This should not be surprising, because the primordial follicle pool is established early in life and is thus vulnerable to early-life events. Results of clinical and experimental studies have indicated that early-life adversity is associated with a decline in ovarian follicular reserve, changes in ovulation rates, and altered age at onset of puberty. However, the underlying mechanisms regulating the relationship between the early-life developmental environment and postnatal reproductive development and function are unclear. This review examines the evidence linking early-life nutrition and effects on the female reproductive system, bringing together clinical observations in humans and experimental data from targeted animal models.
Collapse
Affiliation(s)
- K A Chan
- Departments of Biochemistry and Biomedical SciencesPediatricsObstetrics and GynecologyMcMaster University, 1280 Main Street West HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1
| | - M W Tsoulis
- Departments of Biochemistry and Biomedical SciencesPediatricsObstetrics and GynecologyMcMaster University, 1280 Main Street West HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1
| | - D M Sloboda
- Departments of Biochemistry and Biomedical SciencesPediatricsObstetrics and GynecologyMcMaster University, 1280 Main Street West HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1 Departments of Biochemistry and Biomedical SciencesPediatricsObstetrics and GynecologyMcMaster University, 1280 Main Street West HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1 Departments of Biochemistry and Biomedical SciencesPediatricsObstetrics and GynecologyMcMaster University, 1280 Main Street West HSC 4H30A, Hamilton, Ontario, Canada L8S 4K1
| |
Collapse
|
17
|
Drake AJ, O'Shaughnessy PJ, Bhattacharya S, Monteiro A, Kerrigan D, Goetz S, Raab A, Rhind SM, Sinclair KD, Meharg AA, Feldmann J, Fowler PA. In utero exposure to cigarette chemicals induces sex-specific disruption of one-carbon metabolism and DNA methylation in the human fetal liver. BMC Med 2015; 13:18. [PMID: 25630355 PMCID: PMC4310040 DOI: 10.1186/s12916-014-0251-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/09/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Maternal smoking is one of the most important modifiable risk factors for low birthweight, which is strongly associated with increased cardiometabolic disease risk in adulthood. Maternal smoking reduces the levels of the methyl donor vitamin B12 and is associated with altered DNA methylation at birth. Altered DNA methylation may be an important mechanism underlying increased disease susceptibility; however, the extent to which this can be induced in the developing fetus is unknown. METHODS In this retrospective study, we measured concentrations of cobalt, vitamin B12, and mRNA transcripts encoding key enzymes in the 1-carbon cycle in 55 fetal human livers obtained from 11 to 21 weeks of gestation elective terminations and matched for gestation and maternal smoking. DNA methylation was measured at critical regions known to be susceptible to the in utero environment. Homocysteine concentrations were analyzed in plasma from 60 fetuses. RESULTS In addition to identifying baseline sex differences, we found that maternal smoking was associated with sex-specific alterations of fetal liver vitamin B12, plasma homocysteine and expression of enzymes in the 1-carbon cycle in fetal liver. In the majority of the measured parameters which showed a sex difference, maternal smoking reduced the magnitude of that difference. Maternal smoking also altered DNA methylation at the imprinted gene IGF2 and the glucocorticoid receptor (GR/NR3C1). CONCLUSIONS Our unique data strengthen studies linking in utero exposures to altered DNA methylation by showing, for the first time, that such changes are present in fetal life and in a key metabolic target tissue, human fetal liver. Furthermore, these data propose a novel mechanism by which such changes are induced, namely through alterations in methyl donor availability and changes in 1-carbon metabolism.
Collapse
Affiliation(s)
- Amanda J Drake
- Endocrinology Unit, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Antimüllerian hormone regulates stem cell factor expression in human granulosa cells. Fertil Steril 2014; 102:1742-50.e1. [PMID: 25241372 DOI: 10.1016/j.fertnstert.2014.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To determine whether there is a correlation between antimüllerian hormone (AMH) and stem cell factor (SCF) in serum, follicular fluid (FF), and granulosa cells (GCs), and to investigate a possible regulatory mechanism of AMH on SCF in human granulosa cells. DESIGN Prospective clinical and experimental study. SETTING Academic center. PATIENT(S) 163 women undergoing IVF. INTERVENTION(S) Serum, FF, and GCs obtained in all women, primary cultures of human GCs. MAIN OUTCOME MEASURE(S) AMH and SCF were analyzed in serum, FF, and GCs, using enzyme-linked immunosorbent assay, reverse-transcription polymerase chain reaction, and immunoblotting. RESULT(S) There was a significant negative correlation between AMH and SCF protein level in FF, and in the mRNA expression of AMH and SCF in GCs. Conversely, there was no correlation between AMH and SCF levels in serum. In primary cultures of human GCs, SCF was down-regulated by treatment with recombinant human AMH and was increased by cyclic adenosine 3':5' monophosphate (cAMP) in a dose-dependent manner. A protein kinase A (PKA) inhibitor (H89) significantly reversed the effects of recombinant human AMH and cAMP on SCF mRNA and protein expression. CONCLUSION(S) This is the first report on a modulatory role for AMH as an ovarian/follicular autocrine/paracrine factor controlling SCF expression via the cAMP/PKA pathway.
Collapse
|
19
|
Hu R, Lou Y, Wang FM, Ma HM, Wu X, Zhang XM, Li J, Sun YP. Effects of Recombinant Human AMH on SCF Expression in Human Granulosa Cells. Cell Biochem Biophys 2013; 67:1481-5. [DOI: 10.1007/s12013-013-9649-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Agrawal R, Burt E, Gallagher AM, Butler L, Venkatakrishnan R, Peitsidis P. Prospective randomized trial of multiple micronutrients in subfertile women undergoing ovulation induction: a pilot study. Reprod Biomed Online 2012; 24:54-60. [DOI: 10.1016/j.rbmo.2011.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 09/30/2011] [Accepted: 10/06/2011] [Indexed: 11/26/2022]
|
21
|
The role of nutritional supplementation on the outcome of superovulation in cattle. Anim Reprod Sci 2011; 126:1-10. [DOI: 10.1016/j.anireprosci.2011.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/03/2011] [Accepted: 05/16/2011] [Indexed: 11/20/2022]
|
22
|
Hughes J, Kwong WY, Li D, Salter AM, Lea RG, Sinclair KD. Effects of omega-3 and -6 polyunsaturated fatty acids on ovine follicular cell steroidogenesis, embryo development and molecular markers of fatty acid metabolism. Reproduction 2010; 141:105-18. [PMID: 21045166 DOI: 10.1530/rep-10-0337] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We previously reported increased follicular fluid progesterone (P(4)) concentrations in ewes fed an n-3 compared to an n-6 polyunsaturated fatty acid (PUFA)-enriched diet, but detected no differential effect of n-3 and n-6 PUFA-enriched high-density lipoproteins (HDL) on granulosa cell (GC) steroidogenesis in vitro. Moreover, net n-6 PUFA-enriched HDL reduced early embryo development, but in the absence of a net uptake of FA. Consequently, we hypothesised that a) effects of n-3 PUFA on ovarian steroidogenesis are mediated by theca rather than GCs and b) during embryo culture lipids are acquired solely from the albumin fraction of serum, so that albumin-delivered n-3 and n-6 PUFA exert a greater differential effect on embryo development than either low-density lipoprotein (LDL)- or HDL-delivered PUFA. Data confirmed that n-3 PUFA increases P(4) production solely in theca cells and that this is associated with an increase in STAR transcript expression. Furthermore, LDL- and HDL-delivered n-3 PUFA are equally efficacious in this regard during the first 96 h of culture, but thereafter only HDL-delivered n-3 PUFA induces this effect in partially luteinised theca cells. We also demonstrate that albumin is the sole serum fraction that leads to a net uptake of FA during embryo culture. PUFA-enriched serum and albumin increased the yield of morphologically poorer quality blastocysts with increased transcript expression for the antioxidant enzyme SOD1. Important differential effects of n-3 and n-6 PUFA on ovarian steroidogenesis acting solely on theca cells are identified, but differential effects of PUFA on embryo development are less apparent.
Collapse
Affiliation(s)
- Jaime Hughes
- Schools of Biosciences Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, UK
| | | | | | | | | | | |
Collapse
|
23
|
Wonnacott KE, Kwong WY, Hughes J, Salter AM, Lea RG, Garnsworthy PC, Sinclair KD. Dietary omega-3 and -6 polyunsaturated fatty acids affect the composition and development of sheep granulosa cells, oocytes and embryos. Reproduction 2010; 139:57-69. [PMID: 19789173 DOI: 10.1530/rep-09-0219] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The evidence that omega-3 (n-3) and -6 (n-6) polyunsaturated fatty acids (PUFAs) have differential effects on ovarian function, oocytes and embryo quality is inconsistent. We report on the effects of n-3 versus n-6 PUFA-enriched diets fed to 36 ewes over a 6-week period, prior to ovarian stimulation and follicular aspiration, on ovarian steroidogenic parameters and embryo quality. Follicle number and size were unaltered by diet, but follicular-fluid progesterone concentrations were greater in n-3 PUFA-fed ewes than in n-6 PUFA-fed ewes. The percentage of saturated FAs (mostly stearic acid) was greater in oocytes than in either granulosa cells or plasma, indicating selective uptake and/or de novo synthesis of saturated FAs at the expense of PUFAs by oocytes. High-density lipoproteins (HDLs) fractionated from sera of these ewes increased granulosa cell proliferation and steroidogenesis relative to the FA-free BSA control during culture, but there was no differential effect of n-3 and n-6 PUFAs on either oestradiol or progesterone production. HDL was ineffective in delivering FAs to embryos during culture, although n-6 PUFA HDL reduced embryo development. All blastocysts, irrespective of the treatment, contained high levels of unsaturated FAs, in particular linoleic acid. Transcripts for HDL and low-density lipoprotein (LDL) receptors (SCARB1 and LDLR) and stearoyl-CoA desaturase (SCD) are reported in sheep embryos. HDL reduced the expression of transcripts for LDLR and SCD relative to the BSA control. The data support a differential effect of n-3 and n-6 PUFAs on ovarian steroidogenesis and pre-implantation development, the latter in the absence of a net uptake of FAs.
Collapse
Affiliation(s)
- K E Wonnacott
- School of Biosciences School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Leicestershire LE12 5RD, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Kwong WY, Adamiak SJ, Gwynn A, Singh R, Sinclair KD. Endogenous folates and single-carbon metabolism in the ovarian follicle, oocyte and pre-implantation embryo. Reproduction 2010; 139:705-15. [PMID: 20083604 DOI: 10.1530/rep-09-0517] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Maternal B-vitamin status at conception can affect fertility and the health of offspring. This study details transcript expression for genes encoding key enzymes in the linked methionine/folate cycles in the bovine oocyte, somatic cells of the ovarian follicle and pre-implantation embryo. Transcripts for all 12 enzymes that were studied and for the two folate receptors (FOLR1 and FOLR2) and reduced folate carrier (SLC19A1) were expressed in liver cells, but transcripts for betaine-homocysteine methyltransferase and methionine adenosyl transferase 1A were absent in all ovarian cells, and transcripts for FOLR2 were absent in embryonic cells. Transcripts for glycine methyltransferase were also absent/weak in cumulus and granulosa cells. The absence of these enzymes could have a profound effect on single-carbon metabolism within the ovary and pre-implantation embryo. Immunocytochemical analysis revealed SLC19A1 protein expression on the plasma and basal-lateral membranes of the pre-implantation embryo. The folate antagonist methotrexate (MTX) enters the cell via SLC19A1, and in the current study, MTX inclusion in bovine/ovine culture media at either 1 or 10 microM from the 1-cell stage inhibited embryo development beyond the 8-cell stage. Hypoxanthine and thymidine (100 microM) increased the proportion of embryos that developed to blastocysts, but the cell number was reduced by 20%. The reduced uptake of [(35)S] methionine into intra-cellular S-adenosylmethionine and S-adenosylhomocysteine pools, together with reduced uptake of glutamate and tryptophan, was consistent with depleted intra-cellular pools of reduced folates. These data provide an insight into the importance of maternal dietary folate/B-vitamin status during the peri-conceptional period.
Collapse
Affiliation(s)
- W Y Kwong
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | | | | | | | | |
Collapse
|