1
|
Zuidema D, Jones A, Song WH, Zigo M, Sutovsky P. Identification of candidate mitochondrial inheritance determinants using the mammalian cell-free system. eLife 2023; 12:RP85596. [PMID: 37470242 PMCID: PMC10393022 DOI: 10.7554/elife.85596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
The degradation of sperm-borne mitochondria after fertilization is a conserved event. This process known as post-fertilization sperm mitophagy, ensures exclusively maternal inheritance of the mitochondria-harbored mitochondrial DNA genome. This mitochondrial degradation is in part carried out by the ubiquitin-proteasome system. In mammals, ubiquitin-binding pro-autophagic receptors such as SQSTM1 and GABARAP have also been shown to contribute to sperm mitophagy. These systems work in concert to ensure the timely degradation of the sperm-borne mitochondria after fertilization. We hypothesize that other receptors, cofactors, and substrates are involved in post-fertilization mitophagy. Mass spectrometry was used in conjunction with a porcine cell-free system to identify other autophagic cofactors involved in post-fertilization sperm mitophagy. This porcine cell-free system is able to recapitulate early fertilization proteomic interactions. Altogether, 185 proteins were identified as statistically different between control and cell-free-treated spermatozoa. Six of these proteins were further investigated, including MVP, PSMG2, PSMA3, FUNDC2, SAMM50, and BAG5. These proteins were phenotyped using porcine in vitro fertilization, cell imaging, proteomics, and the porcine cell-free system. The present data confirms the involvement of known mitophagy determinants in the regulation of mitochondrial inheritance and provides a master list of candidate mitophagy co-factors to validate in the future hypothesis-driven studies.
Collapse
Affiliation(s)
- Dalen Zuidema
- Division of Animal Sciences, University of Missouri, Columbia, United States
| | - Alexis Jones
- Division of Animal Sciences, University of Missouri, Columbia, United States
| | - Won-Hee Song
- Division of Animal Sciences, University of Missouri, Columbia, United States
| | - Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, United States
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, United States
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, United States
| |
Collapse
|
2
|
Chênais N, Le Cam A, Guillet B, Lareyre JJ, Labbé C. TGFβ inhibition and mesenchymal to epithelial transition initiation by Xenopus egg extract: first steps towards early reprogramming in fish somatic cell. Sci Rep 2023; 13:9967. [PMID: 37339990 DOI: 10.1038/s41598-023-36354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/01/2023] [Indexed: 06/22/2023] Open
Abstract
Xenopus egg extract is a powerful material to modify cultured cells fate and to induce cellular reprogramming in mammals. In this study, the response of goldfish fin cells to in vitro exposure to Xenopus egg extract, and subsequent culture, was studied using a cDNA microarray approach, gene ontology and KEGG pathways analyses, and qPCR validation. We observed that several actors of the TGFβ and Wnt/β-catenin signaling pathways, as well as some mesenchymal markers, were inhibited in treated cells, while several epithelial markers were upregulated. This was associated with morphological changes of the cells in culture, suggesting that egg extract drove cultured fin cells towards a mesenchymal-epithelial transition. This indicates that Xenopus egg extract treatment relieved some barriers of somatic reprogramming in fish cells. However, the lack of re-expression of pou2 and nanog pluripotency markers, the absence of DNA methylation remodeling of their promoter region, and the strong decrease in de novo lipid biosynthesis metabolism, indicate that reprogramming was only partial. The observed changes may render these treated cells more suitable for studies on in vivo reprogramming after somatic cell nuclear transfer.
Collapse
Affiliation(s)
- Nathalie Chênais
- INRAE, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, 35000, Rennes, France.
| | - Aurelie Le Cam
- INRAE, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, 35000, Rennes, France
| | - Brigitte Guillet
- Université de Rennes 1, Campus de Beaulieu, 35000, Rennes, France
| | - Jean-Jacques Lareyre
- INRAE, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, 35000, Rennes, France
| | - Catherine Labbé
- INRAE, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, 35000, Rennes, France.
| |
Collapse
|
3
|
Song WH, Zuidema D, Yi YJ, Zigo M, Zhang Z, Sutovsky M, Sutovsky P. Mammalian Cell-Free System Recapitulates the Early Events of Post-Fertilization Sperm Mitophagy. Cells 2021; 10:2450. [PMID: 34572103 PMCID: PMC8466530 DOI: 10.3390/cells10092450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Propagation of paternal sperm-contributed mitochondrial genes, resulting in heteroplasmy, is seldom observed in mammals due to post-fertilization degradation of sperm mitochondria, referred to as sperm mitophagy. Whole organelle sperm mitochondrion degradation is thought to be mediated by the interplay between the ubiquitin-proteasome system (UPS) and the autophagic pathway (Song et al., Proc. Natl. Acad. Sci. USA, 2016). Both porcine and primate post-fertilization sperm mitophagy rely on the ubiquitin-binding autophagy receptor, sequestosome 1 (SQSTM1), and the proteasome-interacting ubiquitinated protein dislocase, valosin-containing protein (VCP). Consequently, we anticipated that sperm mitophagy could be reconstituted in a cell-free system consisting of permeabilized mammalian spermatozoa co-incubated with porcine oocyte extracts. We found that SQSTM1 was detected in the midpiece/mitochondrial sheath of the sperm tail after, but not before, co-incubation with oocyte extracts. VCP was prominent in the sperm mitochondrial sheath both before and after the extract co-incubation and was also detected in the acrosome and postacrosomal sheath and the subacrosomal layer of the spermatozoa co-incubated with extraction buffer as control. Such patterns are consistent with our previous observation of SQSTM1 and VCP associating with sperm mitochondria inside the porcine zygote. In addition, it was observed that sperm head expansion mimicked the early stages of paternal pronucleus development in a zygote during prolonged sperm-oocyte extract co-incubation. Treatment with anti-SQSTM1 antibody during extract co-incubation prevented ooplasmic SQSTM1 binding to sperm mitochondria. Even in an interspecific cellular environment encompassing bull spermatozoa and porcine oocyte extract, ooplasmic SQSTM1 was recruited to heterospecific sperm mitochondria. Complementary with the binding of SQSTM1 and VCP to sperm mitochondria, two sperm-borne pro-mitophagy proteins, parkin co-regulated gene product (PACRG) and spermatogenesis associated 18 (SPATA18), underwent localization changes after extract coincubation, which were consistent with their degradation observed inside fertilized porcine oocytes. These results demonstrate that the early developmental events of post-fertilization sperm mitophagy observed in porcine zygote can be reconstituted in a cell-free system, which could become a useful tool for identifying additional molecules that regulate mitochondrial inheritance in mammals.
Collapse
Affiliation(s)
- Won-Hee Song
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (W.-H.S.); (D.Z.); (Y.-J.Y.); (M.Z.); (M.S.)
| | - Dalen Zuidema
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (W.-H.S.); (D.Z.); (Y.-J.Y.); (M.Z.); (M.S.)
| | - Young-Joo Yi
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (W.-H.S.); (D.Z.); (Y.-J.Y.); (M.Z.); (M.S.)
- Department of Agricultural Education, College of Education, Sunchon National University, Suncheon 57922, Korea
| | - Michal Zigo
- Department of Agricultural Education, College of Education, Sunchon National University, Suncheon 57922, Korea
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA;
- The C.S. Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Miriam Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (W.-H.S.); (D.Z.); (Y.-J.Y.); (M.Z.); (M.S.)
| | - Peter Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA; (W.-H.S.); (D.Z.); (Y.-J.Y.); (M.Z.); (M.S.)
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Ruan GP, Yao X, Lin QK, Li ZA, Cai XM, Pang RQ, Pan XH. Transplantation of chicken egg white extract-induced rabbit PBMCs as a treatment for renal ischemia-reperfusion injury in rabbits. PLoS One 2020; 15:e0244160. [PMID: 33370374 PMCID: PMC7769466 DOI: 10.1371/journal.pone.0244160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022] Open
Abstract
Ischemia-reperfusion injury is an important contributor to acute kidney injury and a major factor affecting early functional recovery after kidney transplantation. We conducted this experiment to investigate the protective effect of induced multipotent stem cell transplantation on renal ischemia-reperfusion injury. Forty rabbits were divided into four groups of 10 rabbits each. Thirty rabbits were used to establish the renal ischemia-reperfusion injury model, and ten rabbits served as the model group and were not treated. Among the 30 rabbits with renal ischemia-reperfusion injury, 10 rabbits were treated with induced peripheral blood mononuclear cells (PBMCs), and 10 other rabbits were treated with noninduced PBMCs. After three weekly treatments, the serum creatinine levels, urea nitrogen levels and urine protein concentrations were quantified. The kidneys were stained with hematoxylin-eosin (HE), periodic acid-Schiff (PAS) and Masson’s trichrome and then sent for commercial metabolomic testing. The kidneys of the rabbits in the model group showed different degrees of pathological changes, and the recovery of renal function was observed in the group treated with induced cells. The results indicate that PBMCs differentiate into multipotent stem cells after induction and exert a therapeutic effect on renal ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Guang-ping Ruan
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming, Yunnan Province, China
- Stem Cell and Immune Cell Biomedical Technique Integrated Engineering Laboratory of State and Region, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
- * E-mail: (GR); (XP)
| | - Xiang Yao
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming, Yunnan Province, China
- Stem Cell and Immune Cell Biomedical Technique Integrated Engineering Laboratory of State and Region, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Qing-keng Lin
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming, Yunnan Province, China
- Stem Cell and Immune Cell Biomedical Technique Integrated Engineering Laboratory of State and Region, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Zi-an Li
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming, Yunnan Province, China
- Stem Cell and Immune Cell Biomedical Technique Integrated Engineering Laboratory of State and Region, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Xue-min Cai
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming, Yunnan Province, China
- Stem Cell and Immune Cell Biomedical Technique Integrated Engineering Laboratory of State and Region, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Rong-qing Pang
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming, Yunnan Province, China
- Stem Cell and Immune Cell Biomedical Technique Integrated Engineering Laboratory of State and Region, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
| | - Xing-hua Pan
- Kunming Key Laboratory of Stem Cell and Regenerative Medicine, 920th Hospital of the Joint Logistics Support Force of the PLA, Kunming, Yunnan Province, China
- Stem Cell and Immune Cell Biomedical Technique Integrated Engineering Laboratory of State and Region, Kunming, Yunnan Province, China
- Cell Therapy Technology Transfer Medical Key Laboratory of Yunnan Province, Kunming, Yunnan Province, China
- * E-mail: (GR); (XP)
| |
Collapse
|
5
|
Xu W, Li H, Zhang M, Shi J, Wang Z. Locus-specific analysis of DNA methylation patterns in cloned and in vitro fertilized porcine embryos. J Reprod Dev 2020; 66:505-514. [PMID: 32908081 PMCID: PMC7768172 DOI: 10.1262/jrd.2019-076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porcine somatic cell nuclear transfer (SCNT) is currently inefficient, as 1–3.95% of reconstructed embryos survive to term; inadequate or erroneous epigenetic
reprogramming of the specialized donor somatic nucleus could be a primary reason. Therefore, a locus-specific analysis of DNA methylation dynamics in
embryogenesis and the DNA methylation status of gametes and donor cells used for SCNT were conducted in the following developmentally important gene loci:
POU5F1, NANOG, SOX2, H19, IGF2, IGF2R,
XIST; and the retrotransposon LINE-1. There were significant epigenetic differences between the gametes and the somatic
donor cells. Three gamete-specific differentially methylated regions (DMRs) in POU5F1, XIST, and LINE-1 were
identified. A delayed demethylation process at POU5F1 and LINE-1 loci occurred after three successive cleavages, compared to
the in vitro fertilized (IVF) embryos. Although cloned embryos could undergo de-methylation and re-methylation dynamics at the DMRs of
imprinted genes (H19,IGF2R, and XIST), the re-methylation process was compromised, unlike in fertilized
embryos. LINE-1 loci are widely dispersed across the whole genome, and LINE-1 DMR might be a potential porcine nuclear
reprogramming epi-marker. Data from observations in our present and previous studies, and two published articles were pooled to produce a schematic diagram of
locus-specific, DNA methylation dynamics of cloned and IVF embryos during porcine early embryogenesis. This also indicated aberrant DNA methylation
reprogramming events, including inadequate DNA demethylation and insufficient re-methylation in cloned embryos. Further research should focus on mechanisms
underlying demethylation during the early cleavage of embryos and de novo DNA methylation at the blastocyst stage.
Collapse
Affiliation(s)
- Weihua Xu
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, P. R. China.,Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hongyi Li
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, P. R. China
| | - Mao Zhang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, College of Life Sciences, Longyan University, Longyan 364012, P. R. China
| | - Junsong Shi
- Guangdong Provincial Wen's Research Institute, Yunfu 527400, P. R. China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, P. R. China
| |
Collapse
|
6
|
The effect of Xenopus laevis egg extracts with/without BRG1 on the development of preimplantation cloned mouse embryos. ZYGOTE 2019; 27:143-152. [PMID: 31182178 DOI: 10.1017/s0967199419000091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryMuch effort has been devoted to improving the efficiency of animal cloning. The aim of this study was to investigate the effect of BRG1 contained in Xenopus egg extracts on the development of cloned mouse embryos. The results showed that mouse NIH/3T3 cells were able to express pluripotent genes after treatment with egg extracts, indicating that the egg extracts contained reprogramming factors. After co-injection of Xenopus egg extracts and single mouse cumulus cells into enucleated mouse oocytes, statistically higher pronucleus formation and development rates were observed in the egg Extract- co-injected group compared with those in the no egg extract-injected (NT) group (38-66% vs 18-34%, P<0.001). Removal of BRG1 protein from Xenopus egg extracts was conducted, and the BRG1-depleted extracts were co-injected with single donor cells into recipient oocytes. The results showed that the percentages of pronucleus formation were significantly higher in both BRG1-depleted and BRG1-intact groups than that in the nuclear transfer (NT) group (94, 64% vs 50%, P<0.05). Furthermore, percentages in the BRG1-depleted group were even higher than in the BRG1-intact group (94% vs 64%). More confined expression of Oct4 in the inner cell mass (ICM) was observed in the blastocyst derived from the egg extract-injected groups. However, Nanog expression was more contracted in the ICM of cloned blastocysts in the BRG1-depleted group than in the BGR1-intact group. Based on the present study, BRG1 might not play an essential role in reprogramming, but the factors enhancing pronucleus formation and development of cloned mouse embryos are contained in Xenopus egg extracts.
Collapse
|
7
|
Xiong XR, Lan DL, Li J, Yin S, Xiong Y, Zi XD. Effects of Cellular Extract on Epigenetic Reprogramming. Cell Reprogram 2019; 21:115-121. [PMID: 31084436 DOI: 10.1089/cell.2018.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Functional reprogramming of a differentiated cell toward pluripotent cell may have long-term applications in numerous aspects, especially in regenerative medicine. Evidences accumulating from recent studies suggest that cellular extracts from stem cells or pluripotent cells can induce epigenetic reprogramming and facilitate pluripotency in otherwise highly differentiated cell types. Epigenetic reprogramming using cellular extracts has gained increasing attention and applied to recognize the functional factors, acquire the target cell types, and explain the mechanism of reprogramming. Now, more and more researches have proved that cellular extract treatment is an important strategy of cellular reprogramming. Thus, this review mainly focused on the progresses and potential mechanisms in epigenetic reprogramming using cellular extracts.
Collapse
Affiliation(s)
- Xian-Rong Xiong
- 1 College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Dao-Liang Lan
- 2 Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Chengdu, China
| | - Jian Li
- 1 College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Shi Yin
- 2 Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education, Chengdu, China
| | - Yan Xiong
- 1 College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Xiang-Dong Zi
- 1 College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| |
Collapse
|
8
|
Chênais N, Lorca T, Morin N, Guillet B, Rime H, Le Bail PY, Labbé C. Nuclear import of Xenopus egg extract components into cultured cells for reprogramming purposes: a case study on goldfish fin cells. Sci Rep 2019; 9:2861. [PMID: 30814557 PMCID: PMC6393519 DOI: 10.1038/s41598-019-39500-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/09/2019] [Indexed: 11/09/2022] Open
Abstract
Reprogramming of cultured cells using Xenopus egg extract involves controlling four major steps: plasma membrane permeabilization, egg factors import into the nucleus, membrane resealing, and cell proliferation. Using propidium iodide to assess plasma membrane permeability, we established that 90% of the cultured fin cells were permeabilized by digitonin without any cell losses. We showed that egg extract at metaphase II stage was essential to maintain nuclear import function in the permeabilized cells, as assessed with a fusion GFP protein carrying the nuclear import signal NLS. Moreover, the Xenopus-egg-specific Lamin B3 was detected in 87% of the cell nuclei, suggesting that other egg extract reprogramming factors of similar size could successfully enter the nucleus. Lamin B3 labelling was maintained in most cells recovered 24 h after membrane resealing with calcium, and cells successfully resumed cell cycle in culture. In contrast, permeabilized cells that were not treated with egg extract failed to proliferate in culture and died, implying that egg extract provided factor essential to the survival of those cells. To conclude, fish fin cells were successfully primed for treatment with reprogramming factors, and egg extract was shown to play a major role in their survival and recovery after permeabilization.
Collapse
Affiliation(s)
- Nathalie Chênais
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, F-35000, Rennes, France.
| | - Thierry Lorca
- Centre de Recherche en Biologie Cellulaire de Montpellier, UMR 5237 CNRS, Montpellier, France
| | - Nathalie Morin
- Centre de Recherche en Biologie Cellulaire de Montpellier, UMR 5237 CNRS, Montpellier, France
| | - Brigitte Guillet
- Centre de Ressources Biologique Xenope, CNRS Université Rennes 1, Campus de Beaulieu, F-35000, Rennes, France
| | - Hélène Rime
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, F-35000, Rennes, France
| | - Pierre-Yves Le Bail
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, F-35000, Rennes, France
| | - Catherine Labbé
- INRA, UR1037 LPGP, Fish Physiology and Genomics, Campus de Beaulieu, F-35000, Rennes, France
| |
Collapse
|
9
|
Abstract
Maternal factors stored in eggs and oocytes are necessary for reprogramming sperm for embryonic development. This reprogramming activity of maternal factors also works towards somatic cells, including terminally differentiated cells. Several different experimental systems utilizing egg and oocyte materials have been applied to study nuclear reprogramming by maternal factors. Among these systems, the most widely used is the transfer of a somatic cell nucleus to an oocyte arrested at the metaphase II stage, leading to the production of a cloned animal. Nuclear transfer to an unfertilized oocyte thus provides a unique opportunity to examine reprogramming processes involved in acquiring totipotency. Other experimental systems are also available to study maternal reprogramming, such as nuclear transfer to Xenopus laevis oocytes at the germinal vesicle stage, treatment with extracts obtained from eggs or oocytes, and induced pluripotency with overexpressed maternal factors. Each system can be used for answering different types of scientific questions. This review describes currently available reprogramming systems using egg and oocyte materials and discusses how we can deepen our understanding of reprogramming mechanisms by taking advantage of these various experimental systems.
Collapse
Affiliation(s)
- Kei Miyamoto
- Laboratory of Molecular Developmental Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| |
Collapse
|
10
|
Abstract
A cell-free system using oocyte extracts is a valuable tool to study early events of animal fertilization and examine protein-protein interactions difficult to observe in whole cells. The process of postfertilization sperm mitophagy assures timely elimination of paternal, sperm-contributed mitochondria carrying potentially corrupted mitochondrial DNA (mtDNA). Cell-free systems would be especially advantageous for studying postfertilization sperm mitophagy as large amounts of oocyte extracts can be incubated with hundreds to thousands of spermatozoa in a single trial, while only one spermatozoon per zygote can be examined by whole-cell approaches. Since sperm mitophagy is species-specific, the abundantly available frog egg extracts commonly used for cell-free systems have to be replaced with isospecific mammalian oocyte extracts, which are difficult to obtain. Here we describe the protocol for a mammalian, porcine cell-free system consisting of permeabilized domestic boar spermatozoa co-incubated with cell extracts from porcine oocytes, suitable for studying the interactions of maternal, oocyte-derived mitophagy factors with paternal, sperm mitochondria.
Collapse
Affiliation(s)
- Won-Hee Song
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, South Korea
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA.
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
11
|
Memon A, Song KD, Lee WK. Characterization of the porcine Nanog 5'-flanking region. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 31:449-456. [PMID: 28823121 PMCID: PMC5838351 DOI: 10.5713/ajas.17.0431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/02/2017] [Accepted: 08/11/2017] [Indexed: 12/02/2022]
Abstract
Objective Nanog, a homeodomain protein, has been investigated in humans and mice using embryonic stem cells (ESCs). Because of the limited availability of ESCs, few studies have reported the function and role of Nanog in porcine ESCs. Therefore, in this study, we investigated the location of the porcine Nanog chromosome and its basal promoter activity, which might have potential applications in development of ESCs specific marker as well as understanding its operating systems in the porcine. Methods To characterize the porcine Nanog promoter, the 5′-flanking region of Nanog was isolated from cells of mini-pig ears. BLAST database search showed that there are two porcine Nanog genomic loci, chromosome 1 and 5, both of which contain an exon with a start codon. Deletion mutants from the 5′-flanking region of both loci were measured using the Dual-Luciferase Reporter Assay System, and a fluorescence marker, green fluorescence protein. Results Promoter activity was detected in the sequences of chromosome 5, but not in those of chromosome 1. We identified the sequences from –99 to +194 that possessed promoter activity and contained transcription factor binding sites from deletion fragment analysis. Among the transcription factor binding sites, a Sp1 was found to play a crucial role in basal promoter activity, and point mutation of this site abolished its activity, confirming its role in promoter activity. Furthermore, gel shift analysis and chromatin immunoprecipitation analysis confirmed that Sp1 transcription factor binds to the Sp1 binding site in the porcine Nanog promoter. Taken together, these results show that Sp1 transcription factor is an essential element for porcine Nanog basal activity the same as in human and mouse. Conclusion We showed that the porcine Nanog gene is located on porcine chromosome 5 and its basal transcriptional activity is controlled by Sp1 transcription factor.
Collapse
Affiliation(s)
- Azra Memon
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea
| | - Ki-Duk Song
- Department of Animal Biotechnology, Chonbuk National University, Jeonju 54896, Korea
| | - Woon Kyu Lee
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea
| |
Collapse
|
12
|
Sadeesh EM, Fozia S, Meena K. Combined positive effect of oocyte extracts and brilliant cresyl blue stained recipient cytoplasts on epigenetic reprogramming and gene expression in buffalo nuclear transfer embryos. Cytotechnology 2017; 69:289-305. [PMID: 28070808 DOI: 10.1007/s10616-016-0057-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022] Open
Abstract
This study examined the effects of buffalo oocyte extracts (BOE) on donor cells reprogramming and molecular characterisation of oocytes screened via brilliant cresyl blue (BCB) staining and comparison of gene expression profiles of developmentally important genes in blastocysts from IVF and cloned derived from BOE treated donor cells with BCB selected recipient cytoplasts. Relative abundance (RA) of OCT4 and NANOG was increased (P < 0.05) and HDAC-1, DNMT-1, and DNMT-3A decreased (P < 0.05) in extract treated cells (ETCs). This ETCs dedifferentiated into neuron-like lineage under appropriate induction condition. The RA of NASP, EEF1A1, DNMT1, ODC1 and RPS27A was increased (P < 0.05) in BCB+ oocytes, whereas ATP5A1 and S100A10 increased (P < 0.05) in BCB- oocytes. Total cell number and RA of OCT4, NANOG, SOX2, DNMT1, IGF2, IGF2R, MNSOD, GLUT1, BAX and BCL2 in cloned blastocysts derived from BCB+ oocytes with ETC more closely followed that of IVF counterparts compared to BCB+ oocytes with extract untreated cell and BCB- oocytes with ETC derived blastocysts. In conclusion, BOE influenced epigenetic reprogramming of buffalo fibroblasts making them suitable donors for nuclear transfer (NT). BCB staining can be effectively used for selection of developmentally competent oocytes for NT. The combined effects of epigenetic reprogramming of donor nuclei by BOE and higher nuclear reprogramming capacity of BCB+ oocytes improve developmentally important gene expression in cloned blastocysts. Whether these improvements have long-term effects on buffalo calves born following embryo transfer remains unknown.
Collapse
Affiliation(s)
- E M Sadeesh
- Division of Animal Physiology and Reproduction, ICAR-Central Institute for Research on Buffaloes, Hisar, 125001, India.
| | - Shah Fozia
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India.,Division of Veterinary Physiology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, 190001, India
| | - Kataria Meena
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Bareilly, 243122, India
| |
Collapse
|
13
|
Glanzner WG, Komninou ER, Mahendran A, Rissi VB, Gutierrez K, Bohrer RC, Collares T, Gonçalves PBD, Bordignon V. Exposure of Somatic Cells to Cytoplasm Extracts of Porcine Oocytes Induces Stem Cell-Like Colony Formation and Alters Expression of Pluripotency and Chromatin-Modifying Genes. Cell Reprogram 2016; 18:137-46. [PMID: 27253625 DOI: 10.1089/cell.2016.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell permeabilization followed by exposure to cytoplasmic extracts of oocytes has been proposed as an alternative to transduction of transcription factors for inducing pluripotency in cultured somatic cells. The main goal in this study was to investigate the effect of treating porcine fibroblast cells with cytoplasmic extracts of GV-stage oocyte (OEx) followed by inhibition of histone deacetylases with Scriptaid (Scrip) on the formation of stem cell-like colonies and expression of genes encoding pluripotency and chromatin-modifying enzymes. Stem cell-like colonies start developing ∼2 weeks after treatment in cells exposed to OEx or OEx + Scrip. The number of cell colonies at the first day of appearance and 48 hours later was also similar between OEx and OEx + Scrip treatments. Transcripts for Nanog, Rex1, and c-Myc genes were detected in most cell samples that were analyzed on different days after OEx treatment. However, Sox2 transcripts were not detected and only a small proportion of samples had detectable levels of Oct4 mRNA after OEx treatment. A similar pattern of transcripts for pluripotency genes was observed in cells treated with OEx alone or OEx + Scrip. Transcript levels for Dnmt1 and Ezh2 were reduced at Day 3 after treatment in cells exposed to OEx. These findings revealed that: (a) exposure to OEx can induce a partial reprogramming of fibroblast cells toward pluripotency, characterized by colony formation and activation of pluripotency genes; and (b) inhibition of histone deacetylases does not improve the reprogramming effect of OEx treatment.
Collapse
Affiliation(s)
- Werner Giehl Glanzner
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Eliza R Komninou
- 2 Postgraduate Program in Biotechnology, Laboratory of Molecular Embryology and Transgenesis, Technology Development Center, Federal University of Pelotas (UFPEL) , Pelotas, Brazil
| | - Ashwini Mahendran
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| | - Vitor B Rissi
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Karina Gutierrez
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| | - Rodrigo C Bohrer
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| | - Tiago Collares
- 2 Postgraduate Program in Biotechnology, Laboratory of Molecular Embryology and Transgenesis, Technology Development Center, Federal University of Pelotas (UFPEL) , Pelotas, Brazil
| | - Paulo B D Gonçalves
- 1 Laboratory of Biotechnology and Animal Reproduction-BioRep, Federal University of Santa Maria (UFSM) , Santa Maria, Brazil
| | - Vilceu Bordignon
- 3 Department of Animal Science, McGill University , Ste-Anne-De-Bellevue, Canada
| |
Collapse
|
14
|
Ogorevc J, Orehek S, Dovč P. Cellular reprogramming in farm animals: an overview of iPSC generation in the mammalian farm animal species. J Anim Sci Biotechnol 2016; 7:10. [PMID: 26900466 PMCID: PMC4761155 DOI: 10.1186/s40104-016-0070-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/11/2016] [Indexed: 12/19/2022] Open
Abstract
Establishment of embryonic stem cell (ESC) lines has been successful in mouse and human, but not in farm animals. Development of direct reprogramming technology offers an alternative approach for generation of pluripotent stem cells, applicable also in farm animals. Induced pluripotent stem cells (iPSCs) represent practically limitless, ethically acceptable, individuum-specific source of pluripotent cells that can be generated from different types of somatic cells. iPSCs can differentiate to all cell types of an organism’s body and have a tremendous potential for numerous applications in medicine, agriculture, and biotechnology. However, molecular mechanisms behind the reprogramming process remain largely unknown and hamper generation of bona fide iPSCs and their use in human clinical practice. Large animal models are essential to expand the knowledge obtained on rodents and facilitate development and validation of transplantation therapies in preclinical studies. Additionally, transgenic animals with special traits could be generated from genetically modified pluripotent cells, using advanced reproduction techniques. Despite their applicative potential, it seems that iPSCs in farm animals haven’t received the deserved attention. The aim of this review was to provide a systematic overview on iPSC generation in the most important mammalian farm animal species (cattle, pig, horse, sheep, goat, and rabbit), compare protein sequence similarity of pluripotency-related transcription factors in different species, and discuss potential uses of farm animal iPSCs. Literature mining revealed 32 studies, describing iPSC generation in pig (13 studies), cattle (5), horse (5), sheep (4), goat (3), and rabbit (2) that are summarized in a concise, tabular format.
Collapse
Affiliation(s)
- J Ogorevc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - S Orehek
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - P Dovč
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| |
Collapse
|
15
|
Kang H, Park JI, Roh S. Murine somatic cell nuclear transfer using reprogrammed donor cells expressing male germ cell-specific genes. J Vet Med Sci 2015; 78:149-52. [PMID: 26369430 PMCID: PMC4751136 DOI: 10.1292/jvms.14-0596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vivo-matured mouse oocytes were enucleated, and a single murine embryonic fibroblast (control or reprogrammed by introducing extracts from murine testis tissue, which showed expression of male germ cell-specific genes) was injected into the cytoplasm of the oocytes. The rate of blastocyst development and expression levels of Oct-4, Eomes and Cdx-2 were not significantly different in both experimental groups. However, the expression levels of Nanog, Sox9 and Glut-1 were significantly increased when reprogrammed cells were used as donor nuclei. Increased expression of Nanog can be supportive of complete reprogramming of somatic cell nuclear transfer murine embryos. The present study suggested that donor cells expressing male germ cell-specific genes can be reconstructed and can develop into embryos with normal high expression of developmentally essential genes.
Collapse
Affiliation(s)
- Hoin Kang
- Cellular Reprogramming and Embryo Biotechnology Laboratory and Dental Research Institute, Seoul National University School of Dentistry, Seoul 03080, Republic of Korea
| | | | | |
Collapse
|
16
|
Kim GA, Oh HJ, Kim MJ, Jo YK, Choi J, Kim JW, Lee TH, Lee BC. Effect of primary culture medium type for culture of canine fibroblasts on production of cloned dogs. Theriogenology 2015; 84:524-30. [DOI: 10.1016/j.theriogenology.2015.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 03/24/2015] [Accepted: 04/11/2015] [Indexed: 12/24/2022]
|
17
|
Zhao Q, Guo Z, Piao S, Wang C, An T. Discovery of porcine maternal factors related to nuclear reprogramming and early embryo development by proteomic analysis. Proteome Sci 2015; 13:18. [PMID: 26155198 PMCID: PMC4493956 DOI: 10.1186/s12953-015-0074-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/18/2015] [Indexed: 02/06/2023] Open
Abstract
Background Differentiated cell nuclei can be reprogrammed to a pluripotent state in several ways, including incubation with oocyte extracts, transfer into enucleated oocytes, and induced pluripotent stem cell technology. Nuclear transfer-mediated reprogramming has been proven to be the most efficient method. Maternal factors stored in oocytes have critical roles on nuclear reprogramming and early embryo development, but remain elusive. Results In this study, we showed most of porcine oocytes became nuclear matured at 33 h of IVM and the rate had no significant difference with oocytes at 42 h of IVM (p > 0.05). Moreover, the cleavage and blastocyst rates of SCNT and PA embryos derived from 42O were significantly higher than that of 33O (p < 0.05). But 33O could sustain IVF embryo development with higher cleavage and blastocyst rates comparing to 42O (p < 0.05). To clarify the development potential difference between 33O and 42O, 18 differentially expressed proteins were identified by proteomic analysis, and randomly selected proteins were confirmed by Western blot. Bioinformatic analysis of these proteins revealed that 33O highly synthesized proteins related to fertilization, and 42O was rich in nuclear reprogramming factors. Conclusions These results present a unique insight into maternal factors related to nuclear reprogramming and early embryo development. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0074-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qi Zhao
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang Dist., Harbin, Helongjiang 150040 China
| | - Zheng Guo
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang Dist., Harbin, Helongjiang 150040 China
| | - Shanhua Piao
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang Dist., Harbin, Helongjiang 150040 China
| | - Chunsheng Wang
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang Dist., Harbin, Helongjiang 150040 China
| | - Tiezhu An
- College of Life Science, Northeast Forestry University, 26 Hexing Road, Xiangfang Dist., Harbin, Helongjiang 150040 China
| |
Collapse
|
18
|
Huan Y, Wu Z, Zhang J, Zhu J, Liu Z, Song X. Epigenetic Modification Agents Improve Gene-Specific Methylation Reprogramming in Porcine Cloned Embryos. PLoS One 2015; 10:e0129803. [PMID: 26068219 PMCID: PMC4465902 DOI: 10.1371/journal.pone.0129803] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022] Open
Abstract
Incomplete DNA methylation reprogramming in cloned embryos leads to poor cloning efficiency. Epigenetic modification agents can improve genomic methylation reprogramming and the development of cloned embryos, however, the effect of epigenetic modification agents on gene-specific methylation reprogramming remains poorly studied. Here, we investigated DNA methylation reprogramming of pluripotency (Oct4) and tissue specific (Thy1) genes during early embryo development in pigs. In this study, we found that compared with in vitro fertilized counterparts, cloned embryos displayed the disrupted patterns of Oct4 demethylation and Thy1 remethylation. When 5-aza-2'-deoxycytidine (5-aza-dC) or trichostatin A (TSA) enhanced the development of cloned embryos, the transcripts of DNA methyltransferases (Dnmt1 and Dnmt3a), histone acetyltransferase 1 (Hat1) and histone deacetylase 1 (Hdac1) and the methylation and expression patterns of Oct4 and Thy1 became similar to those detected in in vitro fertilized counterparts. Further studies showed that Dnmt1 knockdown in cloned embryos enhanced the methylation reprogramming of Oct4 and Thy1 and promoted the activation of Oct4 and the silence of Thy1. In conclusion, our results demonstrated that cloned embryos displayed incomplete gene-specific methylation reprogramming and disrupted expression patterns of pluripotency and tissue specific genes, and epigenetic modification agents improved gene-specific methylation reprogramming and expression pattern by regulating epigenetic modification related genes. This work would have important implications in improving cloning efficiency.
Collapse
Affiliation(s)
- Yanjun Huan
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
| | - Zhanfeng Wu
- Shouguang City Hospital of Chinese Medicine, Weifang, Shandong Province, China
| | - Jiguang Zhang
- Shouguang City Hospital of Chinese Medicine, Weifang, Shandong Province, China
| | - Jiang Zhu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- * E-mail: (LZH); (SXX)
| | - Xuexiong Song
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong Province, China
- * E-mail: (LZH); (SXX)
| |
Collapse
|
19
|
Huan Y, Wang H, Wu Z, Zhang J, Zhu J, Liu Z, He H. Epigenetic Modification of Cloned Embryos Improves Nanog Reprogramming in Pigs. Cell Reprogram 2015; 17:191-8. [PMID: 26053519 PMCID: PMC4487246 DOI: 10.1089/cell.2014.0103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Incomplete reprogramming of pluripotent genes in cloned embryos is associated with low cloning efficiency. Epigenetic modification agents have been shown to enhance the developmental competence of cloned embryos; however, the effect of the epigenetic modification agents on pluripotent gene reprogramming remains unclear. Here, we investigated Nanog reprogramming and the expression patterns of pluripotent transcription factors during early embryo development in pigs. We found that compared with fertilized embryos, cloned embryos displayed higher methylation in the promoter and 5'-untranslated region and lower methylation in the first exon of Nanog. When 5-aza-2'-deoxycytidine (5-aza-dC) or trichostatin A (TSA) enhanced the development of porcine cloned embryos, Nanog methylation reprogramming was also improved, similar to that detected in fertilized counterparts. Furthermore, our results showed that the epigenetic modification agents improved the expression levels of Oct4 and Sox2 and effectively promoted Nanog transcription in cloned embryos. In conclusion, our results demonstrated that the epigenetic modification agent 5-aza-dC or TSA improved Nanog methylation reprogramming and the expression patterns of pluripotent transcription factors, thereby resulting in the enhanced expression of Nanog and high development of porcine cloned embryos. This work has important implications in the improvement of cloning efficiency.
Collapse
Affiliation(s)
- Yanjun Huan
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, 250010, China
- College of Life Science, Northeast Agricultural University, Haerbin, Heilongjiang Province, 150030, China
| | - Hongmei Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, 250010, China
| | - Zhanfeng Wu
- Shouguang City Hospital of Chinese medicine, Weifang, Shandong Province, 262700, China
| | - Jiguang Zhang
- Shouguang City Hospital of Chinese medicine, Weifang, Shandong Province, 262700, China
| | - Jiang Zhu
- College of Life Science, Northeast Agricultural University, Haerbin, Heilongjiang Province, 150030, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Haerbin, Heilongjiang Province, 150030, China
| | - Hongbin He
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, 250010, China
| |
Collapse
|
20
|
Liu Y, Ostrup O, Li R, Li J, Vajta G, Kragh PM, Schmidt M, Purup S, Hyttel P, Klærke D, Callesen H. Long-term effect on in vitro cloning efficiency after treatment of somatic cells with Xenopus egg extract in the pig. Reprod Fertil Dev 2015; 26:1017-31. [PMID: 25145414 DOI: 10.1071/rd13147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/02/2013] [Indexed: 11/23/2022] Open
Abstract
In somatic cell nuclear transfer (SCNT), donor cell reprogramming is considered as a biologically important and vulnerable event. Various donor cell pre-treatments with Xenopus egg extracts can promote reprogramming. Here we investigated if the reprogramming effect of one treatment with Xenopus egg extract on donor cells was maintained for several cell passages. The extract treatment resulted in increased cell-colony formation from early passages in treated porcine fibroblasts (ExTES), and increased development of cloned embryos. Partial dedifferentiation was observed in ExTES cells, shown as a tendency towards upregulation of NANOG, c-MYC and KLF-4 and downregulation of DESMIM compared with ExTES at Passage 2. Compared with our routine SCNT, continuously increased development of cloned embryos was observed in the ExTES group, and ExTES cloned blastocysts displayed hypermethylated DNA patterns and hypermethylation of H3K4me3 and H3K27me3 in ICM compared with TE. All seven recipients became pregnant after transferral of ExTES cloned embryos and gave birth to 7-22 piglets per litter (average 12). In conclusion, our results demonstrate that one treatment of porcine fibroblasts with Xenopus egg extract can result in long-term increased ability of the cells to promote their in vitro function in subsequent SCNT. Finally these cells can also result in successful development of cloned embryos to term.
Collapse
Affiliation(s)
- Ying Liu
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Olga Ostrup
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Rong Li
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Juan Li
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Gábor Vajta
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Peter M Kragh
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Mette Schmidt
- Department of Veterinary Reproduction and Obstetrics, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Stig Purup
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| | - Poul Hyttel
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Dan Klærke
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, DK-8830 Tjele, Denmark
| |
Collapse
|
21
|
Kumar D, Talluri TR, Anand T, Kues WA. Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals. World J Stem Cells 2015; 7:315-328. [PMID: 25815117 PMCID: PMC4369489 DOI: 10.4252/wjsc.v7.i2.315] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/19/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Pluripotent stem cells are unspecialized cells with unlimited self-renewal, and they can be triggered to differentiate into desired specialized cell types. These features provide the basis for an unlimited cell source for innovative cell therapies. Pluripotent cells also allow to study developmental pathways, and to employ them or their differentiated cell derivatives in pharmaceutical testing and biotechnological applications. Via blastocyst complementation, pluripotent cells are a favoured tool for the generation of genetically modified mice. The recently established technology to generate an induced pluripotency status by ectopic co-expression of the transcription factors Oct4, Sox2, Klf4 and c-Myc allows to extending these applications to farm animal species, for which the derivation of genuine embryonic stem cells was not successful so far. Most induced pluripotent stem (iPS) cells are generated by retroviral or lentiviral transduction of reprogramming factors. Multiple viral integrations into the genome may cause insertional mutagenesis and may increase the risk of tumour formation. Non-integration methods have been reported to overcome the safety concerns associated with retro and lentiviral-derived iPS cells, such as transient expression of the reprogramming factors using episomal plasmids, and direct delivery of reprogramming mRNAs or proteins. In this review, we focus on the mechanisms of cellular reprogramming and current methods used to induce pluripotency. We also highlight problems associated with the generation of iPS cells. An increased understanding of the fundamental mechanisms underlying pluripotency and refining the methodology of iPS cell generation will have a profound impact on future development and application in regenerative medicine and reproductive biotechnology of farm animals.
Collapse
|
22
|
No JG, Choi MK, Kwon DJ, Yoo JG, Yang BC, Park JK, Kim DH. Cell-free extract from porcine induced pluripotent stem cells can affect porcine somatic cell nuclear reprogramming. J Reprod Dev 2015; 61:90-8. [PMID: 25736622 PMCID: PMC4410095 DOI: 10.1262/jrd.2014-078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Pretreatment of somatic cells with undifferentiated cell extracts, such as embryonic stem cells and mammalian oocytes, is an attractive alternative method for reprogramming control. The properties of induced pluripotent stem cells (iPSCs) are similar to those of embryonic stem cells; however, no studies have reported somatic cell nuclear reprogramming using iPSC extracts. Therefore, this study aimed to evaluate the effects of porcine iPSC extracts treatment on porcine ear fibroblasts and early development of porcine cloned embryos produced from porcine ear skin fibroblasts pretreated with the porcine iPSC extracts. The Chariot(TM) reagent system was used to deliver the iPSC extracts into cultured porcine ear skin fibroblasts. The iPSC extracts-treated cells (iPSC-treated cells) were cultured for 3 days and used for analyzing histone modification and somatic cell nuclear transfer. Compared to the results for nontreated cells, the trimethylation status of histone H3 lysine residue 9 (H3K9) in the iPSC-treated cells significantly decreased. The expression of Jmjd2b, the H3K9 trimethylation-specific demethylase gene, significantly increased in the iPSC-treated cells; conversely, the expression of the proapoptotic genes, Bax and p53, significantly decreased. When the iPSC-treated cells were transferred into enucleated porcine oocytes, no differences were observed in blastocyst development and total cell number in blastocysts compared with the results for control cells. However, H3K9 trimethylation of pronuclear-stage-cloned embryos significantly decreased in the iPSC-treated cells. Additionally, Bax and p53 gene expression in the blastocysts was significantly lower in iPSC-treated cells than in control cells. To our knowledge, this study is the first to show that an extracts of porcine iPSCs can affect histone modification and gene expression in porcine ear skin fibroblasts and cloned embryos.
Collapse
Affiliation(s)
- Jin-Gu No
- Animal Biotechnology Division; Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Pfeiffer MJ, Esteves TC, Balbach ST, Araúzo-Bravo MJ, Stehling M, Jauch A, Houghton FD, Schwarzer C, Boiani M. Reprogramming of two somatic nuclei in the same ooplasm leads to pluripotent embryonic stem cells. Stem Cells 2014; 31:2343-53. [PMID: 23922292 DOI: 10.1002/stem.1497] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/24/2013] [Accepted: 07/07/2013] [Indexed: 11/10/2022]
Abstract
The conversion of the nuclear program of a somatic cell from a differentiated to an undifferentiated state can be accomplished by transplanting its nucleus to an enucleated oocyte (somatic cell nuclear transfer [SCNT]) in a process termed "reprogramming." This process achieves pluripotency and occasionally also totipotency. Exploiting the obstacle of tetraploidy to full development in mammals, we show that mouse ooplasts transplanted with two somatic nuclei simultaneously (double SCNT) support preimplantation development and derivation of novel tetraploid SCNT embryonic stem cells (tNT-ESCs). Although the double SCNT embryos do not recapitulate the expression pattern of the pluripotency-associated gene Oct4 in fertilized embryos, derivative tNT-ESCs have characteristics of genuine pluripotency: in vitro they differentiate into neurons, cardiomyocytes, and endodermal cells; in vivo, tNT-ESCs form teratomas, albeit at reduced rates compared to diploid counterparts. Global transcriptome analysis revealed only few specific alterations, for example, in the quantitative expression of gastrulation-associated genes. In conclusion, we have shown that the oocyte's reprogramming capacity is in excess of a single nucleus and that double nucleus-transplanted embryos and derivative ESCs are very similar to their diploid counterparts. These results have key implications for reprogramming studies based on pluripotency: while reprogramming in the tetraploid state was known from fusion-mediated reprogramming and from fetal and adult hepatocyte-derived induced pluripotent stem cells, we have now accomplished it with enucleated oocytes.
Collapse
|
24
|
Koh S, Piedrahita JA. From "ES-like" cells to induced pluripotent stem cells: a historical perspective in domestic animals. Theriogenology 2014; 81:103-11. [PMID: 24274415 DOI: 10.1016/j.theriogenology.2013.09.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/05/2013] [Accepted: 09/05/2013] [Indexed: 01/10/2023]
Abstract
Pluripotent stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provide great potential as cell sources for gene editing to generate genetically modified animals, as well as in the field of regenerative medicine. Stable, long-term ESCs have been established in laboratory mouse and rat; however, isolation of true pluripotent ESCs in domesticated animals such as pigs and dogs have been less successful. Initially, domesticated animal pluripotent cell lines were referred to as "embryonic stem-like" cells owing to their similar morphologic characteristics to mouse ESCs, but accompanied by a limited ability to proliferate in vitro in an undifferentiated state. That is, they shared some but not all the characteristics of true ESCs. More recently, advances in reprogramming using exogenous transcription factors, combined with the utilization of small chemical inhibitors of key biochemical pathways, have led to the isolation of iPSCs. In this review, we provide a historical perspective of the isolation of various types of pluripotent stem cells in domesticated animals. In addition, we summarize the latest progress and limitations in the derivation and application of iPSCs.
Collapse
Affiliation(s)
- Sehwon Koh
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, USA; Genomics Program, North Carolina State University, Raleigh, North Carolina, USA
| | | |
Collapse
|
25
|
Expression profile of developmentally important genes between hand-made cloned buffalo embryos produced from reprogramming of donor cell with oocytes extract and selection of recipient cytoplast through brilliant cresyl blue staining and in vitro fertilized embryos. J Assist Reprod Genet 2014; 31:1541-52. [PMID: 25141841 DOI: 10.1007/s10815-014-0316-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/07/2014] [Indexed: 01/21/2023] Open
Abstract
PURPOSE To compare the expression profile of developmentally important genes between hand-made cloned buffalo embryos produced from reprogramming of donor cell with oocyte extracts and selection of recipient cytoplast through brilliant cresyl blue staining and in vitro fertilized (IVF) embryos. METHODS Hand-made cloned embryos were produced using oocyte extracts treated donor cells and brilliant cresyl blue (BCB) stained recipient cytoplasts. IVF embryos were produced by culturing 15-20 COCs in BO capacitated sperms from frozen thawed buffalo semen and the mRNA expression patterns of genes implicated in metabolism (GLUT1), pluripotency (OCT4), DNA methylation (DNMT1), pro- apoptosis (BAX) and anti-apoptosis (BCL2) were evaluated at 8- to16- cell stage embryos. RESULTS A significantly (P < 0.05) higher number of 8- to16- cell and blastocyst stages (73.9 %, 32.8 %, respectively) were reported in hand-made cloning (HMC) as compared to in vitro fertilization (49.2 %, 24.2 %, respectively). The amount of RNA recovered from 8- to 16- cell embryos of HMC and in vitro fertilization did not appear to be influenced by the method of embryo generation (3.76 ± 0.61 and 3.82 ± 0.62 ng/μl for HMC and in vitro fertilization embryos, respectively). There were no differences in the expression of the mRNA transcripts of genes (GLUT1, OCT4, DNMT1, BAX and BCL2) were analysed by real-time PCR between hand-made cloned and IVF embryos. CONCLUSIONS Pre-treatment of donor cells with oocyte extracts and selection of developmentally competent oocytes through BCB staining for recipient cytoplast preparations may enhance expression of developmentally important genes GLUT1, OCT4, DNMT1, BAX, and BCL2 in hand-made cloned embryos at levels similar to IVF counterparts. These results also support the notion that if developmental differences observed in HMC and in vitro fertilization produced foetuses and neonates are the results of aberrant gene expression during the pre-implantation stage, those differences in expression are subtle or appear after the maternal to zygotic transition stage of development.
Collapse
|
26
|
|
27
|
Wang Z, Dao R, Bao L, Dong Y, Wang H, Han P, Yue Y, Yu H. Epigenetic reprogramming of human lung cancer cells with the extract of bovine parthenogenetic oocytes. J Cell Mol Med 2014; 18:1807-15. [PMID: 24889513 PMCID: PMC4196656 DOI: 10.1111/jcmm.12306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/25/2014] [Indexed: 12/12/2022] Open
Abstract
The tumour suppressor gene silencing and proto-oncogene activation caused by epigenetic alterations plays an important role in the initiation and progression of cancer. Re-establishing the balance between the expression of tumour suppressor genes and proto-oncogenes by epigenetic modulation is a promising strategy for cancer treatment. In this study, we investigated whether cancer cells can be epigenetically reprogrammed by oocyte extract. H460 human lung cancer cells were reversibly permeabilized and incubated with the extract of bovine parthenogenetic oocytes. Bisulphite sequencing showed that bovine parthenogenetic oocyte extract induced significant demethylation at the promoters of the tumour suppressor genes RUNX3 and CDH1, but not at the promoter of the oncogenic pluripotency gene SOX2. Chromatin immunoprecipitation showed that the histone modifications at RUNX3 and CDH1 promoters were modulated towards a transcriptionally activating state, while those at SOX2 promoter towards a transcriptionally repressive state. Correspondingly, bovine parthenogenetic oocyte extract reversed the epigenetic silencing of RUNX3 and CDH1, and repressed the expression of SOX2. At the functional level, proliferation, anchorage-independent growth, migration and invasion of H460 cells was strongly inhibited. These results indicate that bovine parthenogenetic oocyte extract changes the expression patterns of tumour suppressor and oncogenic genes in cancer cells by remodelling the epigenetic modifications at their promoters. Bovine parthenogenetic oocyte extract may provide a useful tool for epigenetically reprogramming cancer cells and for dissecting the epigenetic mechanisms involved in tumorigenesis.
Collapse
Affiliation(s)
- Zhenfei Wang
- The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Huhhot, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kong Q, Xie B, Li J, Huan Y, Huang T, Wei R, Lv J, Liu S, Liu Z. Identification and characterization of an oocyte factor required for porcine nuclear reprogramming. J Biol Chem 2014; 289:6960-6968. [PMID: 24474691 PMCID: PMC3945357 DOI: 10.1074/jbc.m113.543793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/26/2014] [Indexed: 01/15/2023] Open
Abstract
Nuclear reprogramming of somatic cells can be induced by oocyte factors. Despite numerous attempts, the factors responsible for successful nuclear reprogramming remain elusive. In the present study, we found that porcine oocytes with the first polar body collected at 42 h of in vitro maturation had a stronger ability to support early development of cloned embryos than porcine oocytes with the first polar body collected at 33 h of in vitro maturation. To explore the key reprogramming factors responsible for the difference, we compared proteome signatures of the two groups of oocytes. 18 differentially expressed proteins between these two groups of oocytes were discovered by mass spectrometry (MS). Among these proteins, we especially focused on vimentin (VIM). A certain amount of VIM protein was stored in oocytes and accumulated during oocyte maturation, and maternal VIM was specifically incorporated into transferred somatic nuclei during nuclear reprogramming. When maternal VIM function was inhibited by anti-VIM antibody, the rate of cloned embryos developing to blastocysts was significantly lower than that of IgG antibody-injected embryos and non-injected embryos (12.24 versus 22.57 and 21.10%; p < 0.05), but the development of in vitro fertilization and parthenogenetic activation embryos was not affected. Furthermore, we found that DNA double strand breaks dramatically increased and that the p53 pathway was activated in cloned embryos when VIM function was inhibited. This study demonstrates that maternal VIM, as a genomic protector, is crucial for nuclear reprogramming in porcine cloned embryos.
Collapse
Affiliation(s)
- Qingran Kong
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Bingteng Xie
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingyu Li
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanjun Huan
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianqing Huang
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Renyue Wei
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiawei Lv
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shichao Liu
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhonghua Liu
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
29
|
Li Z, He X, Chen L, Shi J, Zhou R, Xu W, Liu D, Wu Z. Bone marrow mesenchymal stem cells are an attractive donor cell type for production of cloned pigs as well as genetically modified cloned pigs by somatic cell nuclear transfer. Cell Reprogram 2013; 15:459-70. [PMID: 24033142 DOI: 10.1089/cell.2013.0010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The somatic cell nuclear transfer (SCNT) technique has been widely applied to clone pigs or to produce genetically modified pigs. Currently, this technique relies mainly on using terminally differentiated fibroblasts as donor cells. To improve cloning efficiency, only partially differentiated multipotent mesenchymal stem cells (MSCs), thought to be more easily reprogrammed to a pluripotent state, have been used as nuclear donors in pig SCNT. Although in vitro-cultured embryos cloned from porcine MSCs (MSCs-embryos) were shown to have higher preimplantation developmental ability than cloned embryos reconstructed from fibroblasts (Fs-embryos), the difference in in vivo full-term developmental rate between porcine MSCs-embryos and Fs-embryos has not been investigated so far. In this study, we demonstrated that blastocyst total cell number and full-term survival abilities of MSCs-embryos were significantly higher than those of Fs-embryos cloned from the same donor pig. The enhanced developmental potential of MSCs-embryos may be associated with their nuclear donors' DNA methylation profile, because we found that the methylation level of imprinting genes and repeat sequences differed between MSCs and fibroblasts. In addition, we showed that use of transgenic porcine MSCs generated from transgene plasmid transfection as donor cells for SCNT can produce live transgenic cloned pigs. These results strongly suggest that porcine bone marrow MSCs are a desirable donor cell type for production of cloned pigs and genetically modified cloned pigs via SCNT.
Collapse
Affiliation(s)
- Zicong Li
- 1 Department of Animal Genetics, Breeding and Reproduction, South China Agricultural University , Guangzhou, Guangdong, P. R. China, 510642
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Miyamoto K, Gurdon JB. Transcriptional regulation and nuclear reprogramming: roles of nuclear actin and actin-binding proteins. Cell Mol Life Sci 2013; 70:3289-302. [PMID: 23275942 PMCID: PMC3753470 DOI: 10.1007/s00018-012-1235-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 12/18/2022]
Abstract
Proper regulation of transcription is essential for cells to acquire and maintain cell identity. Transcriptional activation plays a central role in gene regulation and can be modulated by introducing transcriptional activators such as transcription factors. Activators act on their specific target genes to induce transcription. Reprogramming experiments have revealed that as cells become differentiated, some genes are highly silenced and even introduction of activators that target these silenced genes does not induce transcription. This can be explained by chromatin-based repression that restricts access of transcriptional activators to silenced genes. Transcriptional activation from these genes can be accomplished by opening chromatin, in addition to providing activators. Once a de novo transcription network is established, cells are differentiated or reprogrammed to a new cell type. Emerging evidence suggests that actin in the nucleus (nuclear actin) and nuclear actin-binding proteins are implicated in these transcriptional regulatory processes. This review summarizes roles of nuclear actin and actin-binding proteins in transcriptional regulation. We also discuss possible functions of nuclear actin during reprogramming in the context of transcription and chromatin remodeling.
Collapse
Affiliation(s)
- Kei Miyamoto
- The Wellcome Trust/Cancer Research UK Gurdon Institute, The Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | | |
Collapse
|
31
|
Wang Z, Yue Y, Han P, Sa R, Ren X, Wang J, Bai H, Yu H. Remodeling epigenetic modifications at tumor suppressor gene promoters with bovine oocyte extract. Cytotherapy 2013; 15:1164-73. [PMID: 23800731 DOI: 10.1016/j.jcyt.2013.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/30/2013] [Accepted: 05/05/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND AIMS Epigenetic silencing of tumor suppressor genes by aberrant DNA methylation and histone modifications at their promoter regions plays an important role in the initiation and progression of cancer. The therapeutic effect of the widely used epigenetic drugs, including DNA methyltransferase inhibitors and histone deacetylase inhibitors, remains unsatisfactory. One important underlying factor in the ineffectiveness of these drugs is that their actions lack specificity. METHODS To investigate whether oocyte extract can be used for epigenetic re-programming of cancer cells, H460 human lung cancer cells were reversibly permeabilized and incubated with bovine oocyte extract. RESULTS Bisulfite sequencing showed that bovine oocyte extract induced significant demethylation at hypermethylated promoter CpG islands of the tumor suppressor genes RUNX3 and CDH1; however, the DNA methylation levels of repetitive sequences were not affected. Chromatin immunoprecipitation showed that bovine oocyte extract significantly reduced transcriptionally repressive histone modifications and increased transcriptionally activating histone modifications at the promoter regions of RUNX3 and CDH1. Bovine oocyte extract reactivated the expression of RUNX3 and CDH1 at both the messenger RNA and the protein levels without up-regulating the transcription of pluripotency-associated genes. At the functional level, anchorage-independent proliferation, migration and invasion of H460 cells was strongly inhibited. CONCLUSIONS These results demonstrate that bovine oocyte extract reactivates epigenetically silenced tumor suppressor genes by remodeling the epigenetic modifications at their promoter regions. Bovine oocyte extract may provide a useful tool for investigating epigenetic mechanisms in cancer and a valuable source for developing novel safe therapeutic approaches that target epigenetic alterations.
Collapse
Affiliation(s)
- Zhenfei Wang
- The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Huhhot, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Rathbone AJ, Liddell S, Campbell KHS. Proteomic analysis of early reprogramming events in murine somatic cells incubated with Xenopus laevis oocyte extracts demonstrates network associations with induced pluripotency markers. Cell Reprogram 2013; 15:269-80. [PMID: 23768116 DOI: 10.1089/cell.2012.0083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The reprogramming of somatic cells into a pluripotent/embryonic-like state holds great potential for regenerative medicine, bypassing ethical issues associated with embryonic stem cells (ESCs). Numerous methods, including somatic cell nuclear transfer (SCNT), fusion to pluripotent cells, the use of cell extracts, and expression of transcription factors, have been used to reprogram cells into ES-like cells [termed induced pluripotent stem cells (iPSCs)]. This study investigated early events in the nuclei of permeabilized murine somatic cells incubated in cytoplasmic extract prepared from Xenopus laevis germinal vesicle-stage oocytes by identifying proteins that showed significant quantitative changes using proteomic techniques. A total of 69 protein spots from two-dimensional electrophoresis were identified as being significantly altered in expression after treatment, and 38 proteins were identified by tandem mass spectrometry. Network analysis was used to highlight pathway connections and interactions between these identified proteins, which were found to be involved in many functions--primarily nuclear structure and dynamics, transcription, and translation. The pluripotency markers Klf4, c-Myc, Nanog, and POU5F1 were highlighted by the interaction network analysis, as well as other compounds/proteins known to be repressed in pluripotent cells [e.g., protein kinase C (PRKC)] or enhanced during differentiation of ESCs (e.g., retinoic acid). The network analysis also indicated additional proteins and pathways potentially involved in early reprogramming events.
Collapse
Affiliation(s)
- Alex J Rathbone
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK.
| | | | | |
Collapse
|
33
|
Effects of DNMT1 and HDAC inhibitors on gene-specific methylation reprogramming during porcine somatic cell nuclear transfer. PLoS One 2013; 8:e64705. [PMID: 23741375 PMCID: PMC3669391 DOI: 10.1371/journal.pone.0064705] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 04/17/2013] [Indexed: 12/02/2022] Open
Abstract
Somatic cell nuclear transfer (SCNT) in mammalian cloning currently remains inefficient. Incomplete or erroneous epigenetic reprogramming of specialized donor somatic nuclear and resulting aberrant gene expression during development of cloned embryos is commonly believed as the main reason that causes the low efficiency of SCNT. Use of small molecular reprogramming modifiers to assist the somatic nucleus to mimic naturally occurring DNA methylation and chromatin remodeling in nucleus of fertilization-derived zygotes, has been widely attempted to improve cloning efficiency. However, impacts of these small modifiers on gene-specific methylation dynamics and their potential effects on methylation of imprinted gene have rarely been traced. Here, we attempted two relatively novel DNMT1 inhibitor (DNMTi) and histone deacetylase inhibitor (HDACi), scriptaid and RG108, and demonstrated their effects on dynamics of gene-specific DNA methylation and transcription of porcine SCNT embryos. We found that scriptaid and RG108 had synergetic effects on rescuing the disrupted methylation imprint of H19 during SCNT at least partially by repression over-expressed MBD3 in eight-cell cloned embryos. Furthermore, we firstly identified a differential methylation regions (DMRs) at 5′ flanking regions of XIST gene and found that scriptaid alone and its combination with RG108 modify the dynamics of both transcription and DNA methylation levels in cloned embryos, by different manners. Additionally, we found that scriptaid alone and its combination with RG108 can significantly promote the transcription of NANOG in cloned embryos and enhance their pre-implantation developmental capacity. Our results would contribute to uncovering the epigenetic reprogramming mechanisms underlying the effects of assisted small molecules on improvement of mammalian cloning efficiency.
Collapse
|
34
|
Wang Z, Gao H, Wang H, Ren X, Bao L, Sa R, Wang J, Bai H, Yu H. Specific reversal of tumor-suppressor gene promoter hypermethylation with bovine oocyte extract. Oncol Rep 2013; 30:179-84. [PMID: 23670097 DOI: 10.3892/or.2013.2449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/04/2013] [Indexed: 11/06/2022] Open
Abstract
Epigenetic silencing of tumor-suppressor genes by promoter hypermethylation contributes considerably to the initiation and progression of cancer. Nucleoside analogs, the most widely used DNA methylation inhibitors, have the drawbacks of inducing repetitive sequence hypomethylation. Here, we aimed to specifically reverse tumor-suppressor gene (TSG) promoter hypermethylation with bovine oocyte extract. H460 human lung cancer cells were reversibly permeabilized and incubated with bovine oocyte extract for 3.5 h. The extract treatment led to significant demethylation of the hypermethylated promoters of the TSGs RUNX3, CDH1, RASSF1A and WIF1; however, the methylation levels of repetitive sequences were not affected. The promoter demethylation induced by bovine oocyte extract substantially upregulated the expression of RUNX3, CDH1, RASSF1A and WIF1, and significantly inhibited the anchorage-independent proliferation, migration and invasion of H460 cells. This study demonstrates that bovine oocyte extract can reverse the malignant phenotype by serving as an efficient and safe DNA demethylator. The active demethylation activity of bovine oocyte extract is valuable for dissecting the epigenetic alterations in cancer cells and developing novel safe anticancer drugs based on epigenetic mechanisms.
Collapse
Affiliation(s)
- Zhenfei Wang
- The Key Laboratory of Mammal Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Huhhot 010021, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Reprogrammed peripheral blood mononuclear cells are able to survive longer in irradiated female mice. Mol Biotechnol 2013; 55:111-9. [PMID: 23636934 DOI: 10.1007/s12033-013-9661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Induced multipotent stem (iMS) cells are originated from somatic cells and become multipotent by genetic and/or epigenetic modifications. Previous studies have shown that the fish oocytes extracts (FOE) can induce skin fibroblast cells into iMS cells. In this study, we aim to determine whether FOE can similarly induce mouse peripheral blood mononuclear cells (PBMCs) into the iMS state and if so, whether they can survive longer when they are transplanted into the irradiation female mice. PBMCs of GFP-transgenic male mice were cultured and transiently reprogrammed by FOE. They were deemed reaching the iMS state after detection of expression of stem cell markers. The iMS-like PBMCs were transplanted into female C57BL mice by tail vein injection. The spleen wet weights as well as numbers of colonies of the recipient mice were examined. The results showed the spleen wet weights and numbers of spleen colonies of FOE-induced group were all significantly higher than those of the non-induced group and negative control group. On day 90 after transplantation, FISH analysis detected the presence of Y chromosome in the induced group, but not of the other groups. The current findings demonstrate that FOE-induced PBMCs are able to survive longer in irradiated female mice.
Collapse
|
36
|
Yang X, Mao J, Walters EM, Zhao MT, Teson J, Lee K, Prather RS. Xenopus egg extract treatment reduced global DNA methylation of donor cells and enhanced somatic cell nuclear transfer embryo development in pigs. Biores Open Access 2013; 1:79-87. [PMID: 23515109 PMCID: PMC3559225 DOI: 10.1089/biores.2012.0214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The efficiency to produce offspring by somatic cell nuclear transfer (SCNT) is low. It has been showed that treatment of donor cells with Xenopus oocyte extract increased live births in ovine and handmade cloned embryo development in pigs. Scriptaid treatment after oocyte activation is another approach to improve SCNT efficiency. The present study was carried out to investigate (a) the effects of treatment of donor cells with Xenopus egg extract on donor cell DNA methylation at days 0 and 4 with two digitonin permeabilization concentrations (10 and 15 μg/mL), (b) the effects of treatment of donor cells with Xenopus egg extract on early development of cloned embryos, and (c) the effects of combined treatments, treating donor cells with extract before nuclear transfer and treatment of cloned embryos with scriptaid after oocyte activation, on embryo development. Compared to the control, a decrease of DNA methylation in donor cells was observed at 2.5 h after extract treatment. However, this effect was not observed after the cells were cultured for four more days. More embryos developed into blastocysts in the Xenopus egg extract-treated group than in the control (13.4±1.9% vs. 9.1±1.9%, p=0.01). Furthermore, scriptaid treatment of cloned embryos further increased the frequency of development to blastocyst, compared to the control reconstructed with the same extract-treated cells (22.5±0.9% vs. 15.3±0.9%, p<0.01). In addition, egg extract treatments increased the cell number in the blastocysts. This study demonstrated that Xenopus egg extract treatment reduced donor cell DNA methylation and enhanced the SCNT embryo development. Moreover, the combined treatments of donor cells with egg extract before nuclear transfer and of cloned embryos with scriptaid could improve cloned embryo development additively.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Division of Animal Sciences, University of Missouri , Columbia, Missouri. ; Key Laboratory of Stem Cell and Regenerative Medicine, Center of Cell Developmental Biology, College of Preclinical Medicine, Fujian Medical University , Fuzhou, P.R. China
| | | | | | | | | | | | | |
Collapse
|
37
|
Bui HT, Kwon DN, Kang MH, Oh MH, Park MR, Park WJ, Paik SS, Van Thuan N, Kim JH. Epigenetic reprogramming in somatic cells induced by extract from germinal vesicle stage pig oocytes. Development 2012; 139:4330-40. [PMID: 23132243 DOI: 10.1242/dev.086116] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomic reprogramming factors in the cytoplasm of germinal vesicle (GV) stage oocytes have been shown to improve the efficiency of producing cloned mouse offspring through the exposure of nuclei to a GV cytoplasmic extract prior to somatic cell nuclear transfer (SCNT) to enucleated oocytes. Here, we developed an extract of GV stage pig oocytes (GVcyto-extract) to investigate epigenetic reprogramming events in treated somatic cell nuclei. This extract induced differentiation-associated changes in fibroblasts, resulting in cells that exhibit pluripotent stem cell-like characteristics and that redifferentiate into three primary germ cell layers both in vivo and in vitro. The GVcyto-extract treatment induced large numbers of high-quality SCNT-generated blastocysts, with methylation and acetylation of H3-K9 and expression of Oct4 and Nanog at levels similar to in vitro fertilized embryos. Thus, GVcyto-extract could elicit differentiation plasticity in treated fibroblasts, and SCNT-mediated reprogramming reset the epigenetic state in treated cells more efficiently than in untreated cells. In summary, we provide evidence for the generation of stem-like cells from differentiated somatic cells by treatment with porcine GVcyto-extract.
Collapse
Affiliation(s)
- Hong-Thuy Bui
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Deug-Nam Kwon
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Min-Hui Kang
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Mi-Hye Oh
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Mi-Ryung Park
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Woo-Jin Park
- Hanyang University Hospital, Department of Histopathology, Molecular pathology, 17 Haengdang-dong, Seondong-gu, Seoul 133-792, Korea
| | - Seung-Sam Paik
- Hanyang University Hospital, Department of Histopathology, Molecular pathology, 17 Haengdang-dong, Seondong-gu, Seoul 133-792, Korea
| | - Nguyen Van Thuan
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| | - Jin-Hoi Kim
- Department of Animal Biotechnology, College of Animal Bioscience and Biotechnology/Animal Resources Research Center, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Korea
| |
Collapse
|
38
|
Xiong XR, Li J, Fu M, Gao C, Wang Y, Zhong JC. Oocyte extract improves epigenetic reprogramming of yak fibroblast cells and cloned embryo development. Theriogenology 2012. [PMID: 23186945 DOI: 10.1016/j.theriogenology.2012.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The objective was to investigate the effects of bovine oocyte extract (BOE) on epigenetic reprogramming of yak fibroblast cells, based on their cell cycle status, histone acetylation, DNA methylation, gene expression, and cloned blastocyst formation. Permeabilization of yak fibroblasts after treatment with 10 or 50 μL of BOE (treated-S and treated-L groups, respectively) for 24 hours increased (P < 0.05) the cell population at the G(0)/G(1) phase (85.2 ± 2.3% and 89.6 ± 1.5%, respectively) compared with controls (75.4 ± 1.1%). Acetylation at lysine 9 of histone H3 was also higher (26.1 ± 1.4 and 33.5 ± 2.1) than in the control group (15.3 ± 1.6; P < 0.05). Moreover, BOE reduced methylation of the promoter regions of Oct-4 and Nanog (76.4% and 72.2%; and 35.6% and 30.0%, respectively) compared with the control group (92.1% and 47.8%; P < 0.05). In addition, the relative expression levels of HDAC-1, HADC-2, Dnmt-1, and Dnmt-3a were downregulated (P < 0.05) after yak fibroblasts were treated with BOE. Furthermore, when yak fibroblasts were used for interspecies somatic cell nuclear transfer after BOE treatment, 8-cell and blastocyst formation rates significantly exceeded those of the control. In conclusion, BOE induced epigenetic reprogramming of yak fibroblasts, making them suitable donors for yak interspecies somatic cell nuclear transfer.
Collapse
Affiliation(s)
- X R Xiong
- College of Life Science and Technology, Southwest University for Nationalities, Chengdu, Sichuan, China
| | | | | | | | | | | |
Collapse
|
39
|
Epigenetic reprogramming of Yak iSCNT embryos after donor cell pre-treatment with oocyte extracts. Anim Reprod Sci 2012; 133:229-36. [DOI: 10.1016/j.anireprosci.2012.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 12/21/2022]
|
40
|
TANG XINJIE, SHENG LINGLING, XIE FENG, ZHANG QUN. Differentiation of bone marrow-derived mesenchymal stem cells into chondrocytes using chondrocyte extract. Mol Med Rep 2012; 6:745-9. [DOI: 10.3892/mmr.2012.996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 06/29/2012] [Indexed: 11/05/2022] Open
|
41
|
Ruan GP, Wang JX, Pang RQ, Yao X, Cai XM, Wang Q, Ma LH, Zhu XQ, Pan XH. Treatment with chicken-egg-white or whole-egg extracts maintains and enhances the survival and differentiation of spleen cells. Cytotechnology 2012; 64:541-51. [PMID: 22350684 DOI: 10.1007/s10616-012-9431-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/18/2012] [Indexed: 12/26/2022] Open
Abstract
The identification of egg extracts with the ability to maintain and enhance the survival and differentiation of cells would be widely useful in cellular biology research. In this study, we compared the different abilities of spleen cells to survive and differentiate in vivo after permeabilization by five different types of egg extracts. Five types of egg extracts were prepared. The spleen cells from male GFP-transgenic mice were permeabilized by the extracts for 30 min, cultured for 12 days, and then transfused into irradiated female mice. At varying days after transplantation, the percentage of GFP-expressing surviving spleen cells was detected in the peripheral blood by flow cytometry. At 120 days after transplantation, bone marrow cells from the female mice were analyzed for the presence of cells containing the Y chromosome. Surviving GFP-positive spleen cells that had been permeabilized with either chicken-egg-white or whole-egg extracts could be detected in the female mice after transplantation. A lower percentage of GFP-positive cells was also detected after permeabilization by the other extracts tested, and no GFP-positive cells were found in the female mouse transfused with spleen cells permeabilized with Hank's Buffered Salt Solution (HBSS) as a control. At 120 days after transplantation, the percentage of cells containing a Y chromosome in the bone marrow positively correlated with the percentage of GFP-positive cells in the peripheral blood. After permeabilization by chicken-egg-white or whole-egg extracts, spleen cells demonstrated significantly enhanced survival and differentiation functions compared with the spleen cells treated with the other egg extracts tested. These results show that chicken-egg-white and whole-egg extracts have roles in maintaining and enhancing the survival and differentiation of spleen cells. Therefore, these two types of extracts may be of future use in maintaining the function of stem cells.
Collapse
Affiliation(s)
- Guang-Ping Ruan
- Research Center of Stem Cell, Tissue and Organ Engineering, Kunming General Hospital of PLA, Kunming, 650032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
The neurosteroid dehydroepiandrosterone could improve somatic cell reprogramming. Cell Biol Int 2012; 35:1037-41. [PMID: 21355850 DOI: 10.1042/cbi20100927] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Expression of four major reprogramming transgenes, including Oct4, Sox2, Klf4 and c-myc, in somatic cells enables them to have pluripotency. These cells are iPSC (induced pluripotent stem cell) that currently show the greatest potential for differentiation into cells of the three germ lineages. One of the issues facing the successful reprogramming and clinical translation of iPSC technology is the high rate of apoptosis after the reprogramming process. Reprogramming is a stressful process, and the p53 apoptotic pathway plays a negative role in cell growth and self-renewal. Apoptosis via the p53 pathway serves as a major barrier in nuclear somatic cell reprogramming during iPSC generation. DHEA (dehydroepiandrosterone) is an abundant steroid that is produced at high levels in the adrenal cells, and withdrawal of DHEA increases the levels of p53 in the epithelial and stromal cells, resulting in increased levels of apoptotic cells; meanwhile, DHEA decreases cellular apoptosis. DHEA could improve the efficacy of reprogramming yield due to a decrease in apoptosis via the p53 pathway and an increase in cell viability.
Collapse
|
43
|
LIU YX, ZHANG ZW, FU XP, JIN P, LI AM, ZHANG Y. Cell Reprogramming by Cell Extract Treatment*. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2011.00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Østrup O, Hyttel P, Klærke DA, Collas P. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract. Biochem Biophys Res Commun 2011; 412:487-93. [PMID: 21843509 DOI: 10.1016/j.bbrc.2011.07.128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 07/31/2011] [Indexed: 02/08/2023]
Abstract
Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.
Collapse
Affiliation(s)
- Olga Østrup
- Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
45
|
Nowak-Imialek M, Kues W, Carnwath JW, Niemann H. Pluripotent stem cells and reprogrammed cells in farm animals. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2011; 17:474-497. [PMID: 21682936 DOI: 10.1017/s1431927611000080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pluripotent cells are unique because of their ability to differentiate into the cell lineages forming the entire organism. True pluripotent stem cells with germ line contribution have been reported for mice and rats. Human pluripotent cells share numerous features of pluripotentiality, but confirmation of their in vivo capacity for germ line contribution is impossible due to ethical and legal restrictions. Progress toward derivation of embryonic stem cells from domestic species has been made, but the derived cells were not able to produce germ line chimeras and thus are termed embryonic stem-like cells. However, domestic animals, in particular the domestic pig (Sus scrofa), are excellent large animals models, in which the clinical potential of stem cell therapies can be studied. Reprogramming technologies for somatic cells, including somatic cell nuclear transfer, cell fusion, in vitro culture in the presence of cell extracts, in vitro conversion of adult unipotent spermatogonial stem cells into germ line derived pluripotent stem cells, and transduction with reprogramming factors have been developed with the goal of obtaining pluripotent, germ line competent stem cells from domestic animals. This review summarizes the present state of the art in the derivation and maintenance of pluripotent stem cells in domestic animals.
Collapse
Affiliation(s)
- Monika Nowak-Imialek
- Institute of Farm Animal Genetics (FLI), Biotechnology, Mariensee, 31535 Neustadt, Germany
| | | | | | | |
Collapse
|
46
|
Abstract
We review experiments in which somatic cell nuclei are transplanted singly to enucleated eggs (metaphase II) in amphibia and mammals and as multiple nuclei to the germinal vesicle of amphibian oocytes (prophase I). These experiments have shown the totipotency of some somatic cell nuclei, as well as switches in cell type and changes in gene expression. Abnormalities of nuclear transplant embryo development increase greatly as nuclei are taken from progressively more differentiated donor cells. The molecular changes that accompany the reprogramming of transplanted nuclei help to indicate the mechanisms used by eggs and oocytes to reprogram gene expression. We discuss the importance of chromosomal protein exchange, of transcription factor supply, and of chromatin access in reprogramming.
Collapse
Affiliation(s)
- J B Gurdon
- Wellcome Trust Cancer Research UK Gurdon Institute, Cambridge, United Kingdom.
| | | |
Collapse
|
47
|
Identification and characterization of an oocyte factor required for development of porcine nuclear transfer embryos. Proc Natl Acad Sci U S A 2011; 108:7040-5. [PMID: 21482765 DOI: 10.1073/pnas.1013634108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nuclear reprogramming of differentiated cells can be induced by oocyte factors. Despite numerous attempts, these factors and mechanisms responsible for successful reprogramming remain elusive. Here, we identify one such factor, necessary for the development of nuclear transfer embryos, using porcine oocyte extracts in which some reprogramming events are recapitulated. After incubating somatic nuclei in oocyte extracts from the metaphase II stage, the oocyte proteins that were specifically and abundantly incorporated into the nuclei were identified by mass spectrometry. Among 25 identified proteins, we especially focused on a multifunctional protein, DJ-1. DJ-1 is present at a high concentration in oocytes from the germinal vesicle stage until embryos at the four-cell stage. Inhibition of DJ-1 function compromises the development of nuclear transfer embryos but not that of fertilized embryos. Microarray analysis of nuclear transfer embryos in which DJ-1 function is inhibited shows perturbed expression of P53 pathway components. In addition, embryonic arrest of nuclear transfer embryos injected with anti-DJ-1 antibody is rescued by P53 inhibition. We conclude that DJ-1 is an oocyte factor that is required for development of nuclear transfer embryos. This study presents a means for identifying natural reprogramming factors in mammalian oocytes and a unique insight into the mechanisms underlying reprogramming by nuclear transfer.
Collapse
|
48
|
Pfeiffer MJ, Siatkowski M, Paudel Y, Balbach ST, Baeumer N, Crosetto N, Drexler HCA, Fuellen G, Boiani M. Proteomic analysis of mouse oocytes reveals 28 candidate factors of the "reprogrammome". J Proteome Res 2011; 10:2140-53. [PMID: 21344949 DOI: 10.1021/pr100706k] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The oocyte is the only cell of the body that can reprogram transplanted somatic nuclei and sets the gold standard for all reprogramming methods. Therefore, an in-depth characterization of its proteome holds promise to advance our understanding of reprogramming and germ cell biology. To date, limitations on oocyte numbers and proteomic technology have impeded this task, and the search for reprogramming factors has been conducted in embryonic stem (ES) cells instead. Here, we present the proteome of metaphase II mouse oocytes to a depth of 3699 proteins, which substantially extends the number of proteins identified until now in mouse oocytes and is comparable by size to the proteome of undifferentiated mouse ES cells. Twenty-eight oocyte proteins, also detected in ES cells, match the criteria of our multilevel approach to screen for reprogramming factors, namely nuclear localization, chromatin modification, and catalytic activity. Our oocyte proteome catalog thus advances the definition of the "reprogrammome", the set of molecules--proteins, RNAs, lipids, and small molecules--that enable reprogramming.
Collapse
Affiliation(s)
- Martin J Pfeiffer
- Max-Planck Institute for Molecular Biomedicine, Mouse Embryology Laboratory, Röntgenstrasse 20, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Han J, Sidhu K. Embryonic stem cell extracts: use in differentiation and reprogramming. Regen Med 2011; 6:215-27. [DOI: 10.2217/rme.11.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Stem cells have been studied extensively for decades and they have the inherent capacity to self-renew as well as to generate one or more types of specialized cells. The current focus of research on stem cells, particularly on embryonic stem cells, is on directed differentiation of these cells into specific cell types for future regenerative medicine. For the past few years, the process of reprogramming, which mediates convertion of somatic cells to their pluripotent state, has been given much attention, as it provides a possible source of autologous stem cells. In addition, understanding the molecular mechanism of differentiation and reprogramming has long been a subject of interest. In this article, we have briefly introduced stem cells and discussed the use of embryonic stem cells in reprogramming of somatic cells and differentiation to different lineages. The application of embryonic stem cells extracts in inducing reprogramming and transdifferentiation has also been described and discussed. Should this approach be successful, patient-specific cells will be produced safely and the likelihood of rejection will be decreased when used in cell therapy for many debilitating human diseases for which there is no cure such as Parkinson’s disease, Alzheimer’s disease, diabetes and others.
Collapse
Affiliation(s)
- Jinnuo Han
- Stem Cell Laboratory, School of Psychiatry, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Kuldip Sidhu
- Faculty of Medicine, Wallace Wurth Building, University of New South Wales, NSW 2052, Australia
| |
Collapse
|
50
|
Increased blastocyst formation of cloned porcine embryos produced with donor cells pre-treated with Xenopus egg extract and/or digitonin. ZYGOTE 2011; 20:61-6. [PMID: 21303584 DOI: 10.1017/s096719941000064x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pre-treating donor cells before somatic cell nuclear transfer (SCNT, 'cloning') may improve the efficiency of the technology. The aim of this study was to evaluate the early development of cloned embryos produced with porcine fibroblasts pre-treated with a permeabilizing agent and extract from Xenopus laevis eggs. In Experiment 1, fetal fibroblasts were permeabilized by digitonin, incubated in egg extract and, after re-sealing of cell membranes, cultured for 3 or 5 days before use as donor cells in handmade cloning (HMC). Controls were produced by HMC with non-treated donor cells. The blastocyst rate for reconstructed embryos increased significantly when digitonin-permeabilized, extract-treated cells were used after 5 days of culture after re-sealing. In Experiment 2, fetal and adult fibroblasts were treated with digitonin alone before re-sealing the cell membranes, then cultured for 3 or 5 days and used as donor cells in HMC. Treatment with digitonin alone increased the blastocyst rate, but only when fetal, and not adult fibroblasts, were used as donor cells, and only after 3 days of culture. In conclusion, we find a time window for increased efficiency of porcine SCNT using donor cells after pre-treatment with permeabilization/re-sealing and Xenopus egg extract. Interestingly, we observe a similar increase in cloning efficiency by permeabilization/re-sealing of donor cells without extract treatment that seems to depend on choice of donor cell type. Thus, pre-treatment of donor cells using permeabilizing treatment followed by re-sealing and in vitro culture for few days could be a simple way to improve the efficiency of porcine cloning.
Collapse
|