1
|
The Role of Sperm Proteins IZUMO1 and TMEM95 in Mammalian Fertilization: A Systematic Review. Int J Mol Sci 2022; 23:ijms23073929. [PMID: 35409288 PMCID: PMC8999778 DOI: 10.3390/ijms23073929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Gamete membrane fusion is a critical cellular event in sexual reproduction. In addition, the generation of knockout models has provided a powerful tool for testing the functional relevance of proteins thought to be involved in mammalian fertilization, suggesting IZUMO1 and TMEM95 (transmembrane protein 95) as essential proteins. However, the molecular mechanisms underlying the process remain largely unknown. Therefore, the aim of this study was to summarize the current knowledge about IZUMO1 and TMEM95 during mammalian fertilization. Hence, three distinct databases were consulted—PubMed, Scopus and Web of Science—using single keywords. As a result, a total of 429 articles were identified. Based on both inclusion and exclusion criteria, the final number of articles included in this study was 103. The results showed that IZUMO1 is mostly studied in rodents whereas TMEM95 is studied primarily in bovines. Despite the research, the topological localization of IZUMO1 remains controversial. IZUMO1 may be involved in organizing or stabilizing a multiprotein complex essential for the membrane fusion in which TMEM95 could act as a fusogen due to its possible interaction with IZUMO1. Overall, the expression of these two proteins is not sufficient for sperm–oocyte fusion; therefore, other molecules must be involved in the membrane fusion process.
Collapse
|
2
|
Structural organization of erythrocyte membrane microdomains and their relation with malaria susceptibility. Commun Biol 2021; 4:1375. [PMID: 34880413 PMCID: PMC8655059 DOI: 10.1038/s42003-021-02900-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 11/18/2021] [Indexed: 12/16/2022] Open
Abstract
Cholesterol-rich microdomains are membrane compartments characterized by specific lipid and protein composition. These dynamic assemblies are involved in several biological processes, including infection by intracellular pathogens. This work provides a comprehensive analysis of the composition of human erythrocyte membrane microdomains. Based on their floating properties, we also categorized the microdomain-associated proteins into clusters. Interestingly, erythrocyte microdomains include the vast majority of the proteins known to be involved in invasion by the malaria parasite Plasmodium falciparum. We show here that the Ecto-ADP-ribosyltransferase 4 (ART4) and Aquaporin 1 (AQP1), found within one specific cluster, containing the essential host determinant CD55, are recruited to the site of parasite entry and then internalized to the newly formed parasitophorous vacuole membrane. By generating null erythroid cell lines, we showed that one of these proteins, ART4, plays a role in P. falciparum invasion. We also found that genetic variants in both ART4 and AQP1 are associated with susceptibility to the disease in a malaria-endemic population.
Collapse
|
3
|
Araujo SC, Bertolla RP. Protein markers of spermatogenesis and their potential use in the management of azoospermia. Expert Rev Proteomics 2021; 18:939-948. [PMID: 34812697 DOI: 10.1080/14789450.2021.2010548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Azoospermia, absence of sperm in the ejaculate is classified as obstructive (OA) and non-obstructive azoospermia (NOA). In OA, sperm are produced, but due to physical obstruction in the male reproductive tract, they are not released in the ejaculate. NOA, on the other hand, is defined as the absence of sperm in the ejaculate due to testicular dysfunction. In NOA, spermatogenesis is frequently preserved in specific sites, and proteomics studies have been employed in order to identify men with preserved spermatogenesis. AREAS COVERED Differential protein expression in patients with male infertility is an indicator of impaired spermatogenesis. Here, we reviewed proteins with a potential role as biomarkers of spermatogenesis that could help in the management of non-obstructive and obstructive azoospermia. The following keywords were used for bibliographic research: seminal plasma, proteomics, male infertility, nonobstructive, obstructive, azoospermia, oligospermia. EXPERT OPINION Biopsy is an invasive and potentially harmful technique for detecting spermatogenesis in men with OA and NOA. Seminal plasma proteins are highly promising as biomarkers for spermatogenesis. Current literature presents a number of potential candidate biomarkers for determining preserved spermatogenesis.
Collapse
Affiliation(s)
- Sophia Costa Araujo
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo Pimenta Bertolla
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Sajeevadathan M, Pettitt MJ, Buhr MM. Are isoforms of capacitating Na + K + -ATPase localized to sperm head rafts? Mol Reprod Dev 2021; 88:731-743. [PMID: 34658111 DOI: 10.1002/mrd.23543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 07/05/2021] [Accepted: 10/01/2021] [Indexed: 01/18/2023]
Abstract
Capacitation begins in the sperm head plasma membrane (HPM). Membrane rafts could house signaling molecules, but although these specialized microdomains have been microscopically visualized in sperm heads, rafts have been isolated for study only from homogenized whole sperm or tails, never purified HPM. Sodium/potassium ATPase (Na+ K+ -ATPase) is a membrane-bound signaling protein that induces capacitation in bull sperm in response to the steroid hormone ouabain, and its subunit isoforms α1, α3, β1, β2, and β3 are known in HPM. This study hypothesized that rafts exist in the HPM of bull sperm, with Na+ K+ -ATPase subunit isoforms preferentially localized there. Western immunoblotting (WB) of HPM from fresh, uncapacitated bull sperm (n = 7 ejaculates), and detergent-resistant membranes isolated by density gradient centrifugation from this HPM, contained the raft-marker protein Flotillin-1; the non-raft fraction did not. HPM, raft, and non-raft contained all known Na+ K+ -ATPase isoforms including, for the first time, the previously unknown α2 isoform. Quantification (ImageQuant Software) found α3 and β1 were relatively dominant isoforms in the HPM raft. WB profiles of raft isoforms differed significantly from HPM and non-raft profiles, with unique banding patterns and amounts, hinting that the capacitation signaling in the now-identified HPM rafts may depend on unique sequences within the isoform structure.
Collapse
Affiliation(s)
- Mrudhula Sajeevadathan
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Canadian Food Inspection Agency, Lethbridge, Alberta, Canada
| | - Murray J Pettitt
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Prairie Swine Centre, Saskatoon, Saskatchewan, Canada
| | - Mary M Buhr
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Chen S, Wang M, Li L, Wang J, Ma X, Zhang H, Cai Y, Kang B, Huang J, Li B. High-coverage targeted lipidomics revealed dramatic lipid compositional changes in asthenozoospermic spermatozoa and inverse correlation of ganglioside GM3 with sperm motility. Reprod Biol Endocrinol 2021; 19:105. [PMID: 34233713 PMCID: PMC8262046 DOI: 10.1186/s12958-021-00792-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND It has been previously demonstrated that cholesterol content and cholesterol/phospholipid ratio were significantly higher in asthenozoospermia and oligoasthenoteratozoospermia. The majority of published studies have investigated the fatty acid composition of phospholipids rather than lipids themselves. This study evaluated the lipid composition of asthenozoospermic and normozoospermic spermatozoa, and identified the exact lipid species that correlated with sperm motility. METHODS A total of 12 infertile asthenozoospermia patients and 12 normozoospermia subjects with normal sperm motility values were tested for semen volume, sperm concentration, count, motility, vitality and morphology. High-coverage targeted lipidomics with 25 individual lipid classes was performed to analyze the sperm lipid components and establish the exact lipid species that correlated with sperm motility. RESULTS A total of 25 individual lipid classes and 479 lipid molecular species were identified and quantified. Asthenozoospermic spermatozoa showed an increase in the level of four lipid classes, including Cho, PE, LPI and GM3. A total of 48 lipid molecular species were significantly altered between normozoospermic and asthenozoospermic spermatozoa. Furthermore, the levels of total GM3 and six GM3 molecular species, which were altered in normozoospermic spermatozoa versus asthenozoospermic spermatozoa, were inversely correlated with sperm progressive and total motility. CONCLUSIONS Several unique lipid classes and lipid molecular species were significantly altered between asthenozoospermic and normozoospermic spermatozoa, revealing new possibilities for further mechanistic pursuits and highlighting the development needs of culture medium formulations to improve sperm motility.
Collapse
Affiliation(s)
- Shuqiang Chen
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Ming Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Li Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Xuhui Ma
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Hengde Zhang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Yang Cai
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Bin Kang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China
| | - Jianlei Huang
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China.
| | - Bo Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, the Fourth Military Medical University, 710038, Xi'an, China.
| |
Collapse
|
6
|
Balestrini PA, Jabloñski M, Schiavi-Ehrenhaus LJ, Marín-Briggiler CI, Sánchez-Cárdenas C, Darszon A, Krapf D, Buffone MG. Seeing is believing: Current methods to observe sperm acrosomal exocytosis in real time. Mol Reprod Dev 2020; 87:1188-1198. [PMID: 33118273 DOI: 10.1002/mrd.23431] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023]
Abstract
Acrosomal exocytosis (AR) is a critical process that sperm need to undergo to fertilize an egg. The evaluation of the presence or absence of the acrosome is usually performed by using lectins or dyes in fixed cells. With this approach, it is neither possible to monitor the dynamic process of exocytosis and related molecular events while discriminating between live and dead cells, nor to evaluate the acrosomal status while sperm reside in the female reproductive tract. However, over the last two decades, several new methodologies have been used to assess the occurrence of AR in living cells allowing different groups to obtain information that was not possible in the past. These techniques have revolutionized the whole study of this process. This review summarizes current methods available to analyze AR in living cells as well as the important information that emerged from studies using these approaches.
Collapse
Affiliation(s)
- Paula A Balestrini
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | | | - Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Darío Krapf
- Instituto de Biología Molecular y Celular de Rosario, CONICET-UNR, Rosario, Argentina
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
7
|
López-Salguero JB, Fierro R, Michalski JC, Jiménez-Morales I, Lefebvre T, Mondragón-Payne O, Baldini SF, Vercoutter-Edouart AS, González-Márquez H. Identification of lipid raft glycoproteins obtained from boar spermatozoa. Glycoconj J 2020; 37:499-509. [PMID: 32367480 DOI: 10.1007/s10719-020-09924-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/25/2020] [Accepted: 04/08/2020] [Indexed: 11/30/2022]
Abstract
The surface of the spermatozoa is coated with glycoproteins the redistribution of which during in vitro capacitation plays a key role in the subsequent fertilization process. Lipid rafts are membrane microdomains involved in signal transduction through receptors and include or recruit specific types of proteins and glycoproteins. Few studies have focused on identifying glycoproteins resident in the lipid rafts of spermatozoa. Proteins associated with lipid rafts modify their localization during capacitation. The objective of the study was to identify the glycoproteins associated with lipid rafts of capacitated boar spermatozoa through a lectin-binding assay coupled to mass spectrometry approach. From the proteomic profiles generated by the raft proteins extractions, we observed that after capacitation the intensity of some bands increased while that of others decreased. To determine whether the proteins obtained from lipid rafts are glycosylated, lectin blot assays were performed. Protein bands with a good resolution and showing significant glycosylation modifications after capacitation were analyzed by mass spectrometry. The bands of interest had an apparent molecular weight of 64, 45, 36, 34, 24, 18 and 15 kDa. We sequenced the 7 bands and 20 known or potential glycoproteins were identified. According to us, for ten of them this is the first time that their association with sperm lipid rafts is described (ADAM5, SPMI, SPACA1, Seminal plasma protein pB1, PSP-I, MFGE8, tACE, PGK2, SUCLA2, MDH1). Moreover, LYDP4, SPAM-1, HSP60, ZPBP1, AK1 were previously reported in lipid rafts of mouse and human spermatozoa but not in boar spermatozoa. We also found and confirmed the presence of ACR, ACRBP, AWN, AQN3 and PRDX5 in lipid rafts of boar spermatozoa. This paper provides an overview of the glycosylation pattern in lipid rafts of boar spermatozoa before and after capacitation. Further glycomic analysis is needed to determine the type and the variation of glycan chains of the lipid rafts glycoproteins on the surface of spermatozoa during capacitation and acrosome reaction.
Collapse
Affiliation(s)
- José Benito López-Salguero
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, México
| | - Reyna Fierro
- Departamento de Ciencias de la Salud. D.C.B.S, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C.P, 09340, Ciudad de México, México.
| | - Jean-Claude Michalski
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Irma Jiménez-Morales
- Departamento de Ciencias de la Salud. D.C.B.S, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C.P, 09340, Ciudad de México, México
| | - Tony Lefebvre
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | - Oscar Mondragón-Payne
- Maestría en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Steffi F Baldini
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France
| | | | - Humberto González-Márquez
- Departamento de Ciencias de la Salud. D.C.B.S, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, C.P, 09340, Ciudad de México, México
| |
Collapse
|
8
|
Pitnick S, Wolfner MF, Dorus S. Post-ejaculatory modifications to sperm (PEMS). Biol Rev Camb Philos Soc 2020; 95:365-392. [PMID: 31737992 PMCID: PMC7643048 DOI: 10.1111/brv.12569] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
Mammalian sperm must spend a minimum period of time within a female reproductive tract to achieve the capacity to fertilize oocytes. This phenomenon, termed sperm 'capacitation', was discovered nearly seven decades ago and opened a window into the complexities of sperm-female interaction. Capacitation is most commonly used to refer to a specific combination of processes that are believed to be widespread in mammals and includes modifications to the sperm plasma membrane, elevation of intracellular cyclic AMP levels, induction of protein tyrosine phosphorylation, increased intracellular Ca2+ levels, hyperactivation of motility, and, eventually, the acrosome reaction. Capacitation is only one example of post-ejaculatory modifications to sperm (PEMS) that are widespread throughout the animal kingdom. Although PEMS are less well studied in non-mammalian taxa, they likely represent the rule rather than the exception in species with internal fertilization. These PEMS are diverse in form and collectively represent the outcome of selection fashioning complex maturational trajectories of sperm that include multiple, sequential phenotypes that are specialized for stage-specific functionality within the female. In many cases, PEMS are critical for sperm to migrate successfully through the female reproductive tract, survive a protracted period of storage, reach the site of fertilization and/or achieve the capacity to fertilize eggs. We predict that PEMS will exhibit widespread phenotypic plasticity mediated by sperm-female interactions. The successful execution of PEMS thus has important implications for variation in fitness and the operation of post-copulatory sexual selection. Furthermore, it may provide a widespread mechanism of reproductive isolation and the maintenance of species boundaries. Despite their possible ubiquity and importance, the investigation of PEMS has been largely descriptive, lacking any phylogenetic consideration with regard to divergence, and there have been no theoretical or empirical investigations of their evolutionary significance. Here, we (i) clarify PEMS-related nomenclature; (ii) address the evolutionary origin, maintenance and divergence in PEMS in the context of the protracted life history of sperm and the complex, selective environment of the female reproductive tract; (iii) describe taxonomically widespread types of PEMS: sperm activation, chemotaxis and the dissociation of sperm conjugates; (iv) review the occurence of PEMS throughout the animal kingdom; (v) consider alternative hypotheses for the adaptive value of PEMS; (vi) speculate on the evolutionary implications of PEMS for genomic architecture, sexual selection, and reproductive isolation; and (vii) suggest fruitful directions for future functional and evolutionary analyses of PEMS.
Collapse
Affiliation(s)
- Scott Pitnick
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Steve Dorus
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| |
Collapse
|
9
|
Gaikwad AS, Anderson AL, Merriner DJ, O'Connor AE, Houston BJ, Aitken RJ, O'Bryan MK, Nixon B. GLIPR1L1 is an IZUMO-binding protein required for optimal fertilization in the mouse. BMC Biol 2019; 17:86. [PMID: 31672133 PMCID: PMC6824042 DOI: 10.1186/s12915-019-0701-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
Background The sperm protein IZUMO1 (Izumo sperm-egg fusion 1) and its recently identified binding partner on the oolemma, IZUMO1R, are among the first ligand-receptor pairs shown to be essential for gamete recognition and adhesion. However, the IZUMO1-IZUMO1R interaction does not appear to be directly responsible for promoting the fusion of the gamete membranes, suggesting that this critical phase of the fertilization cascade requires the concerted action of alternative fusogenic machinery. It has therefore been proposed that IZUMO1 may play a secondary role in the organization and/or stabilization of higher-order heteromeric complexes in spermatozoa that are required for membrane fusion. Results Here, we show that fertilization-competent (acrosome reacted) mouse spermatozoa harbor several high molecular weight protein complexes, a subset of which are readily able to adhere to solubilized oolemmal proteins. At least two of these complexes contain IZUMO1 in partnership with GLI pathogenesis-related 1 like 1 (GLIPR1L1). This interaction is associated with lipid rafts and is dynamically remodeled upon the induction of acrosomal exocytosis in preparation for sperm adhesion to the oolemma. Accordingly, the selective ablation of GLIPR1L1 leads to compromised sperm function characterized by a reduced ability to undergo the acrosome reaction and a failure of IZUMO1 redistribution. Conclusions Collectively, this study characterizes multimeric protein complexes on the sperm surface and identifies GLIPRL1L1 as a physiologically relevant regulator of IZUMO1 function and the fertilization process.
Collapse
Affiliation(s)
- Avinash S Gaikwad
- The School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Amanda L Anderson
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - D Jo Merriner
- The School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Anne E O'Connor
- The School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - Brendan J Houston
- The School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - R John Aitken
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Moira K O'Bryan
- The School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia.
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
10
|
Bai C, Kang N, Zhao J, Dai J, Gao H, Chen Y, Dong H, Huang C, Dong Q. Cryopreservation disrupts lipid rafts and heat shock proteins in yellow catfish sperm. Cryobiology 2019; 87:32-39. [PMID: 30876909 DOI: 10.1016/j.cryobiol.2019.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 11/25/2022]
Abstract
Lipid rafts and associated membrane proteins (flotillin, caveolin) play important roles in cell signaling and sperm fertilization while heat shock proteins (Hsp) ensure properly protein folding to fulfill their physiological functions. The markedly reduced fertility in thawed sperm after cryopreservation could result from disrupted membrane lipid rafts and these proteins. To explore the effect of sperm cryopreservation on lipid rafts and heat shock proteins, we compared lipid raft integrity, and the expression levels of lipid raft associated proteins (Flot-1, Flot-2, Cav-1) as well as heat shock proteins (Hsp90, Hsp70) in fresh and thawed sperm cryopreserved under different scenarios in yellow catfish. We found higher lipid raft integrity, higher protein expression levels of Flot-1, Flot-2, Cav-1, Hsp90, and Hsp70 in fresh sperm samples than in thawed sperm samples, in thawed sperm samples cryopreserved with optimal cooling rate than those cryopreserved with sub-optimal cooling rate, and in thawed sperm samples cryopreserved with extenders supplemented with cholesterol than those supplemented with methyl-β-cyclodextrin (for cholesterol removal). Our findings indicate that lipid raft integrity, and expression levels of Flot-1, Flot-2, Cav-1, Hsp90, and Hsp70 are clearly associated with sperm quality, and together they may play a cumulative role in reduced fertility associated with thawed sperm in aquatic species.
Collapse
Affiliation(s)
- Chenglian Bai
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Ning Kang
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Junping Zhao
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jun Dai
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hui Gao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yuanhong Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Haojia Dong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Changjiang Huang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qiaoxiang Dong
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
11
|
Romarowski A, Velasco Félix ÁG, Torres Rodríguez P, Gervasi MG, Xu X, Luque GM, Contreras-Jiménez G, Sánchez-Cárdenas C, Ramírez-Gómez HV, Krapf D, Visconti PE, Krapf D, Guerrero A, Darszon A, Buffone MG. Super-resolution imaging of live sperm reveals dynamic changes of the actin cytoskeleton during acrosomal exocytosis. J Cell Sci 2018; 131:jcs218958. [PMID: 30301778 PMCID: PMC6240301 DOI: 10.1242/jcs.218958] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/25/2018] [Indexed: 01/14/2023] Open
Abstract
Filamentous actin (F-actin) is a key factor in exocytosis in many cell types. In mammalian sperm, acrosomal exocytosis (denoted the acrosome reaction or AR), a special type of controlled secretion, is regulated by multiple signaling pathways and the actin cytoskeleton. However, the dynamic changes of the actin cytoskeleton in live sperm are largely not understood. Here, we used the powerful properties of SiR-actin to examine actin dynamics in live mouse sperm at the onset of the AR. By using a combination of super-resolution microscopy techniques to image sperm loaded with SiR-actin or sperm from transgenic mice containing Lifeact-EGFP, six regions containing F-actin within the sperm head were revealed. The proportion of sperm possessing these structures changed upon capacitation. By performing live-cell imaging experiments, we report that dynamic changes of F-actin during the AR occur in specific regions of the sperm head. While certain F-actin regions undergo depolymerization prior to the initiation of the AR, others remain unaltered or are lost after exocytosis occurs. Our work emphasizes the utility of live-cell nanoscopy, which will undoubtedly impact the search for mechanisms that underlie basic sperm functions.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ana Romarowski
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - Ángel G Velasco Félix
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México
| | - Paulina Torres Rodríguez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México
| | - María G Gervasi
- Department of Veterinary and Animal Science, Paige Labs, University of Massachusetts, Amherst, MA 01003, USA
| | - Xinran Xu
- Department of Electrical and Computer Engineering, School of Biomedical Engineering, 1301 Campus Delivery, Fort Collins, CO 80523, USA
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| | - Gastón Contreras-Jiménez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México
| | - Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México
| | - Héctor V Ramírez-Gómez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México
| | - Diego Krapf
- Department of Electrical and Computer Engineering, School of Biomedical Engineering, 1301 Campus Delivery, Fort Collins, CO 80523, USA
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Paige Labs, University of Massachusetts, Amherst, MA 01003, USA
| | - Dario Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario, Santa Fe S2000EZP, Argentina
| | - Adán Guerrero
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos 62210, México
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1428ADN, Argentina
| |
Collapse
|
12
|
Gervasi MG, Visconti PE. Molecular changes and signaling events occurring in spermatozoa during epididymal maturation. Andrology 2017; 5:204-218. [PMID: 28297559 DOI: 10.1111/andr.12320] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/01/2016] [Accepted: 11/30/2016] [Indexed: 12/11/2022]
Abstract
After leaving the testis, spermatozoa have not yet acquired the ability to move progressively and are unable to fertilize oocytes. To become fertilization competent, they must go through an epididymal maturation process in the male, and capacitation in the female tract. Epididymal maturation can be defined as those changes occurring to spermatozoa in the epididymis that render the spermatozoa the ability to capacitate in the female tract. As part of this process, sperm cells undergo a series of biochemical and physiological changes that require incorporation of new molecules derived from the epididymal epithelium, as well as post-translational modifications of endogenous proteins synthesized during spermiogenesis in the testis. This review will focus on epididymal maturation events, with emphasis in recent advances in the understanding of the molecular basis of this process.
Collapse
Affiliation(s)
- M G Gervasi
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - P E Visconti
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
13
|
Abstract
SummaryProthymosin alpha (PTMA) is a highly acidic, intrinsically disordered protein that was first extracted from rat thymus and characterized as an immunogenic factor but soon detected in a variety of mammalian tissues. The presence of a nuclear localization signal and the adoption of a peculiar random-coil conformation are among the reasons behind its interaction with several molecular partners, hence at this time PTMA is known to be a very conserved and widely expressed molecule, involved in numerous and diverse biological processes. Only few studies have tried to weigh its possible involvement in reproduction, specifically in male gametogenesis: first reports have suggested that PTMA might be associated with the proliferative and early-meiotic phases of mammal spermatogenesis. Some years later, a comparative project on vertebrate spermatogenesis reported the isolation, for the first time, of prothymosin in a non-mammalian species, the amphibian Pelophylax esculentus. PTMA transcript and protein are localized in the germinal compartment, from spermatocytes to spermatozoa. A congruent pattern has been highlighted in studies on the fish Torpedo marmorata and Danio rerio, and in the mammal Rattus norvegicus, in which the expression of PTMA has been found in meiotic and post-meiotic germ cells inside testicular cysts and tubules. Moreover, its presence has been confirmed in rat and human spermatozoa (associated with the acrosome); its retention in the apical region of the head after the acrosome reaction revealed a striking conservation of the pattern during phylogenesis and suggested a possible role for the protein in gametogenesis and in fertilization.
Collapse
|
14
|
Zhou C, Huang L, Shi DS, Jiang JR. Effects of latrunculin A on the relocation of sperm IZUMO1 during gamete interaction in mouse. Mol Reprod Dev 2017; 84:1183-1190. [PMID: 28833824 DOI: 10.1002/mrd.22878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/14/2017] [Indexed: 01/19/2023]
Abstract
The sperm protein IZUMO1 plays a central role in gamete fusion. In mouse sperm, IZUMO1 is enriched at the acrosomal cap before the acrosome reaction, and at the equatorial segment following this reaction; its relocation is dependent on filamentous actin. How actin polymerization affects IZUMO1 relocation during gamete interaction remains unknown. The present study addressed these processes using latrunculin A (LatA), an inhibitor of actin polymerization. We report that 25 µM LatA blocked actin polymerization in the capacitated sperm head, resulting in a marked decrease in sperm with relocated IZUMO1 during the A23187-induced acrosome reaction and cumulus layer penetration. Treated sperm also exhibited reduced zona pellucida penetration and fertilizing capacity. Interestingly, LatA-treated sperm present in the perivitelline space of eggs did not show impaired IZUMO1 relocation. Thus, IZUMO1 relocation represents one method by which eggs may select for or rescue sperm that are competent to undergo gamete adhesion/fusion. These data support the hypothesis that dynamic movement of IZUMO1 is essential for gamete fusion during mouse fertilization.
Collapse
Affiliation(s)
- Chong Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Li Huang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, China
| | - De-Shun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| | - Jian-Rong Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
15
|
Calpain inhibition prevents flotillin re-ordering and Src family activation during capacitation. Cell Tissue Res 2017; 369:395-412. [DOI: 10.1007/s00441-017-2591-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/17/2017] [Indexed: 01/08/2023]
|
16
|
Fukuda M, Sakase M, Fukushima M, Harayama H. Changes of IZUMO1 in bull spermatozoa during the maturation, acrosome reaction, and cryopreservation. Theriogenology 2016; 86:2179-2188.e3. [DOI: 10.1016/j.theriogenology.2016.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/11/2016] [Accepted: 07/11/2016] [Indexed: 12/27/2022]
|
17
|
Gervasi MG, Visconti PE. Chang's meaning of capacitation: A molecular perspective. Mol Reprod Dev 2016; 83:860-874. [PMID: 27256723 DOI: 10.1002/mrd.22663] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 05/31/2016] [Indexed: 02/04/2023]
Abstract
Dr. Min Chue Chang's contributions to the field of reproductive biology set the stage for the development of the contraceptive pill and in vitro fertilization. Throughout his publications, Dr. Chang was also able to transmit his view of the fertilization process in ways that organized research for newer generations of reproductive biologists. Particularly relevant for the achievement of in vitro fertilization in mammals was the discovery that the sperm required a period of residence in the female tract to become fertilization-competent; Dr. Chang and Dr. Austin, in Australia, independently reported this process, now known as sperm capacitation. This review discusses Dr. Chang's views on capacitation, and puts them in the context of recent advances in the understanding of the molecular basis of this process. Mol. Reprod. Dev. 83: 860-874, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Maria Gracia Gervasi
- Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Amherst, Massachusetts
| | - Pablo E Visconti
- Department of Veterinary and Animal Sciences, ISB, University of Massachusetts, Amherst, Massachusetts.
| |
Collapse
|
18
|
Characterization of CD46 and β1 integrin dynamics during sperm acrosome reaction. Sci Rep 2016; 6:33714. [PMID: 27666019 PMCID: PMC5036054 DOI: 10.1038/srep33714] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 09/01/2016] [Indexed: 11/25/2022] Open
Abstract
The acrosome reaction (AR) is a process of membrane fusion and lytic enzyme release, which enables sperm to penetrate the egg surroundings. It is widely recognized that specific sperm proteins form an active network prior to fertilization, and their dynamic relocation is crucial for the sperm-egg fusion. The unique presence of the membrane cofactor protein CD46 in the sperm acrosomal membrane was shown, however, its behaviour and connection with other sperm proteins has not been explored further. Using super resolution microscopy, we demonstrated a dynamic CD46 reorganisation over the sperm head during the AR, and its interaction with transmembrane protein integrins, which was confirmed by proximity ligation assay. Furthermore, we propose their joint involvement in actin network rearrangement. Moreover, CD46 and β1 integrins with subunit α3, but not α6, are localized into the apical acrosome and are expected to be involved in signal transduction pathways directing the acrosome stability and essential protein network rearrangements prior to gamete fusion.
Collapse
|
19
|
Young SAM, Miyata H, Satouh Y, Muto M, Larsen MR, Aitken RJ, Baker MA, Ikawa M. CRISPR/Cas9-mediated mutation revealed cytoplasmic tail is dispensable for IZUMO1 function and male fertility. Reproduction 2016; 152:665-672. [PMID: 27624483 DOI: 10.1530/rep-16-0150] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/13/2016] [Indexed: 12/19/2022]
Abstract
IZUMO1 is a protein found in the head of spermatozoa that has been identified as essential for sperm-egg fusion. Its binding partner in the egg has been discovered (JUNO); however, the roles of several domains within IZUMO1 remain unexplored. One such domain is the C-terminus, which undergoes major phosphorylation changes in the cytoplasmic portion of the protein during rat epididymal transit. However, the cytoplasmic tail of IZUMO1 in many species is highly variable, ranging from 55 to one amino acid. Therefore, to understand the role of the cytoplasmic tail of IZUMO1 in mouse, we utilised the gene manipulation system of CRISPR/Cas9 to generate a point mutation resulting in a premature stop codon, producing mice with truncated IZUMO1. Mice without the cytoplasmic tail of IZUMO1 showed normal fertility but decreased the amount of protein, indicating that whilst this region is important for the expression level of IZUMO1, it is dispensable for fertilisation in the mouse.
Collapse
Affiliation(s)
- Samantha A M Young
- Research Institute for Microbial Diseases.,Priority Research Centre in Reproductive ScienceDiscipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | | | | | - Masanaga Muto
- Research Institute for Microbial Diseases.,Graduate School of Pharmaceutical SciencesOsaka University, Suita, Osaka, Japan
| | - Martin R Larsen
- Institute for Biochemistry and Molecular BiologyUniversity of Southern Denmark, Odense, Denmark
| | - R John Aitken
- Priority Research Centre in Reproductive ScienceDiscipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mark A Baker
- Priority Research Centre in Reproductive ScienceDiscipline of Biological Sciences, Faculty of Science and IT, University of Newcastle, Callaghan, New South Wales, Australia
| | - Masahito Ikawa
- Research Institute for Microbial Diseases .,Graduate School of Pharmaceutical SciencesOsaka University, Suita, Osaka, Japan
| |
Collapse
|
20
|
Identification of bovine sperm acrosomal proteins that interact with a 32-kDa acrosomal matrix protein. Mol Cell Biochem 2016; 414:153-69. [PMID: 26897631 DOI: 10.1007/s11010-016-2668-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/13/2016] [Indexed: 12/15/2022]
Abstract
Mammalian fertilization is accomplished by the interaction between sperm and egg. Previous studies from this laboratory have identified a stable acrosomal matrix assembly from the bovine sperm acrosome termed the outer acrosomal membrane-matrix complex (OMC). This stable matrix assembly exhibits precise binding activity for acrosin and N-acetylglucosaminidase. A highly purified OMC fraction comprises three major (54, 50, and 45 kDa) and several minor (38-19 kDa) polypeptides. The set of minor polypeptides (38-19 kDa) termed "OMCrpf polypeptides" is selectively solubilized by high-pH extraction (pH 10.5), while the three major polypeptides (55, 50, and 45 kDa) remain insoluble. Proteomic identification of the OMC32 polypeptide (32 kDa polypeptide isolated from high-pH soluble fraction of OMC) yielded two peptides that matched the NCBI database sequence of acrosin-binding protein. Anti-OMC32 recognized an antigenically related family of polypeptides (OMCrpf polypeptides) in the 38-19-kDa range with isoelectric points ranging between 4.0 and 5.1. Other than glycohydrolases, OMC32 may also be complexed to other acrosomal proteins. The present study was undertaken to identify and localize the OMC32 binding polypeptides and to elucidate the potential role of the acrosomal protein complex in sperm function. OMC32 affinity chromatography of a detergent-soluble fraction of bovine cauda sperm acrosome followed by mass spectrometry-based identification of bound proteins identified acrosin, lactadherin, SPACA3, and IZUMO1. Co-immunoprecipitation analysis also demonstrated the interaction of OMC32 with acrosin, lactadherin, SPACA3, and IZUMO1. Our immunofluorescence studies revealed the presence of SPACA3 and lactadherin over the apical segment, whereas IZUMO1 is localized over the equatorial segment of Triton X-100 permeabilized cauda sperm. Immunoblot analysis showed that a significant portion of SPACA3 was released after the lysophosphatidylcholine (LPC)-induced acrosome reaction, whereas the IZUMO1 and lactadherin polypeptides remain associated to the particulate fraction. Almost entire population of bovine sperm IZUMO1 relocates to the equatorial segment during the LPC-induced acrosome reaction. We propose that the interaction of OMC32 matrix polypeptide with detergent-soluble acrosomal proteins regulates the release of hydrolases/other acrosomal protein(s) during the acrosome reaction.
Collapse
|
21
|
van Gestel RA, Brouwers JF, Ultee A, Helms JB, Gadella BM. Ultrastructure and lipid composition of detergent-resistant membranes derived from mammalian sperm and two types of epithelial cells. Cell Tissue Res 2015; 363:129-145. [PMID: 26378009 PMCID: PMC4700079 DOI: 10.1007/s00441-015-2272-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/06/2015] [Indexed: 01/13/2023]
Abstract
Lipid rafts are micro-domains of ordered lipids (Lo phase) in biological membranes. The Lo phase of cellular membranes can be isolated from disordered lipids (Ld phase) after treatment with 1 % Triton X-100 at 4 °C in which the Lo phase forms the detergent-resistant membrane (DRM) fraction. The lipid composition of DRM derived from Madin-Darby canine kidney (MDCK) cells, McArdle cells and porcine sperm is compared with that of the whole cell. Remarkably, the unsaturation and chain length degree of aliphatic chains attached to phospholipids is virtually the same between DRM and whole cells. Cholesterol and sphingomyelin were enriched in DRMs but to a cell-specific molar ratio. Sulfatides (sphingolipids from MDCK cells) were enriched in the DRM while a seminolipid (an alkylacylglycerolipid from sperm) was depleted from the DRM. Treatment with <5 mM methyl-ß-cyclodextrin (MBCD) caused cholesterol removal from the DRM without affecting the composition and amount of the phospholipid while higher levels disrupted the DRM. The substantial amount of (poly)unsaturated phospholipids in DRMs as well as a low stoichiometric amount of cholesterol suggest that lipid rafts in biological membranes are more fluid and dynamic than previously anticipated. Using negative staining, ultrastructural features of DRM were monitored and in all three cell types the DRMs appeared as multi-lamellar vesicular structures with a similar morphology. The detergent resistance is a result of protein–cholesterol and sphingolipid interactions allowing a relatively passive attraction of phospholipids to maintain the Lo phase. For this special issue, the relevance of our findings is discussed in a sperm physiological context.
Collapse
Affiliation(s)
- Renske A van Gestel
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Jos F Brouwers
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Anton Ultee
- Department of Pathology, Faculty of Veterinary Medicine Utrecht University, Utrecht, The Netherlands
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Bart M Gadella
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.
- Department of Farm Animal Health, Faculty of Veterinary Medicine Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
22
|
Affiliation(s)
- Min Liu
- Department of Life Science and Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Republic of China
| |
Collapse
|
23
|
Romarowski A, Battistone MA, La Spina FA, Puga Molina LDC, Luque GM, Vitale AM, Cuasnicu PS, Visconti PE, Krapf D, Buffone MG. PKA-dependent phosphorylation of LIMK1 and Cofilin is essential for mouse sperm acrosomal exocytosis. Dev Biol 2015; 405:237-49. [PMID: 26169470 DOI: 10.1016/j.ydbio.2015.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 07/01/2015] [Accepted: 07/09/2015] [Indexed: 02/06/2023]
Abstract
Mammalian sperm must acquire their fertilizing ability after a series of biochemical modifications in the female reproductive tract collectively called capacitation to undergo acrosomal exocytosis, a process that is essential for fertilization. Actin dynamics play a central role in controlling the process of exocytosis in somatic cells as well as in sperm from several mammalian species. In somatic cells, small GTPases of the Rho family are widely known as master regulators of actin dynamics. However, the role of these proteins in sperm has not been studied in detail. In the present work we characterized the participation of small GTPases of the Rho family in the signaling pathway that leads to actin polymerization during mouse sperm capacitation. We observed that most of the proteins of this signaling cascade and their effector proteins are expressed in mouse sperm. The activation of the signaling pathways of cAMP/PKA, RhoA/C and Rac1 is essential for LIMK1 activation by phosphorylation on Threonine 508. Serine 3 of Cofilin is phosphorylated by LIMK1 during capacitation in a transiently manner. Inhibition of LIMK1 by specific inhibitors (BMS-3) resulted in lower levels of actin polymerization during capacitation and a dramatic decrease in the percentage of sperm that undergo acrosomal exocytosis. Thus, we demonstrated for the first time that the master regulators of actin dynamics in somatic cells are present and active in mouse sperm. Combining the results of our present study with other results from the literature, we have proposed a working model regarding how LIMK1 and Cofilin control acrosomal exocytosis in mouse sperm.
Collapse
Affiliation(s)
- Ana Romarowski
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María A Battistone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Florenza A La Spina
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lis del C Puga Molina
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandra M Vitale
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricia S Cuasnicu
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Paige Labs, University of Massachusets, Amherst, MA 01003, USA
| | - Darío Krapf
- Instituto de Biología Molecular y Celular de Rosario (CONICET-UNR), Rosario 2000 Argentina
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
24
|
Plante G, Manjunath P. Murine binder of sperm protein homolog 1: a new player in HDL-induced capacitation. Reproduction 2015; 149:367-76. [DOI: 10.1530/rep-14-0559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Binder of sperm (BSP) proteins are ubiquitous among mammals and are exclusively expressed in male genital tract. The main function associated with BSP proteins is their ability to promote sperm capacitation. In mice, two proteins (BSP protein homolog 1 (BSPH1) and BSPH2) have been studied. Using recombinant strategies, BSPH1 was found to bind to epididymal sperm membranes and promote sperm capacitation in vitro. The goal of this study was to evaluate the role of native murine BSPH1 protein in sperm capacitation induced by BSA and HDLs. The effect of antibodies, antigen-binding fragments (Fabs), and F(ab′)2 specific for murine BSPH1 on BSA- and HDL-induced capacitation was tested. Results indicate that BSPH1 has no direct role in BSA-induced capacitation. However, antibodies, Fabs, and F(ab′)2 could block capacitation induced by HDLs and could inhibit the HDL-induced increase in tyrosine phosphorylation, suggesting a specific interaction between HDLs and BSPH1. Results indicate that murine BSPH1 proteins in mice could be a new important piece of the puzzle in sperm capacitation induced by HDLs. As murine BSPH1 is orthologous to human BSPH1, this study could also lead to new insights into the functions and the importance of the human protein in male fertility.Free French abstractA French translation of this abstract is freely available at http://www.reproduction-online.org/content/149/4/367/suppl/DC1.
Collapse
|
25
|
Soleilhavoup C, Tsikis G, Labas V, Harichaux G, Kohnke P, Dacheux J, Guérin Y, Gatti J, de Graaf S, Druart X. Ram seminal plasma proteome and its impact on liquid preservation of spermatozoa. J Proteomics 2014; 109:245-60. [DOI: 10.1016/j.jprot.2014.07.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/01/2014] [Accepted: 07/07/2014] [Indexed: 12/13/2022]
|
26
|
Identification and Characterization of TEX101 in Bovine Epididymal Spermatozoa. Biochem Res Int 2014; 2014:573293. [PMID: 24818024 PMCID: PMC4003772 DOI: 10.1155/2014/573293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 11/24/2022] Open
Abstract
Several studies exhibit the presence of Ricinus Communis Agglutinin I (RCA) binding glycocalyx in mammalian spermatozoa. However, the molecular characterization of RCA binding glycocalyx in sperm membranes and its mechanism of action are poorly understood. The objective of the study was to identify and to characterize RCA binding glycoprotein of the bovine sperm plasma membranes (PM). Lectin blots of caput and cauda sperm PM revealed a 38 kDa polypeptide exhibiting the highest affinity to RCA among the several major RCA binding polypeptides. The 38 kDa RCA binding polypeptide of cauda sperm PM was purified and exhibited a charge train of three distinct spots with isoelectric points (pH 5.3 and 5.8). Proteomic identification yielded ten peptides that matched the sequence of Testis Expressed 101 protein (TEX101). Western blots data revealed that bovine sperm TEX101 is present in both testicular and epididymal sperm PM fractions. The native TEX101 polypeptide contains ~17 kDa N-linked oligosaccharides and the polypeptide is anchored to sperm membrane via a glycosylphosphatidylinositol lipid linkage. Immunofluorescence staining of sperm with anti-TEX101 demonstrated that the polypeptide is localized at the head of cauda sperm. Our biochemical results provide evidence on the presence of TEX101 in bovine epididymal sperm plasma membranes and may have a potential role in sperm-egg interaction.
Collapse
|
27
|
Sebkova N, Ded L, Vesela K, Dvorakova-Hortova K. Progress of sperm IZUMO1 relocation during spontaneous acrosome reaction. Reproduction 2013; 147:231-40. [PMID: 24277869 DOI: 10.1530/rep-13-0193] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It has been recently shown in mice that sperm undergo acrosome reaction (AR) by passing through cumulus cells; furthermore, the acrosome-reacted sperm can bind to zona pellucida and consequently fertilise the egg. During AR, the relocation of the primary fusion protein IZUMO1 into the equatorial segment is crucial for sperm-egg fusion. There is a high rate of spontaneous AR in rodents, with up to 60% in promiscuous species. The aim of this study was to clarify whether the IZUMO1 relocation in sperm after spontaneous and induced AR is the same, and whether there is a correlation between the speed of IZUMO1 relocation and species-specific mating behaviour in field mice. Immunofluorescent detection of IZUMO1 dynamics during the in vitro capacitation, spontaneous, calcium ionophore and progesterone-induced AR was monitored. Our results show that during spontaneous AR, there is a clear IZUMO1 relocation from the acrosomal cap to the equatorial segment, and further over the whole sperm head. In addition, there is positive tail tyrosine phosphorylation (TyrP) associated with hyperactive motility. Moreover, the beginning and the progress of IZUMO1 relocation and tail TyrP positively correlate with the level of promiscuity and the acrosome instability in promiscuous species. The findings that crucial molecular changes essential for sperm-egg fusion represented by dynamic movements of IZUMO1 also happen during spontaneous AR are vital for understanding fertilisation in mice.
Collapse
|
28
|
Lorenzetti D, Poirier C, Zhao M, Overbeek PA, Harrison W, Bishop CE. A transgenic insertion on mouse chromosome 17 inactivates a novel immunoglobulin superfamily gene potentially involved in sperm-egg fusion. Mamm Genome 2013; 25:141-8. [PMID: 24275887 DOI: 10.1007/s00335-013-9491-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/29/2013] [Indexed: 10/26/2022]
Abstract
Fertilization is the process that leads to the formation of a diploid zygote from two haploid gametes. This is achieved through a complex series of cell-to-cell interactions between a sperm and an egg. The final event of fertilization is the fusion of the gametes' membranes, which allows the delivery of the sperm genetic material into the egg cytoplasm. In vivo studies in the laboratory mouse have led to the discovery of membrane proteins that are essential for the fusion process in both the sperm and egg. Specifically, the sperm protein Izumo1 was shown to be necessary for normal fertility. Izumo1-deficient spermatozoa fail to fuse with the egg plasma membrane. Izumo1 is a member of the Immunoglobulin Superfamily of proteins, which are known to be involved in cell adhesion. Here, we describe BART97b, a new mouse line with a recessive mutation that displays a fertilization block associated with a failure of sperm fusion. BART97b mutants carry a deletion that inactivates Spaca6, a previously uncharacterized gene expressed in testis. Similar to Izumo1, Spaca6 encodes an immunoglobulin-like protein. We propose that the Spaca6 gene product may, together with Izumo1, mediate sperm fusion by binding an as yet unidentified egg membrane receptor.
Collapse
Affiliation(s)
- Diego Lorenzetti
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Medical Center Blvd., Winston Salem, NC, 27157, USA,
| | | | | | | | | | | |
Collapse
|
29
|
Drabovich AP, Dimitromanolakis A, Saraon P, Soosaipillai A, Batruch I, Mullen B, Jarvi K, Diamandis EP. Differential Diagnosis of Azoospermia with Proteomic Biomarkers ECM1 and TEX101 Quantified in Seminal Plasma. Sci Transl Med 2013; 5:212ra160. [DOI: 10.1126/scitranslmed.3006260] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Loza-Huerta A, Vera-Estrella R, Darszon A, Beltrán C. Certain Strongylocentrotus purpuratus sperm mitochondrial proteins co-purify with low density detergent-insoluble membranes and are PKA or PKC-substrates possibly involved in sperm motility regulation. Biochim Biophys Acta Gen Subj 2013; 1830:5305-15. [DOI: 10.1016/j.bbagen.2013.07.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 06/24/2013] [Accepted: 07/27/2013] [Indexed: 12/14/2022]
|
31
|
Amaral A, Castillo J, Ramalho-Santos J, Oliva R. The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum Reprod Update 2013; 20:40-62. [DOI: 10.1093/humupd/dmt046] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
32
|
Buschiazzo J, Ialy-Radio C, Auer J, Wolf JP, Serres C, Lefèvre B, Ziyyat A. Cholesterol depletion disorganizes oocyte membrane rafts altering mouse fertilization. PLoS One 2013; 8:e62919. [PMID: 23638166 PMCID: PMC3636221 DOI: 10.1371/journal.pone.0062919] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 03/29/2013] [Indexed: 11/18/2022] Open
Abstract
Drastic membrane reorganization occurs when mammalian sperm binds to and fuses with the oocyte membrane. Two oocyte protein families are essential for fertilization, tetraspanins and glycosylphosphatidylinositol-anchored proteins. The firsts are associated to tetraspanin-enriched microdomains and the seconds to lipid rafts. Here we report membrane raft involvement in mouse fertilization assessed by cholesterol modulation using methyl-β-cyclodextrin. Cholesterol removal induced: (1) a decrease of the fertilization rate and index; and (2) a delay in the extrusion of the second polar body. Cholesterol repletion recovered the fertilization ability of cholesterol-depleted oocytes, indicating reversibility of these effects. In vivo time-lapse analyses using fluorescent cholesterol permitted to identify the time-point at which the probe is mainly located at the plasma membrane enabling the estimation of the extent of the cholesterol depletion. We confirmed that the mouse oocyte is rich in rafts according to the presence of the raft marker lipid, ganglioside GM1 on the membrane of living oocytes and we identified the coexistence of two types of microdomains, planar rafts and caveolae-like structures, by terms of two differential rafts markers, flotillin-2 and caveolin-1, respectively. Moreover, this is the first report that shows characteristic caveolae-like invaginations in the mouse oocyte identified by electron microscopy. Raft disruption by cholesterol depletion disturbed the subcellular localization of the signal molecule c-Src and the inhibition of Src kinase proteins prevented second polar body extrusion, consistent with a role of Src-related kinases in fertilization via signaling complexes. Our data highlight the functional importance of intact membrane rafts for mouse fertilization and its dependence on cholesterol.
Collapse
Affiliation(s)
- Jorgelina Buschiazzo
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques, F75014 Paris, France
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (UNS-CONICET), Bahía Blanca, Argentina
| | - Come Ialy-Radio
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques, F75014 Paris, France
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques. F75014 Paris, France
| | - Jana Auer
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques, F75014 Paris, France
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques. F75014 Paris, France
| | - Jean-Philippe Wolf
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques, F75014 Paris, France
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques. F75014 Paris, France
- Service d’Histologie Embryologie Biologie de la Reproduction Hôpital Cochin, AP-HP, F75014 Paris, France
| | - Catherine Serres
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques, F75014 Paris, France
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques. F75014 Paris, France
| | - Brigitte Lefèvre
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques, F75014 Paris, France
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques. F75014 Paris, France
| | - Ahmed Ziyyat
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques, F75014 Paris, France
- INSERM U1016, Institut Cochin, Université Paris Descartes, 24 rue du Faubourg Saint-Jacques. F75014 Paris, France
| |
Collapse
|
33
|
Ferrara D, Pariante P, Di Matteo L, Serino I, Oko R, Minucci S. First evidence of prothymosin alpha localization in the acrosome of mammalian male gametes. J Cell Physiol 2013; 228:1629-37. [DOI: 10.1002/jcp.24332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 01/16/2013] [Indexed: 12/27/2022]
|
34
|
Xiao Y, Zhang H, Ahmad S, Bai L, Wang X, Huo L, Zhang X, Li W, Li X, Yang L. Sperm capacitation combined with removal of the sperm acrosome and plasma membrane enhances paternal nucleus remodelling and early development of bovine androgenetic embryos. Reprod Fertil Dev 2013; 25:624-38. [DOI: 10.1071/rd12075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 05/17/2012] [Indexed: 11/23/2022] Open
Abstract
The androgenetic embryo is a useful model for functional analysis of the paternal genome during embryogenesis. However, few studies have focused on the factors involved in the suppressed developmental competence of such embryos or why sperm cloning-derived androgenetic embryos fail to develop beyond the morula stage in large domestic animals. To overcome this developmental failure, we tried to improve sperm decondensation, as well as to enhance embryonic development by sperm capacitation and removal of the acrosome and plasma membrane before injection of the spermatozoa. Before injection of the spermatozoa, we quantified the effects of sperm capacitation combined with sperm pretreatment on the acrosome and plasma membrane status. We also evaluated sperm decondensation potential, sperm viability and chromatin integrity. Immunostaining data showed that the sperm acrosome and plasma membrane could be more efficiently removed after capacitation. Dithiothreitol-induced sperm decondensation potential was improved with capacitation and removal of the acrosome and plasma membrane. Although most spermatozoa lost viability after pretreatment, their chromatin remained integrated. The patterns of paternal chromatin remodelling within uncleaved androgenetic embryos and the nucleus morphology of cleaved embryos indicated that capacitation combined with membrane disruption could make injected spermatozoa decondense synchronously not only with each other, but also with the developmental pace of the ooplasm. We successfully produced androgenetic blastocysts, and efficiency increased with sperm pretreatment. In conclusion, sperm decondensation and the early development of androgenetic embryos were enhanced with sperm capacitation and removal of the acrosome and plasma membrane prior to sperm injection.
Collapse
|
35
|
Maccarrone M. Endocannabinoids as markers of sperm quality: hot spots. Front Endocrinol (Lausanne) 2013; 4:169. [PMID: 24265627 PMCID: PMC3820970 DOI: 10.3389/fendo.2013.00169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mauro Maccarrone
- Center of Integrated Research, Campus Bio-Medico University of Rome, Rome, Italy
- European Center for Brain Research/Santa Lucia Foundation, Rome, Italy
- *Correspondence:
| |
Collapse
|
36
|
Wu Y, Chen X, Wang S, Jiang M, Zheng B, Zhou Q, Bi Y, Zhou Z, Huang X, Sha J. Flotillin-2 is an acrosome-related protein involved in mouse spermiogenesis. J Biomed Res 2012; 26:278-87. [PMID: 23554761 PMCID: PMC3596745 DOI: 10.7555/jbr.26.20120030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/27/2012] [Accepted: 05/03/2012] [Indexed: 11/28/2022] Open
Abstract
Spermatogenesis is a complex process of terminal differentiation by which mature sperms are generated, and it can be divided into three phases: mitosis, meiosis and spermiogenesis. In a previous study, we established a series of proteomic profiles for spermatogenesis to understand the regulation of male fertility and infertility. Here, we further investigated the localization and the role of flotillin-2 in spermiogenesis. Flotillin-2 expression was investigated in the testis of male CD1 mice at various developmental stages of spermatogenesis by using Western blotting, immunohistochemistry and immunofluorescence. Flotillin-2 was knocked down in vivo in three-week-old male mice using intratesticular injection of small inhibitory RNA (siRNA), and sperm abnormalities were assessed three weeks later. Flotillin-2 was expressed at high levels in male germ cells during spermatogenesis. Flotillin-2 immunoreactivity was observed in pachytene spermatocytes as a strong dot-shaped signal and in round spermatids as a sickle-shaped distribution ahead of the acrosome. Immunofluorescence confirmed flotillin-2 was localized in front of the acrosome in round spermatids, indicating that flotillin-2 was localized to the Golgi apparatus. Knockdown of flotillin-2in vivo led to a significant increase in head sperm abnormalities isolated from the cauda epididymis, compared with control siRNA-injected testes. This study indicates that flotillin-2 is a novel Golgi-related protein involved in sperm acrosome biogenesis.
Collapse
Affiliation(s)
- Yibo Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Baltiérrez-Hoyos R, Roa-Espitia AL, Hernández-González EO. The association between CDC42 and caveolin-1 is involved in the regulation of capacitation and acrosome reaction of guinea pig and mouse sperm. Reproduction 2012; 144:123-34. [DOI: 10.1530/rep-11-0433] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the mammalian sperm, the acrosome reaction (AR) is considered to be a regulated secretion that is an essential requirement for physiological fertilization. The AR is the all-or-nothing secretion system that allows for multiple membrane fusion events. It is a Ca2+-regulated exocytosis reaction that has also been shown to be regulated by several signaling pathways. CDC42 has a central role in the regulated exocytosis through the activation of SNARE proteins and actin polymerization. Furthermore, the lipid raft protein caveolin-1 (CAV1) functions as a scaffold and guanine nucleotide dissociation inhibitor protein for CDC42, which is inactivated when associated with CAV1. CDC42 and other RHO proteins have been shown to localize in the acrosome region of mammalian sperm; however, their relationship with the AR is unknown. Here, we present the first evidence that CDC42 and CAV1 could be involved in the regulation of capacitation and the AR. Our findings show that CDC42 is activated early during capacitation, reaching an activation maximum after 20 min of capacitation. Spontaneous and progesterone-induced ARs were inhibited when sperm were capacitated in presence of secramine A, a specific CDC42 inhibitor. CAV1 and CDC42 were co-immunoprecipitated from the membranes of noncapacitated sperm; this association was reduced in capacitated sperm, and our data suggest that the phosphorylation (Tyr14) of CAV1 by c-Src is involved in such reductions. We suggest that CDC42 activation is favored by the disruption of the CAV1–CDC42 interaction, allowing for its participation in the regulation of capacitation and the AR.
Collapse
|
38
|
Singaravelu G, Chatterjee I, Rahimi S, Druzhinina MK, Kang L, Xu XZS, Singson A. The sperm surface localization of the TRP-3/SPE-41 Ca2+ -permeable channel depends on SPE-38 function in Caenorhabditis elegans. Dev Biol 2012; 365:376-83. [PMID: 22425620 PMCID: PMC3337337 DOI: 10.1016/j.ydbio.2012.02.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/25/2012] [Accepted: 02/29/2012] [Indexed: 02/04/2023]
Abstract
Despite undergoing normal development and acquiring normal morphology and motility, mutations in spe-38 or trp-3/spe-41 cause identical phenotypes in Caenorhabditis elegans-mutant sperm fail to fertilize oocytes despite direct contact. SPE-38 is a novel, four-pass transmembrane protein and TRP-3/SPE-41 is a Ca(2+)-permeable channel. Localization of both of these proteins is confined to the membranous organelles (MOs) in undifferentiated spermatids. In mature spermatozoa, SPE-38 is localized to the pseudopod and TRP-3/SPE-41 is localized to the whole plasma membrane. Here we show that the dynamic redistribution of TRP-3/SPE-41 from MOs to the plasma membrane is dependent on SPE-38. In spe-38 mutant spermatozoa, TRP-3/SPE-41 is trapped within the MOs and fails to reach the cell surface despite MO fusion with the plasma membrane. Split-ubiquitin yeast-two-hybrid analyses revealed that the cell surface localization of TRP-3/SPE-41 is likely regulated by SPE-38 through a direct protein-protein interaction mechanism. We have identified sequences that influence the physical interaction between SPE-38 and TRP-3/SPE-41, and show that these sequences in SPE-38 are required for fertility in transgenic animals. Despite the mislocalization of TRP-3/SPE-41 in spe-38 mutant spermatozoa, ionomycin or thapsigargin induced influx of Ca(2+) remains unperturbed. This work reveals a new paradigm for the regulated surface localization of a Ca(2+)-permeable channel.
Collapse
|
39
|
Mannowetz N, Wandernoth P, Wennemuth G. Basigin interacts with both MCT1 and MCT2 in murine spermatozoa. J Cell Physiol 2012; 227:2154-62. [PMID: 21792931 DOI: 10.1002/jcp.22949] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lactate is provided to spermatogenic cells by Sertoli cells as an energy substrate and its transport is regulated by H(+)-monocarboxylate co-transporters (MCTs). In the case of several cell types it is known that MCT1 is associated with basigin and MCT2 with embigin. Here we demonstrate co-localization and co-immunoprecipitation of basigin with both MCT1 and MCT2 in sperm, whereas no interaction with embigin was detectable. An investigation of the functional activity of MCT proteins revealed that it was mainly the application of L-lactate which resulted in a decrease in pH(i) . The pH(i) changes were blocked with α-cyano-4-OH cinnamate and the preference for L-lactate-as opposed to D-Lactate-was demonstrated by the determination of ATP after exposure to both lactate isomers. We propose that basigin interacts with MCT1 and MCT2 to locate them properly in the membrane of spermatogenic cells and that this may enable sperm to utilize lactate as an energy substrate contributing to cell survival.
Collapse
Affiliation(s)
- Nadja Mannowetz
- Department of Anatomy and Cell Biology, Saarland University, Homburg, Germany
| | | | | |
Collapse
|
40
|
Darszon A, Nishigaki T, Beltran C, Treviño CL. Calcium Channels in the Development, Maturation, and Function of Spermatozoa. Physiol Rev 2011; 91:1305-55. [DOI: 10.1152/physrev.00028.2010] [Citation(s) in RCA: 243] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A proper dialogue between spermatozoa and the egg is essential for conception of a new individual in sexually reproducing animals. Ca2+ is crucial in orchestrating this unique event leading to a new life. No wonder that nature has devised different Ca2+-permeable channels and located them at distinct sites in spermatozoa so that they can help fertilize the egg. New tools to study sperm ionic currents, and image intracellular Ca2+ with better spatial and temporal resolution even in swimming spermatozoa, are revealing how sperm ion channels participate in fertilization. This review critically examines the involvement of Ca2+ channels in multiple signaling processes needed for spermatozoa to mature, travel towards the egg, and fertilize it. Remarkably, these tiny specialized cells can express exclusive channels like CatSper for Ca2+ and SLO3 for K+, which are attractive targets for contraception and for the discovery of novel signaling complexes. Learning more about fertilization is a matter of capital importance; societies face growing pressure to counteract rising male infertility rates, provide safe male gamete-based contraceptives, and preserve biodiversity through improved captive breeding and assisted conception initiatives.
Collapse
Affiliation(s)
- Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Takuya Nishigaki
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Carmen Beltran
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Claudia L. Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
41
|
Zhu L, Inaba K. Lipid rafts function in Ca2+ signaling responsible for activation of sperm motility and chemotaxis in the ascidian Ciona intestinalis. Mol Reprod Dev 2011; 78:920-9. [PMID: 21887722 DOI: 10.1002/mrd.21382] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Accepted: 08/06/2011] [Indexed: 11/12/2022]
Abstract
Lipid rafts are specialized membrane microdomains that function as signaling platforms across plasma membranes of many animal and plant cells. Although there are several studies implicating the role of lipid rafts in capacitation of mammalian sperm, the function of these structures in sperm motility activation and chemotaxis remains unknown. In the ascidian Ciona intestinalis, egg-derived sperm activating- and attracting-factor (SAAF) induces both activation of sperm motility and sperm chemotaxis to the egg. Here we found that a lipid raft disrupter, methyl-β-cyclodextrin (MCD), inhibited both SAAF-induced sperm motility activation and chemotaxis. MCD inhibited both SAAF-promoted synthesis of intracellular cyclic AMP and sperm motility induced by ionophore-mediated Ca(2+) entry, but not that induced by valinomycin-mediated hyperpolarization. Ca(2+)-imaging revealed that lipid raft disruption inhibited Ca(2+) influx upon activation of sperm motility. The Ca(2+)-activated adenylyl cyclase was clearly inhibited by MCD in isolated lipid rafts. The results suggest that sperm lipid rafts function in signaling upstream of cAMP synthesis, most likely in SAAF-induced Ca(2+) influx, and are required for Ca(2+)-dependent pathways underlying activation and chemotaxis in Ciona sperm.
Collapse
Affiliation(s)
- Lihong Zhu
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | | |
Collapse
|
42
|
Molecular and cellular mechanisms of mammalian cell fusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:33-64. [PMID: 21432013 DOI: 10.1007/978-94-007-0763-4_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fusion of one cell with another occurs in development, injury and disease. Despite the diversity of fusion events, five steps in sequence appear common. These steps include programming fusion-competent status, chemotaxis, membrane adhesion, membrane fusion, and post-fusion resetting. Recent advances in the field start to reveal the molecules involved in each step. This review focuses on some key molecules and cellular events of cell fusion in mammals. Increasing evidence demonstrates that membrane lipid rafts, adhesion proteins and actin rearrangement are critical in the final step of membrane fusion. Here we propose a new model for the formation and expansion of membrane fusion pores based on recent observations on myotube formation. In this model, membrane lipid rafts first recruit adhesion molecules and align with opposing membranes, with the help of a cortical actin "wall" as a rigid supportive platform. Second, the membrane adhesion proteins interact with each other and trigger actin rearrangement, which leads to rapid dispersion of lipid rafts and flow of a highly fluidic phospholipid bilayer into the site. Finally, the opposing phospholipid bilayers are then pushed into direct contact leading to the formation of fusion pores by the force generated through actin polymerization. The actin polymerization generated force also drives the expansion of the fusion pores. However, several key questions about the process of cell fusion still remain to be explored. The understanding of the mechanisms of cell fusion may provide new opportunities in correcting development disorders or regenerating damaged tissues by inhibiting or promoting molecular events associated with fusion.
Collapse
|
43
|
Hasan AKMM, Fukami Y, Sato KI. Gamete membrane microdomains and their associated molecules in fertilization signaling. Mol Reprod Dev 2011; 78:814-30. [PMID: 21688335 DOI: 10.1002/mrd.21336] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 05/15/2011] [Indexed: 12/19/2022]
Abstract
Fertilization is the fundamental system of biological reproduction in many organisms, including animals, plants, and algae. A growing body of knowledge has emerged to explain how fertilization and activation of development are accomplished. Studies on the molecular mechanisms of fertilization are in progress for a wide variety of multicellular organisms. In this review, we summarize recent findings and debates about the long-standing questions concerning fertilization: how egg and sperm become competent for their interaction with each other, how the binding and fusion of these gamete cells are made possible, and how the fertilized eggs initiate development to a newborn. We will focus on the structure and function of the membrane microdomains (MDs) of egg and sperm that may serve as a platform or signaling center for the aforementioned cellular functions. In particular, we provide evidence that MDs of eggs from the African clawed frog, Xenopus laevis, play a pivotal role in receiving extracellular signals from fertilizing sperm and then transmitting them to the egg cytoplasm, where the tyrosine kinase Src is present and responsible for the subsequent signaling events collectively called egg activation. The presence of a new signaling axis involving uroplakin III, an MD-associated transmembrane protein, and Src in this system will be highlighted and discussed.
Collapse
Affiliation(s)
- A K M Mahbub Hasan
- Laboratory of Cell Signaling and Development, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | | | |
Collapse
|
44
|
Visconti PE, Krapf D, de la Vega-Beltrán JL, Acevedo JJ, Darszon A. Ion channels, phosphorylation and mammalian sperm capacitation. Asian J Androl 2011; 13:395-405. [PMID: 21540868 PMCID: PMC3739340 DOI: 10.1038/aja.2010.69] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 12/17/2022] Open
Abstract
Sexually reproducing animals require an orchestrated communication between spermatozoa and the egg to generate a new individual. Capacitation, a maturational complex phenomenon that occurs in the female reproductive tract, renders spermatozoa capable of binding and fusing with the oocyte, and it is a requirement for mammalian fertilization. Capacitation encompasses plasma membrane reorganization, ion permeability regulation, cholesterol loss and changes in the phosphorylation state of many proteins. Novel tools to study sperm ion channels, image intracellular ionic changes and proteins with better spatial and temporal resolution, are unraveling how modifications in sperm ion transport and phosphorylation states lead to capacitation. Recent evidence indicates that two parallel pathways regulate phosphorylation events leading to capacitation, one of them requiring activation of protein kinase A and the second one involving inactivation of ser/thr phosphatases. This review examines the involvement of ion transporters and phosphorylation signaling processes needed for spermatozoa to achieve capacitation. Understanding the molecular mechanisms leading to fertilization is central for societies to deal with rising male infertility rates, to develop safe male gamete-based contraceptives and to preserve biodiversity through better assisted fertilization strategies.
Collapse
Affiliation(s)
- Pablo E Visconti
- Department of Veterinary and Animal Science, Paige Labs, University of Massachusets, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
45
|
Kawano N, Yoshida K, Miyado K, Yoshida M. Lipid rafts: keys to sperm maturation, fertilization, and early embryogenesis. J Lipids 2011; 2011:264706. [PMID: 21490798 PMCID: PMC3068481 DOI: 10.1155/2011/264706] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/17/2010] [Accepted: 12/17/2010] [Indexed: 12/18/2022] Open
Abstract
Cell membranes are composed of many different lipids and protein receptors, which are important for regulating intracellular functions and cell signaling. To orchestrate these activities, the cell membrane is compartmentalized into microdomains that are stably or transiently formed. These compartments are called "lipid rafts". In gamete cells that lack gene transcription, distribution of lipids and proteins on these lipid rafts is focused during changes in their structure and functions such as starting flagella movement and membrane fusion. In this paper, we describe the role of lipid rafts in gamete maturation, fertilization, and early embryogenesis.
Collapse
Affiliation(s)
- Natsuko Kawano
- Division of Gamete and Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Kaoru Yoshida
- Biomedical Engineering Center, Toin University of Yokohama, Yokohama 225-8502, Japan
| | - Kenji Miyado
- Division of Gamete and Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Manabu Yoshida
- Misaki Marine Biological Station, Graduate School of Science, University of Tokyo, Miura, Kanagawa 238-0225, Japan
| |
Collapse
|
46
|
Zitranski N, Borth H, Ackermann F, Meyer D, Vieweg L, Breit A, Gudermann T, Boekhoff I. The "acrosomal synapse": Subcellular organization by lipid rafts and scaffolding proteins exhibits high similarities in neurons and mammalian spermatozoa. Commun Integr Biol 2010; 3:513-21. [PMID: 21331227 DOI: 10.4161/cib.3.6.13137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 07/23/2010] [Accepted: 07/23/2010] [Indexed: 12/18/2022] Open
Abstract
Mammalian spermatozoa are highly polarized cells composed of two morphological and functional units, each optimized for a special task. Although the apparent division into head and tail may as such represent the anatomical basis to avoid random diffusion of their special sets of signaling proteins and lipids, recent findings demonstrate the presence of lipid raft-derived membrane platforms and specific scaffolding proteins, thus indicating that smaller sub-domains exist in the two functional units of male germ cells. The aim of this review is to summarize new insights into the principles of subcellular organization in mammalian spermatozoa. Special emphasis is placed on recent observations indicating that an "acrosomal synapse" is formed by lipid raft-derived membrane micro-environments and multidomain scaffolding proteins. Both mechanisms appear to be responsible for ensuring the attachment of the huge acrosomal vesicle to the overlaying plasma membrane, as well as for preventing an accidental spontaneous loss of the single acrosome.
Collapse
Affiliation(s)
- Nele Zitranski
- Walther-Straub-Institute of Pharmacology and Toxicology; Ludwig-Maximilians-University; Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Li Y, Sosnik J, Brassard L, Reese M, Spiridonov NA, Bates TC, Johnson GR, Anguita J, Visconti PE, Salicioni AM. Expression and localization of five members of the testis-specific serine kinase (Tssk) family in mouse and human sperm and testis. Mol Hum Reprod 2010; 17:42-56. [PMID: 20729278 DOI: 10.1093/molehr/gaq071] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Members of the testis-specific serine/threonine kinases (Tssk) family may have a role in sperm differentiation in the testis and/or fertilization. To gain insight into the functional relevance of these kinases, their expression was examined both at the mRNA and protein levels. Quantitative PCR analysis confirmed that all five Tssk mRNAs are almost exclusively expressed postmeiotically in the testis. Recombinant mouse and human Tssks were cloned and used for validation of an array of commercial and custom-made antibodies against Tssks. Immunolocalization in mouse testis, and in mouse and human sperm, showed that Tssk1, Tssk2, Tssk4 and Tssk6, but not Tssk3, were present in mouse sperm and in germ cells from mouse testis. TSSK1, TSSK2 and TSSK6 were also detected in human sperm, while TSSK3 was absent. In both mouse and human sperm, Tssk1 was partially soluble, while Tssk2, Tssk4 and Tssk6 were insoluble in non-ionic detergents. In vitro recombinant TSSK2 activity assays showed maximum enzymatic activity at 5 mM Mg(2+) and a Km for ATP of ∼10 µM. These, observations together with findings that the Tssk1/Tssk2 double knock-out as well as the Tssk6 null mice are sterile without presenting other detectable defects, suggest that these kinases could be used as targets for male contraception.
Collapse
Affiliation(s)
- Yahui Li
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sosnik J, Buffone MG, Visconti PE. Analysis of CAPZA3 localization reveals temporally discrete events during the acrosome reaction. J Cell Physiol 2010; 224:575-80. [PMID: 20458735 DOI: 10.1002/jcp.22211] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In mammals, the starting point of development is the fusion between sperm and egg. It is well established that sperm fuse with the egg through the equatorial/post-acrosomal region. Apart from this observation and the requirement of two proteins (CD9 in the egg and IZUMO1 in the sperm) very little is known about this fundamental process. Actin polymerization correlates with sperm capacitation in different mammalian species and it has been proposed that F-actin breakdown is needed during the acrosome reaction. Recently, we have presented evidence that actin polymerization inhibitors block the movement of IZUMO1 that accompany the acrosome reaction. These results suggest that actin dynamics play a role in the observed changes in IZUMO1 localization. This finding is significant because IZUMO1 localization in acrosome-intact sperm is not compatible with the known location of the initiation of the fusion between the sperm and the egg. To further understand the actin-mediated changes in protein localization during the acrosome reaction, the distribution of the sperm-specific plus-end actin capping protein CAPZA3 was analyzed. Like IZUMO1, CAPZA3 shows a dynamic pattern of localization; however, these movements follow a different temporal pattern than the changes observed with IZUMO1. In addition, the actin polymerization inhibitor latrunculin A was unable to alter CAPZA3 movement.
Collapse
Affiliation(s)
- Julian Sosnik
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
50
|
Marcello MR, Evans JP. Multivariate analysis of male reproductive function in Inpp5b-/- mice reveals heterogeneity in defects in fertility, sperm-egg membrane interaction and proteolytic cleavage of sperm ADAMs. Mol Hum Reprod 2010; 16:492-505. [PMID: 20403911 DOI: 10.1093/molehr/gaq029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Past work indicated that sperm from mice deficient in the inositol polyphosphate 5-phosphatase Inpp5b have reduced ability to fertilize eggs in vitro and reduced epididymal proteolytic processing of the sperm protein A Disintegrin and A Metalloprotease 2 (ADAM2). On the basis of these data, our central working hypothesis was that reduced ADAM cleavage would correlate with reduced sperm-egg binding and fusion and in turn with reduced male fertility in Inpp5b(-/-) mice. Multiple endpoints of reproductive functions [mating trials, in vitro fertilization (IVF) assays and ADAM2 and ADAM3 cleavage] were investigated on a male-by-male basis, with pair-wise correlation analysis used to assess the relationships between these various parameters. Motile sperm from Inpp5b(-/-) mice showed significantly reduced fertilization of zona pellucida-free eggs due to reduced binding to the egg plasma membrane and subsequent fusion. Localization of a mouse sperm protein required for gamete fusion, IZUMO1, appears normal in Inpp5b-null sperm. To our surprise and differing from previous reports, we found that ADAM cleavage was only modestly impaired in numerous Inpp5b-null males and varied between individual animals. Performance in mating trials also differed from past reports. The pair-wise correlation analysis revealed that ADAM2 and ADAM3 cleavage was positively correlated, suggesting that processing of these proteins occurs by related/identical mechanisms, but otherwise, there were few correlations between the reproductive endpoints examined here. Nevertheless, this work provides detailed analysis of the Inpp5b(-/-) phenotype and also a blueprint for multivariate analysis to examine relationships between molecular characteristics and in vitro and in vivo physiological functions.
Collapse
Affiliation(s)
- Matthew R Marcello
- Division of Reproductive Biology, Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | |
Collapse
|