1
|
Qu J, Wu X, Wang Q, Wang J, Sun X, Ji D, Li Y. Effect of miR-101 on the Proliferation and Apoptosis of Goat Hair Follicle Stem Cells. Genes (Basel) 2022; 13:genes13061035. [PMID: 35741797 PMCID: PMC9222262 DOI: 10.3390/genes13061035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
The Yangtze River Delta white goat is a rare goat species capable of producing high-quality brush hair. Dual specificity protein phosphatase 1 (DUSP1) may play a role in the formation of high-quality brush hair, as evidenced by our previous research. We investigated the potential mechanisms that regulate the proliferation and apoptosis of goat hair follicle stem cells. We particularly focused on the relationship between DUSP1 and miR-101, which directly targets DUSP1, predicted and screened through bioinformatics websites. Then, fluorescence assays, flow cytometry, RT-qPCR, and Western blotting were used to investigate the effects of miR-101 on the proliferation and apoptosis of hair follicle stem cells. We found that miR-101 overexpression significantly decreased (p < 0.01) apoptosis and promoted the proliferation of hair follicle stem cells. Furthermore, the overexpression of miR-101 increased (p < 0.05) the mRNA and protein expression levels of the proliferation-related gene (PCNA) and anti-apoptotic gene (Bcl-2), and it decreased (p < 0.05) the mRNA and protein expression levels of the apoptotic gene (Bax). In conclusion, miR-101 can promote the proliferation of and inhibit the apoptosis of hair follicle stem cells by targeting DUSP1, which provides a theoretical basis for further elucidating the molecular mechanism that regulates the production of high-quality brush hair of Yangtze River Delta white goats.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongjun Li
- Correspondence: ; Tel.: +86-514-8799-6481
| |
Collapse
|
2
|
Mirczuk SM, Lessey AJ, Catterick AR, Perrett RM, Scudder CJ, Read JE, Lipscomb VJ, Niessen SJ, Childs AJ, McArdle CA, McGonnell IM, Fowkes RC. Regulation and Function of C-Type Natriuretic Peptide (CNP) in Gonadotrope-Derived Cell Lines. Cells 2019; 8:cells8091086. [PMID: 31540096 PMCID: PMC6769446 DOI: 10.3390/cells8091086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/02/2019] [Accepted: 09/12/2019] [Indexed: 01/29/2023] Open
Abstract
C-type natriuretic peptide (CNP) is the most conserved member of the mammalian natriuretic peptide family, and is implicated in the endocrine regulation of growth, metabolism and reproduction. CNP is expressed throughout the body, but is particularly abundant in the central nervous system and anterior pituitary gland. Pituitary gonadotropes are regulated by pulsatile release of gonadotropin releasing hormone (GnRH) from the hypothalamus, to control reproductive function. GnRH and CNP reciprocally regulate their respective signalling pathways in αT3-1 gonadotrope cells, but effects of pulsatile GnRH stimulation on CNP expression has not been explored. Here, we examine the sensitivity of the natriuretic peptide system in LβT2 and αT3-1 gonadotrope cell lines to continuous and pulsatile GnRH stimulation, and investigate putative CNP target genes in gonadotropes. Multiplex RT-qPCR assays confirmed that primary mouse pituitary tissue express Nppc,Npr2 (encoding CNP and guanylyl cyclase B (GC-B), respectively) and Furin (a CNP processing enzyme), but failed to express transcripts for Nppa or Nppb (encoding ANP and BNP, respectively). Pulsatile, but not continuous, GnRH stimulation of LβT2 cells caused significant increases in Nppc and Npr2 expression within 4 h, but failed to alter natriuretic peptide gene expression in αT3-1 cells. CNP enhanced expression of cJun, Egr1, Nr5a1 and Nr0b1, within 8 h in LβT2 cells, but inhibited Nr5a1 expression in αT3-1 cells. Collectively, these data show the gonadotrope natriuretic peptide system is sensitive to pulsatile GnRH signalling, and gonadotrope transcription factors are putative CNP-target genes. Such findings represent additional mechanisms by which CNP may regulate reproductive function.
Collapse
Affiliation(s)
- Samantha M Mirczuk
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, NW1 0TU London, UK.
| | - Andrew J Lessey
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, NW1 0TU London, UK.
| | - Alice R Catterick
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, NW1 0TU London, UK.
| | - Rebecca M Perrett
- Laboratories for Integrative Neuroscience and Endocrinology, Department of Clinical Sciences at South Bristol, University of Bristol, Whitson Street, Bristol, BS13NY, UK.
| | - Christopher J Scudder
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, NW1 0TU London, UK.
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, NW1 0TU London, UK.
| | - Jordan E Read
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, NW1 0TU London, UK.
| | - Victoria J Lipscomb
- Clinical Science and Services, Royal Veterinary College, AL9 7TA Hertfordshire, UK.
| | - Stijn J Niessen
- Clinical Science and Services, Royal Veterinary College, AL9 7TA Hertfordshire, UK.
| | - Andrew J Childs
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, NW1 0TU London, UK.
| | - Craig A McArdle
- Laboratories for Integrative Neuroscience and Endocrinology, Department of Clinical Sciences at South Bristol, University of Bristol, Whitson Street, Bristol, BS13NY, UK.
| | - Imelda M McGonnell
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, NW1 0TU London, UK.
| | - Robert C Fowkes
- Endocrine Signalling Group, Royal Veterinary College, University of London, Royal College Street, NW1 0TU London, UK.
- Comparative Biomedical Sciences, Royal Veterinary College, University of London, Royal College Street, NW1 0TU London, UK.
| |
Collapse
|
3
|
Higa T, Takahashi H, Higa-Nakamine S, Suzuki M, Yamamoto H. Up-regulation of DUSP5 and DUSP6 by gonadotropin-releasing hormone in cultured hypothalamic neurons, GT1-7 cells. Biomed Res 2018; 39:149-158. [PMID: 29899190 DOI: 10.2220/biomedres.39.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is secreted from hypothalamic neurons (GnRH neurons) and stimulates anterior pituitary gonadotrophs to synthesize and secrete gonadotropins. In addition to gonadotrophs, GnRH neurons also express GnRH receptors, and the autocrine action of GnRH is reportedly involved in the regulation of functions of GnRH neurons. There is accumulating evidence that extracellular signal-regulated kinase (ERK), one of mitogen-activated protein kinases (MAPKs), is activated by GnRH and involved in various effects of GnRH in GnRH neurons. In the present study, we performed microarray analysis to examine the types of genes whose expression was regulated by GnRH in immortalized mouse GnRH neurons (GT1-7 cells). We found that 257 genes among 55,681 genes examined were up-regulated after 30-min treatment of GT1-7 cells with GnRH. These up-regulated genes included four dual-specificity MAPK phosphatases (DUSPs), DUSP1, DUSP2, DUSP5, and DUSP6. Reverse transcription-polymerase chain reaction analysis confirmed that the mRNA levels of DUSP5 and DUSP6 were robustly increased within 30 min. U0126, an inhibitor of ERK activation, completely inhibited the increases in the mRNA levels of DUSP5 and DUSP6. Immunoblotting analysis revealed that ERK activation peaked at 5 min and declined steeply at 60 min, whereas DUSP5 and DUSP6 proteins were increased from 60 min. It was notable that down-regulation of DUSP6 augmented GnRH-induced ERK activation approximately 1.7-fold at 60 min. These results suggested that the up-regulation of DUSP6 regulates the duration of ERK activation at least in part.
Collapse
Affiliation(s)
- Teruyuki Higa
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus.,Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus
| | - Hana Takahashi
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus
| | - Sayomi Higa-Nakamine
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus
| | - Mikio Suzuki
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus
| | - Hideyuki Yamamoto
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus
| |
Collapse
|
4
|
Kahnamouyi S, Nouri M, Farzadi L, Darabi M, Hosseini V, Mehdizadeh A. The role of mitogen-activated protein kinase-extracellular receptor kinase pathway in female fertility outcomes: a focus on pituitary gonadotropins regulation. Ther Adv Endocrinol Metab 2018; 9:209-215. [PMID: 29977499 PMCID: PMC6022971 DOI: 10.1177/2042018818772775] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/30/2018] [Indexed: 11/16/2022] Open
Abstract
Mammalian reproduction systems are largely regulated by the secretion of two gonadotropins, that is, luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The main action of LH and FSH on the ovary is to stimulate secretion of estradiol and progesterone, which play an important role in the ovarian function and reproductive cycle control. FSH and LH secretions are strictly controlled by the gonadotropin-releasing hormone (GnRH), which is secreted from the hypothalamus into the pituitary vascular system. Maintaining normal secretion of LH and FSH is dependent on pulsatile secretion of GnRH. Extracellular signal-regulated kinase (ERK) proteins, as the main components of mitogen-activated protein kinase (MAPK) signaling pathways, are involved in the primary regulation of GnRH-stimulated transcription of the gonadotropins' α subunit in the pituitary cells. However, GnRH-stimulated expression of the β subunit has not yet been reported. Furthermore, GnRH-mediated stimulation of ERK1 and ERK2 leads to several important events such as cell proliferation and differentiation. In this review, we briefly introduce the relationship between ERK signaling and gonadotropin secretion, and its importance in female infertility.
Collapse
Affiliation(s)
- Samira Kahnamouyi
- Stem cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Laya Farzadi
- Women Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
5
|
Coss D. Regulation of reproduction via tight control of gonadotropin hormone levels. Mol Cell Endocrinol 2018; 463:116-130. [PMID: 28342855 PMCID: PMC6457911 DOI: 10.1016/j.mce.2017.03.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/16/2017] [Accepted: 03/21/2017] [Indexed: 01/04/2023]
Abstract
Mammalian reproduction is controlled by the hypothalamic-pituitary-gonadal axis. GnRH from the hypothalamus regulates synthesis and secretion of gonadotropins, LH and FSH, which then control steroidogenesis and gametogenesis. In females, serum LH and FSH levels exhibit rhythmic changes throughout the menstrual or estrous cycle that are correlated with pulse frequency of GnRH. Lack of gonadotropins leads to infertility or amenorrhea. Dysfunctions in the tightly controlled ratio due to levels slightly outside the normal range occur in a larger number of women and are correlated with polycystic ovaries and premature ovarian failure. Since the etiology of these disorders is largely unknown, studies in cell and mouse models may provide novel candidates for investigations in human population. Hence, understanding the mechanisms whereby GnRH regulates gonadotropin hormone levels will provide insight into the physiology and pathophysiology of the reproductive system. This review discusses recent advances in our understanding of GnRH regulation of gonadotropin synthesis.
Collapse
Affiliation(s)
- Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA 92521, United States.
| |
Collapse
|
6
|
Stamatiades GA, Kaiser UB. Gonadotropin regulation by pulsatile GnRH: Signaling and gene expression. Mol Cell Endocrinol 2018; 463:131-141. [PMID: 29102564 PMCID: PMC5812824 DOI: 10.1016/j.mce.2017.10.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 12/12/2022]
Abstract
The precise orchestration of hormonal regulation at all levels of the hypothalamic-pituitary-gonadal axis is essential for normal reproductive function and fertility. The pulsatile secretion of hypothalamic gonadotropin-releasing hormone (GnRH) stimulates the synthesis and release of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) by pituitary gonadotropes. GnRH acts by binding to its high affinity seven-transmembrane receptor (GnRHR) on the cell surface of anterior pituitary gonadotropes. Different signaling cascades and transcriptional mechanisms are activated, depending on the variation in GnRH pulse frequency, to stimulate the synthesis and release of FSH and LH. While changes in GnRH pulse frequency may explain some of the differential regulation of FSH and LH, other factors, such as activin, inhibin and sex steroids, also contribute to gonadotropin production. In this review, we focus on the transcriptional regulation of the gonadotropin subunit genes and the signaling pathways activated by pulsatile GnRH.
Collapse
Affiliation(s)
- George A Stamatiades
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
7
|
Ruf-Zamojski F, Fribourg M, Ge Y, Nair V, Pincas H, Zaslavsky E, Nudelman G, Tuminello SJ, Watanabe H, Turgeon JL, Sealfon SC. Regulatory Architecture of the LβT2 Gonadotrope Cell Underlying the Response to Gonadotropin-Releasing Hormone. Front Endocrinol (Lausanne) 2018; 9:34. [PMID: 29487567 PMCID: PMC5816955 DOI: 10.3389/fendo.2018.00034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/24/2018] [Indexed: 12/26/2022] Open
Abstract
The LβT2 mouse pituitary cell line has many characteristics of a mature gonadotrope and is a widely used model system for studying the developmental processes and the response to gonadotropin-releasing hormone (GnRH). The global epigenetic landscape, which contributes to cell-specific gene regulatory mechanisms, and the single-cell transcriptome response variation of LβT2 cells have not been previously investigated. Here, we integrate the transcriptome and genome-wide chromatin accessibility state of LβT2 cells during GnRH stimulation. In addition, we examine cell-to-cell variability in the transcriptional response to GnRH using Gel bead-in-Emulsion Drop-seq technology. Analysis of a bulk RNA-seq data set obtained 45 min after exposure to either GnRH or vehicle identified 112 transcripts that were regulated >4-fold by GnRH (FDR < 0.05). The top regulated transcripts constitute, as determined by Bayesian massive public data integration analysis, a human pituitary-relevant coordinated gene program. Chromatin accessibility [assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq)] data sets generated from GnRH-treated LβT2 cells identified more than 58,000 open chromatin regions, some containing notches consistent with bound transcription factor footprints. The study of the most prominent open regions showed that 75% were in transcriptionally active promoters or introns, supporting their involvement in active transcription. Lhb, Cga, and Egr1 showed significantly open chromatin over their promoters. While Fshb was closed over its promoter, several discrete significantly open regions were found at -40 to -90 kb, which may represent novel upstream enhancers. Chromatin accessibility determined by ATAC-seq was associated with high levels of gene expression determined by RNA-seq. We obtained high-quality single-cell Gel bead-in-Emulsion Drop-seq transcriptome data, with an average of >4,000 expressed genes/cell, from 1,992 vehicle- and 1,889 GnRH-treated cells. While the individual cell expression patterns showed high cell-to-cell variation, representing both biological and measurement variation, the average expression patterns correlated well with bulk RNA-seq data. Computational assignment of each cell to its precise cell cycle phase showed that the response to GnRH was unaffected by cell cycle. To our knowledge, this study represents the first genome-wide epigenetic and single-cell transcriptomic characterization of this important gonadotrope model. The data have been deposited publicly and should provide a resource for hypothesis generation and further study.
Collapse
Affiliation(s)
- Frederique Ruf-Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Miguel Fribourg
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Yongchao Ge
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Venugopalan Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Elena Zaslavsky
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, United States
| | - German Nudelman
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Stephanie J. Tuminello
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Hideo Watanabe
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | | | - Stuart C. Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, United States
- Departments of Neuroscience and Pharmacological Sciences, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, United States
- *Correspondence: Stuart C. Sealfon,
| |
Collapse
|
8
|
Stern E, Ruf-Zamojski F, Zalepa-King L, Pincas H, Choi SG, Peskin CS, Hayot F, Turgeon JL, Sealfon SC. Modeling and high-throughput experimental data uncover the mechanisms underlying Fshb gene sensitivity to gonadotropin-releasing hormone pulse frequency. J Biol Chem 2017; 292:9815-9829. [PMID: 28385888 DOI: 10.1074/jbc.m117.783886] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/06/2017] [Indexed: 11/06/2022] Open
Abstract
Neuroendocrine control of reproduction by brain-secreted pulses of gonadotropin-releasing hormone (GnRH) represents a longstanding puzzle about extracellular signal decoding mechanisms. GnRH regulates the pituitary gonadotropin's follicle-stimulating hormone (FSH) and luteinizing hormone (LH), both of which are heterodimers specified by unique β subunits (FSHβ/LHβ). Contrary to Lhb, Fshb gene induction has a preference for low-frequency GnRH pulses. To clarify the underlying regulatory mechanisms, we developed three biologically anchored mathematical models: 1) parallel activation of Fshb inhibitory factors (e.g. inhibin α and VGF nerve growth factor-inducible), 2) activation of a signaling component with a refractory period (e.g. G protein), and 3) inactivation of a factor needed for Fshb induction (e.g. growth differentiation factor 9). Simulations with all three models recapitulated the Fshb expression levels obtained in pituitary gonadotrope cells perifused with varying GnRH pulse frequencies. Notably, simulations altering average concentration, pulse duration, and pulse frequency revealed that the apparent frequency-dependent pattern of Fshb expression in model 1 actually resulted from variations in average GnRH concentration. In contrast, models 2 and 3 showed "true" pulse frequency sensing. To resolve which components of this GnRH signal induce Fshb, we developed a high-throughput parallel experimental system. We analyzed over 4,000 samples in experiments with varying near-physiological GnRH concentrations and pulse patterns. Whereas Egr1 and Fos genes responded only to variations in average GnRH concentration, Fshb levels were sensitive to both average concentration and true pulse frequency. These results provide a foundation for understanding the role of multiple regulatory factors in modulating Fshb gene activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Charles S Peskin
- the Courant Institute of Mathematical Sciences and Center for Neural Science, New York University, New York, New York 10012, and
| | | | - Judith L Turgeon
- the Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of California, Davis, California 95616
| | - Stuart C Sealfon
- From the Department of Neurology and .,the Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
9
|
Jayaram S, Gupta MK, Raju R, Gautam P, Sirdeshmukh R. Multi-Omics Data Integration and Mapping of Altered Kinases to Pathways Reveal Gonadotropin Hormone Signaling in Glioblastoma. ACTA ACUST UNITED AC 2016; 20:736-746. [DOI: 10.1089/omi.2016.0142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Savita Jayaram
- Institute of Bioinformatics, International Tech Park, Bangalore, India
- School of Life Sciences, Manipal University, Manipal, India
| | - Manoj Kumar Gupta
- Institute of Bioinformatics, International Tech Park, Bangalore, India
- School of Life Sciences, Manipal University, Manipal, India
| | - Rajesh Raju
- Computational Biology and Bioinformatics, Rajiv Gandhi Center for Biotechnology, Thiruvananthapuram, India
| | - Poonam Gautam
- National Institute of Pathology, ICMR, New Delhi, India
| | - Ravi Sirdeshmukh
- Institute of Bioinformatics, International Tech Park, Bangalore, India
- Mazumdar Shaw Centre for Translational Research, Narayana Hrudayalaya Health City, Bangalore, India
| |
Collapse
|
10
|
Interactions between Two Different G Protein-Coupled Receptors in Reproductive Hormone-Producing Cells: The Role of PACAP and Its Receptor PAC1R. Int J Mol Sci 2016; 17:ijms17101635. [PMID: 27681724 PMCID: PMC5085668 DOI: 10.3390/ijms17101635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/10/2016] [Accepted: 09/19/2016] [Indexed: 12/22/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) and gonadotropins are indispensable hormones for maintaining female reproductive functions. In a similar manner to other endocrine hormones, GnRH and gonadotropins are controlled by their principle regulators. Although it has been previously established that GnRH regulates the synthesis and secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH)—both gonadotropins—from pituitary gonadotrophs, it has recently become clear that hypothalamic GnRH is under the control of hypothalamic kisspeptin. Prolactin, which is also known as luteotropic hormone and is released from pituitary lactotrophs, stimulates milk production in mammals. Prolactin is also regulated by hypothalamic factors, and it is thought that prolactin synthesis and release are principally under inhibitory control by dopamine through the dopamine D2 receptor. In addition, although it remains unknown whether it is a physiological regulator, thyrotropin-releasing hormone (TRH) is a strong secretagogue for prolactin. Thus, GnRH, LH and FSH, and prolactin are mainly regulated by hypothalamic kisspeptin, GnRH, and TRH, respectively. However, the synthesis and release of these hormones is also modulated by other neuropeptides in the hypothalamus. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a hypothalamic peptide that was first isolated from sheep hypothalamic extracts based on its ability to stimulate cAMP production in anterior pituitary cells. PACAP acts on GnRH neurons and pituitary gonadotrophs and lactotrophs, resulting in the modulation of their hormone producing/secreting functions. Furthermore, the presence of the PACAP type 1 receptor (PAC1R) has been demonstrated in these cells. We have examined how PACAP and PAC1R affect GnRH- and pituitary hormone-secreting cells and interact with their principle regulators. In this review, we describe our understanding of the role of PACAP and PAC1R in the regulation of GnRH neurons, gonadotrophs, and lactotrophs, which are regulated mainly by kisspeptin, GnRH, and TRH, respectively.
Collapse
|
11
|
Ulloa-Aguirre A, Lira-Albarrán S. Clinical Applications of Gonadotropins in the Male. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:121-174. [PMID: 27697201 DOI: 10.1016/bs.pmbts.2016.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pituitary gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) play a pivotal role in reproduction. The synthesis and secretion of gonadotropins are regulated by complex interactions among several endocrine, paracrine, and autocrine factors of diverse chemical structure. In men, LH regulates the synthesis of androgens by the Leydig cells, whereas FSH promotes Sertoli cell function and thereby influences spermatogenesis. Gonadotropins are complex molecules composed of two subunits, the α- and β-subunit, that are noncovalently associated. Gonadotropins are decorated with glycans that regulate several functions of the protein including folding, heterodimerization, stability, transport, conformational maturation, efficiency of heterodimer secretion, metabolic fate, interaction with their cognate receptor, and selective activation of signaling pathways. A number of congenital and acquired abnormalities lead to gonadotropin deficiency and hypogonadotropic hypogonadism, a condition amenable to treatment with exogenous gonadotropins. Several natural and recombinant preparations of gonadotropins are currently available for therapeutic purposes. The difference between natural and the currently available recombinant preparations (which are massively produced in Chinese hamster ovary cells for commercial purposes) mainly lies in the abundance of some of the carbohydrates that conform the complex glycans attached to the protein core. Whereas administration of exogenous gonadotropins in patients with isolated congenital hypogonadotropic hypogonadism is a well recognized therapeutic approach, their role in treating men with normogonadotropic idiopathic infertility is still controversial. This chapter concentrates on the main structural and functional features of the gonadotropin hormones and how basic concepts have been translated into the clinical arena to guide therapy for gonadotropin deficit in males.
Collapse
Affiliation(s)
- A Ulloa-Aguirre
- Research Support Network, Universidad Nacional Autónoma de México (UNAM)-National Institutes of Health, Mexico City, Mexico.
| | - S Lira-Albarrán
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
12
|
CHENG PENG, ZHU SHUYING, JUN LI, HUANG LIHUA, HONG YAHUI. Production of DUSP1 protein using the baculovirus insect cell expression system and its in vitro effects on cancer cells. Int J Mol Med 2015; 35:1715-9. [DOI: 10.3892/ijmm.2015.2179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 04/06/2015] [Indexed: 11/06/2022] Open
|
13
|
Kanasaki H, Oride A, Kyo S. Role of pituitary adenylate cyclase-activating polypeptide in modulating hypothalamus-pituitary neuroendocrine functions in mouse cell models. J Neuroendocrinol 2015; 27:1-7. [PMID: 25303162 DOI: 10.1111/jne.12230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 09/10/2014] [Accepted: 10/03/2014] [Indexed: 12/15/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) was originally identified as a hypothalamic activator of cyclic adenosine monophosphate production in pituitary cells. PACAP and its receptor are expressed not only in the central nervous system, but also in peripheral organs, and function to stimulate pituitary hormone synthesis and secretion as both a hypothalamic-pituitary-releasing factor and an autocrine-paracrine factor within the pituitary. PACAP stimulates the expression of the gonadotrophin α, luteinising hormone (LH) β and follicle-stimulating hormone (FSH) β subunits, as well as the gonadotrophin-releasing hormone (GnRH) receptor and its own PACAP type I receptor (PAC1R) in gonadotrophin-secreting pituitary cells. In turn, GnRH, which is known to be a crucial component of gonadotrophin secretion, stimulates the expression of PACAP and PAC1R in gonadotrophs. In addition, PAC1R and PACAP modulate the functions of GnRH-producing neurones in the hypothalamus. This review summarises the current understanding of the possible roles of PACAP and PAC1R in modulating hypothalamus and pituitary neuroendocrine cells in the mouse models.
Collapse
Affiliation(s)
- H Kanasaki
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo, Japan
| | | | | |
Collapse
|
14
|
Choi SG, Wang Q, Jia J, Pincas H, Turgeon JL, Sealfon SC. Growth differentiation factor 9 (GDF9) forms an incoherent feed-forward loop modulating follicle-stimulating hormone β-subunit (FSHβ) gene expression. J Biol Chem 2014; 289:16164-75. [PMID: 24778184 DOI: 10.1074/jbc.m113.537696] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is secreted in brief pulses from the hypothalamus and regulates follicle-stimulating hormone β-subunit (FSHβ) gene expression in pituitary gonadotropes in a frequency-sensitive manner. The mechanisms underlying its preferential and paradoxical induction of FSHβ by low frequency GnRH pulses are incompletely understood. Here, we identify growth differentiation factor 9 (GDF9) as a GnRH-suppressed autocrine inducer of FSHβ gene expression. GDF9 gene transcription and expression were preferentially decreased by high frequency GnRH pulses. GnRH regulation of GDF9 was concentration-dependent and involved ERK and PKA. GDF9 knockdown or immunoneutralization reduced FSHβ mRNA expression. Conversely, exogenous GDF9 induced FSHβ expression in immortalized gonadotropes and in mouse primary pituitary cells. GDF9 exposure increased FSH secretion in rat primary pituitary cells. GDF9 induced Smad2/3 phosphorylation, which was impeded by ALK5 knockdown and by activin receptor-like kinase (ALK) receptor inhibitor SB-505124, which also suppressed FSHβ expression. Smad2/3 knockdown indicated that FSHβ induction by GDF9 involved Smad2 and Smad3. FSHβ mRNA induction by GDF9 and GnRH was synergistic. We hypothesized that GDF9 contributes to a regulatory loop that tunes the GnRH frequency-response characteristics of the FSHβ gene. To test this, we determined the effects of GDF9 knockdown on FSHβ induction at different GnRH pulse frequencies using a parallel perifusion system. Reduction of GDF9 shifted the characteristic pattern of GnRH pulse frequency sensitivity. These results identify GDF9 as contributing to an incoherent feed-forward loop, comprising both intracellular and secreted components, that regulates FSHβ expression in response to activation of cell surface GnRH receptors.
Collapse
Affiliation(s)
- Soon Gang Choi
- From the Center for Translational Systems Biology and Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| | - Qian Wang
- From the Center for Translational Systems Biology and Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| | - Jingjing Jia
- From the Center for Translational Systems Biology and Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| | - Hanna Pincas
- From the Center for Translational Systems Biology and Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| | - Judith L Turgeon
- the Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of California, Davis, California 95616
| | - Stuart C Sealfon
- From the Center for Translational Systems Biology and Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| |
Collapse
|
15
|
Thompson IR, Kaiser UB. GnRH pulse frequency-dependent differential regulation of LH and FSH gene expression. Mol Cell Endocrinol 2014; 385:28-35. [PMID: 24056171 PMCID: PMC3947649 DOI: 10.1016/j.mce.2013.09.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 12/14/2022]
Abstract
The pituitary gonadotropin hormones, FSH and LH, are essential for fertility. Containing an identical α-subunit (CGA), they are comprised of unique β-subunits, FSHβ and LHβ, respectively. These two hormones are regulated by the hypothalamic decapeptide, GnRH, which is released in a pulsatile manner from GnRH neurons located in the hypothalamus. Varying frequencies of pulsatile GnRH stimulate distinct signaling pathways and transcriptional machinery after binding to the receptor, GnRHR, on the cell surface of anterior pituitary gonadotropes. This ligand-receptor binding and activation orchestrates the synthesis and release of FSH and LH, in synergy with other effectors of gonadotropin production, such as activin, inhibin and steroids. Current research efforts aim to discover the mechanisms responsible for the decoding of the GnRH pulse signal by the gonadotrope. Modulating the response to GnRH has the potential to lead to new therapies for patients with altered gonadotropin secretion, such as those with hypothalamic amenorrhea or polycystic ovarian syndrome.
Collapse
Affiliation(s)
- Iain R Thompson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
16
|
Pincas H, Choi SG, Wang Q, Jia J, Turgeon JL, Sealfon SC. Outside the box signaling: secreted factors modulate GnRH receptor-mediated gonadotropin regulation. Mol Cell Endocrinol 2014; 385:56-61. [PMID: 23994024 PMCID: PMC3964483 DOI: 10.1016/j.mce.2013.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 12/24/2022]
Abstract
Control of gene expression following activation of membrane receptors results from the regulation of intracellular signaling pathways and transcription factors. Accordingly, research to elucidate the regulatory control circuits and cellular data processing mechanisms focuses on intracellular mechanisms. While autocrine and paracrine signaling are acknowledged in endocrinology, secreted factors are not typically recognized as fundamental components of the pathways connecting cell surface receptors to gene control in the nucleus. Studies of the gonadotrope suggest that extracellular regulatory loops may play a central role in the regulation of gonadotropin gene expression by gonadotropin-releasing hormone (GnRH) receptor activation. We review emerging evidence for this phenomenon, which we refer to as exosignaling, in gonadotropin gene control and in other receptor-mediated signaling systems. We propose that basic signaling circuit modules controlling gene expression can be seamlessly distributed across intracellular and exosignaling components that together orchestrate the precise physiological control of gene expression.
Collapse
Affiliation(s)
- Hanna Pincas
- Department of Neurology, Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Soon Gang Choi
- Department of Neurology, Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Qian Wang
- Department of Neurology, Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Jingjing Jia
- Department of Neurology, Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Judith L Turgeon
- Division of Endocrinology, Department of Internal Medicine, School of Medicine, University of California, Davis, CA 95616, United States.
| | - Stuart C Sealfon
- Department of Neurology, Center for Translational Systems Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
17
|
Mamo S, Mehta JP, Forde N, McGettigan P, Lonergan P. Conceptus-endometrium crosstalk during maternal recognition of pregnancy in cattle. Biol Reprod 2012; 87:6, 1-9. [PMID: 22517619 DOI: 10.1095/biolreprod.112.099945] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Successful growth and development of the posthatching blastocyst and pregnancy establishment are a result of the interaction between a competent embryo and a receptive uterine environment. We examined the global transcriptome profiles of the Day 16 bovine conceptus and pregnant endometrium tissues using RNA-Seq to identify genes that contribute to the dialogue during the period of pregnancy recognition. Using stringent filtering criterion, a total of 16 018 and 16 262 transcripts of conceptus and pregnant endometrium origin, respectively, were identified with distinct tissue-specific expression profiles. Of these, 2261 and 2505 transcripts were conceptus and endometrium specific. Using Cytoscape software, a total of 133 conceptus ligands that interact with corresponding receptors on the endometrium and 121 endometrium ligands that interact with corresponding receptors on the conceptus were identified. While 87 ligands were commonly detected, 46 were conceptus specific and 34 endometrium specific. This study is one of the first to provide a comprehensive list of potentially secreted molecules in the conceptus that interact with receptors on the endometrium and vice versa during the critical window of maternal recognition of pregnancy. The identified tissue-specific genes may serve as candidates to study pregnancy recognition and they or downstream products may represent potential early markers of pregnancy.
Collapse
Affiliation(s)
- Solomon Mamo
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
18
|
Extracellular Signal-Regulated Kinase (ERK) Activation and Mitogen-Activated Protein Kinase Phosphatase 1 Induction by Pulsatile Gonadotropin-Releasing Hormone in Pituitary Gonadotrophs. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:198527. [PMID: 22235371 PMCID: PMC3253478 DOI: 10.1155/2012/198527] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 09/25/2011] [Indexed: 12/03/2022]
Abstract
The frequency of gonadotropin-releasing hormone (GnRH) pulse secreted from the hypothalamus differently regulates the expressions of gonadotropin subunit genes, luteinizing hormone β (LHβ) and follicle-stimulating hormone β (FSHβ), in the pituitary gonadotrophs. FSHβ is preferentially stimulated at slower GnRH pulse frequencies, whereas LHβ is preferentially stimulated at more rapid pulse frequencies. Several signaling pathways are activated, including mitogen-activated protein kinase (MAPK), protein kinase C, calcium influx, and calcium-calmodulin kinases, and these may be preferentially regulated under certain conditions. Previous studies demonstrated that MAPK pathways, especially the extracellular signal-regulated kinase (ERK), play an essential role for induction of gonadotropin subunit gene expression by GnRH, whereas, MAPK phosphatases (MKPs) inactivate MAPKs through dephosphorylation of threonine and/or tyrosine residues. MKPs are also induced by GnRH, and potential feedback regulation between MAPK signaling and MKPs within the GnRH signaling pathway is evident in gonadotrophs. In this paper, we reviewed and mainly focused on our observations of the pattern of ERK activation and the induction of MKP by different frequencies of GnRH stimulation.
Collapse
|