1
|
Choi HY, Zhu Y, Zhao X, Mehta S, Hernandez JC, Lee JJ, Kou Y, Machida R, Giacca M, Del Sal G, Ray R, Eoh H, Tahara SM, Chen L, Tsukamoto H, Machida K. NOTCH localizes to mitochondria through the TBC1D15-FIS1 interaction and is stabilized via blockade of E3 ligase and CDK8 recruitment to reprogram tumor-initiating cells. Exp Mol Med 2024; 56:461-477. [PMID: 38409448 PMCID: PMC10907578 DOI: 10.1038/s12276-024-01174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/28/2023] [Accepted: 12/06/2023] [Indexed: 02/28/2024] Open
Abstract
The P53-destabilizing TBC1D15-NOTCH protein interaction promotes self-renewal of tumor-initiating stem-like cells (TICs); however, the mechanisms governing the regulation of this pathway have not been fully elucidated. Here, we show that TBC1D15 stabilizes NOTCH and c-JUN through blockade of E3 ligase and CDK8 recruitment to phosphodegron sequences. Chromatin immunoprecipitation (ChIP-seq) analysis was performed to determine whether TBC1D15-dependent NOTCH1 binding occurs in TICs or non-TICs. The TIC population was isolated to evaluate TBC1D15-dependent NOTCH1 stabilization mechanisms. The tumor incidence in hepatocyte-specific triple knockout (Alb::CreERT2;Tbc1d15Flox/Flox;Notch1Flox/Flox;Notch2Flox/Flox;HCV-NS5A) Transgenic (Tg) mice and wild-type mice was compared after being fed an alcohol-containing Western diet (WD) for 12 months. The NOTCH1-TBC1D15-FIS1 interaction resulted in recruitment of mitochondria to the perinuclear region. TBC1D15 bound to full-length NUMB and to NUMB isoform 5, which lacks three Ser phosphorylation sites, and relocalized NUMB5 to mitochondria. TBC1D15 binding to NOTCH1 blocked CDK8- and CDK19-mediated phosphorylation of the NOTCH1 PEST phosphodegron to block FBW7 recruitment to Thr-2512 of NOTCH1. ChIP-seq analysis revealed that TBC1D15 and NOTCH1 regulated the expression of genes involved in mitochondrial metabolism-related pathways required for the maintenance of TICs. TBC1D15 inhibited CDK8-mediated phosphorylation to stabilize NOTCH1 and protect it from degradation The NUMB-binding oncoprotein TBC1D15 rescued NOTCH1 from NUMB-mediated ubiquitin-dependent degradation and recruited NOTCH1 to the mitochondrial outer membrane for the generation and expansion of liver TICs. A NOTCH-TBC1D15 inhibitor was found to inhibit NOTCH-dependent pathways and exhibited potent therapeutic effects in PDX mouse models. This unique targeting of the NOTCH-TBC1D15 interaction not only normalized the perinuclear localization of mitochondria but also promoted potent cytotoxic effects against TICs to eradicate patient-derived xenografts through NOTCH-dependent pathways.
Collapse
Affiliation(s)
- Hye Yeon Choi
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Yicheng Zhu
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Xuyao Zhao
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Simran Mehta
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Juan Carlos Hernandez
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Jae-Jin Lee
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Yi Kou
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Risa Machida
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Ratna Ray
- Saint Louis University, School of Medicine, St Louis, MO, USA
| | - Hyungjin Eoh
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Stanley M Tahara
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Lin Chen
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hidekazu Tsukamoto
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA
| | - Keigo Machida
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA.
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Kumari M, Krishnamurthy PT, Pinduprolu SKSS, Sola P. DR-5 and DLL-4 mAb Functionalized SLNs of Gamma-Secretase Inhibitors- An Approach for TNBC Treatment. Adv Pharm Bull 2021; 11:618-623. [PMID: 34888208 PMCID: PMC8642801 DOI: 10.34172/apb.2021.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/06/2020] [Accepted: 10/17/2020] [Indexed: 12/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and heterogeneous cancer subtypes. High rates of metastasis, poor prognosis, and drug resistance are the major problems associated with TNBC. The current chemotherapeutics eliminate only the bulk tumor cells (non-BCSCs) and do not affect breast cancer stem cells (BCSCs). The BCSCs which are left behind after chemotherapy is reported to promote recurrence and metastasis of TNBC. Death receptor-5 (DR-5) is exclusively expressed in TNBCs and mediates the extrinsic pathway of apoptosis. DR-5, therefore, can be exploited for targeted drug delivery and to induce apoptosis. Gamma-secretase mediated Notch signaling in BCSCs regulates its proliferation, differentiation, and metastasis. The endogenous ligand, Delta-like ligand 4 (DLL4), is reported to activate this Notch signaling in TNBC. Blocking this signaling pathway using both gamma-secretase inhibitors (GSIs) and DLL4 monoclonal antibody (mAb) may produce synergistic benefits. Further, the GSIs (DAPT, LY-411575, RO4929097, MK0752, etc.) suffer from poor bioavailability and off-target side effects such as diarrhea, suppression of lymphopoiesis, headache, hypertension, fatigue, and ventricular dysfunctions. In this hypothesis, we discuss Solid lipid nanoparticles (SLNs) based drug delivery systems containing GSIs and surface modified with DR-5 and DLL4 monoclonal antibodies (mAb) to effectivity target and treat TNBC. The delivery system is designed to deliver the drug cargo precisely to TNBCs through its DR-5 receptors and hence expected to reduce the off-target side effects of GSIs. Further, DLL4 mAb and GSIs are expected to act synergistically to block the Notch signal mediated BCSCs proliferation, differentiation, and metastasis.
Collapse
Affiliation(s)
- Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Sai Kiran S S Pinduprolu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| | - Piyongsola Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, India
| |
Collapse
|
3
|
Guo R, Chen F, Shi Z. Suppression of Notch Signaling Stimulates Progesterone Synthesis by Enhancing the Expression of NR5A2 and NR2F2 in Porcine Granulosa Cells. Genes (Basel) 2020; 11:genes11020120. [PMID: 31978970 PMCID: PMC7073743 DOI: 10.3390/genes11020120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/18/2020] [Indexed: 02/07/2023] Open
Abstract
The conserved Notch pathway is reported to be involved in progesterone synthesis and secretion; however, the exact effects remain controversial. To determine the role and potential mechanisms of the Notch signaling pathway in progesterone biosynthesis in porcine granulosa cells (pGCs), we first used a pharmacological γ-secretase inhibitor, N-(N-(3,5-difluorophenacetyl-l-alanyl))-S-phenylglycine t-butyl ester (DAPT), to block the Notch pathway in cultured pGCs and then evaluated the expression of genes in the progesterone biosynthesis pathway and key transcription factors (TFs) regulating steroidogenesis. We found that DAPT dose- and time-dependently increased progesterone secretion. The expression of steroidogenic proteins NPC1 and StAR and two TFs, NR5A2 and NR2F2, was significantly upregulated, while the expression of HSD3B was significantly downregulated. Furthermore, knockdown of both NR5A2 and NR2F2 with specific siRNAs blocked the upregulatory effects of DAPT on progesterone secretion and reversed the effects of DAPT on the expression of NPC1, StAR, and HSD3B. Moreover, knockdown of NR5A2 and NR2F2 stimulated the expression of Notch3. In conclusion, the inhibition of Notch signaling stimulated progesterone secretion by enhancing the expression of NPC1 and StAR, and the two TFs NR5A2 and NR2F2 acted as downstream TFs of Notch signaling in regulating progesterone synthesis.
Collapse
Affiliation(s)
- Rihong Guo
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Fang Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Zhendan Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
- Correspondence:
| |
Collapse
|
4
|
Accialini P, Bechis A, Irusta G, Bianchi MS, Parborell F, Abramovich D, Tesone M. Modulation of the Notch System in Response to Wnt Inhibition Induces Restoration of the Rat Luteal Function. Reprod Sci 2020; 27:503-512. [PMID: 32046463 DOI: 10.1007/s43032-019-00043-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 06/13/2019] [Indexed: 12/16/2022]
Abstract
The aim of this study was to investigate whether the Notch pathway is modulated in response to the downregulation of the Wnt/Β-catenin system in corpora lutea (CLs) from superovulated rats. To this end, we analyzed the effect of in vitro CL Wnt/Β-catenin inhibition on the expression of Notch members and on luteal function. Mechanically isolated rat CLs were cultured with ICG-001, a Wnt/B-catenin inhibitor. In this system, Wnt/B-catenin inhibition reduced progesterone production and decreased StAR protein levels. Besides, Wnt/B-catenin inhibition stimulated the Notch system, evidenced by an increase in Hes1 expression, and promoted the expression of selected Notch family members. At long incubation times, StAR levels and progesterone concentration reached the control values, effects probably mediated by the Notch pathway. These results provide the first evidence of a compensatory mechanism between Wnt/B-catenin signaling and the Notch system, which contributes to the homeostasis of luteal cells.
Collapse
Affiliation(s)
- Paula Accialini
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Andrés Bechis
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Griselda Irusta
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Maria Silvia Bianchi
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Fernanda Parborell
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Dalhia Abramovich
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Marta Tesone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Kfir S, Basavaraja R, Wigoda N, Ben-Dor S, Orr I, Meidan R. Genomic profiling of bovine corpus luteum maturation. PLoS One 2018; 13:e0194456. [PMID: 29590145 PMCID: PMC5874041 DOI: 10.1371/journal.pone.0194456] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/02/2018] [Indexed: 12/20/2022] Open
Abstract
To unveil novel global changes associated with corpus luteum (CL) maturation, we analyzed transcriptome data for the bovine CL on days 4 and 11, representing the developing vs. mature gland. Our analyses revealed 681 differentially expressed genes (363 and 318 on day 4 and 11, respectively), with ≥2 fold change and FDR of <5%. Different gene ontology (GO) categories were represented prominently in transcriptome data at these stages (e.g. days 4: cell cycle, chromosome, DNA metabolic process and replication and on day 11: immune response; lipid metabolic process and complement activation). Based on bioinformatic analyses, select genes expression in day 4 and 11 CL was validated with quantitative real-time PCR. Cell specific expression was also determined in enriched luteal endothelial and steroidogenic cells. Genes related to the angiogenic process such as NOS3, which maintains dilated vessels and MMP9, matrix degrading enzyme, were higher on day 4. Importantly, our data suggests day 11 CL acquire mechanisms to prevent blood vessel sprouting and promote their maturation by expressing NOTCH4 and JAG1, greatly enriched in luteal endothelial cells. Another endothelial specific gene, CD300LG, was identified here in the CL for the first time. CD300LG is an adhesion molecule enabling lymphocyte migration, its higher levels at mid cycle are expected to support the transmigration of immune cells into the CL at this stage. Together with steroidogenic genes, most of the genes regulating de-novo cholesterol biosynthetic pathway (e.g HMGCS, HMGCR) and cholesterol uptake from plasma (LDLR, APOD and APOE) were upregulated in the mature CL. These findings provide new insight of the processes involved in CL maturation including blood vessel growth and stabilization, leucocyte transmigration as well as progesterone synthesis as the CL matures.
Collapse
Affiliation(s)
- Sigal Kfir
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Noa Wigoda
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Shifra Ben-Dor
- Bioinformatics unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Orr
- Bioinformatics unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
- * E-mail:
| |
Collapse
|
6
|
Prasasya RD, Mayo KE. Notch Signaling Regulates Differentiation and Steroidogenesis in Female Mouse Ovarian Granulosa Cells. Endocrinology 2018; 159:184-198. [PMID: 29126263 PMCID: PMC5761600 DOI: 10.1210/en.2017-00677] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 11/02/2017] [Indexed: 01/04/2023]
Abstract
The Notch pathway is a highly conserved juxtacrine signaling mechanism that is important for many cellular processes during development, including differentiation and proliferation. Although Notch is important during ovarian follicle formation and early development, its functions during the gonadotropin-dependent stages of follicle development are largely unexplored. We observed positive regulation of Notch activity and expression of Notch ligands and receptors following activation of the luteinizing hormone-receptor in prepubertal mouse ovary. JAG1, the most abundantly expressed Notch ligand in mouse ovary, revealed a striking shift in localization from oocytes to somatic cells following hormone stimulation. Using primary cultures of granulosa cells, we investigated the functions of Jag1 using small interfering RNA knockdown. The loss of JAG1 led to suppression of granulosa cell differentiation as marked by reduced expression of enzymes and factors involved in steroid biosynthesis, and in steroid secretion. Jag1 knockdown also resulted in enhanced cell proliferation. These phenotypes were replicated, although less robustly, following knockdown of the obligate canonical Notch transcription factor RBPJ. Intracellular signaling analysis revealed increased activation of the mitogenic phosphatidylinositol 3-kinase/protein kinase B and mitogen-activated protein kinase/extracellular signal-regulated kinase pathways following Notch knockdown, with a mitogen-activated protein kinase kinase inhibitor blocking the enhanced proliferation observed in Jag1 knockdown granulosa cells. Activation of YB-1, a known regulator of granulosa cell differentiation genes, was suppressed by Jag1 knockdown. Overall, this study reveals a role of Notch signaling in promoting the differentiation of preovulatory granulosa cells, adding to the diverse functions of Notch in the mammalian ovary.
Collapse
MESH Headings
- Animals
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Chorionic Gonadotropin/pharmacology
- Estradiol/metabolism
- Female
- Gene Expression Regulation, Developmental/drug effects
- Genes, Reporter/drug effects
- Gonadotropins, Equine/pharmacology
- Granulosa Cells/cytology
- Granulosa Cells/drug effects
- Granulosa Cells/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/antagonists & inhibitors
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism
- Jagged-1 Protein/antagonists & inhibitors
- Jagged-1 Protein/genetics
- Jagged-1 Protein/metabolism
- MAP Kinase Signaling System/drug effects
- Mice, Inbred Strains
- Mice, Transgenic
- Progesterone/metabolism
- RNA Interference
- Receptor, Notch2/agonists
- Receptor, Notch2/genetics
- Receptor, Notch2/metabolism
- Receptor, Notch3/agonists
- Receptor, Notch3/genetics
- Receptor, Notch3/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
Collapse
Affiliation(s)
- Rexxi D. Prasasya
- Department of Molecular Biosciences and Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | - Kelly E. Mayo
- Department of Molecular Biosciences and Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
7
|
Jing J, Jiang X, Chen J, Yao X, Zhao M, Li P, Pan Y, Ren Y, Liu W, Lyu L. Notch signaling pathway promotes the development of ovine ovarian follicular granulosa cells. Anim Reprod Sci 2017; 181:69-78. [PMID: 28400072 DOI: 10.1016/j.anireprosci.2017.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/16/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
The Notch signaling pathway regulates cell proliferation, differentiation and apoptosis involved in development of the organs and tissues such as nervous system, cartilage, lungs, kidneys and prostate as well as the ovarian follicles. This study aimed to investigate the mRNA expression and localization of NOTCH2, as the key factor in Notch signaling pathway. This was determined by PCR, real-time PCR and immunohistochemistry. Additionally, the effects of inhibiting Notch signaling pathway with different concentrations (5μM, 10μM and 20μM) of N-[N-(3, 5-Difuorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT), an inhibitor of Notch signaling pathway, on ovine granulosa cells was determined in vitro by detecting estradiol production using enzyme linked immunosorbent assay and expressions of the genes related to the cell cycle and apoptosis using real-time polymerase chain reaction (PCR). NOTCH2, the key member of Notch signaling pathway, was found in ovine follicles, and the expression of NOTCH2 mRNA was highest in the theca cells of the follicles in medium sizes (3-5mm in diameter) and granulosa cells of the follicles in large sizes (>5mm in diameter). Immunohistochemical results demonstrated that NOTCH2 protein was expressed in granulosa cells of preantral follicles, in both granulosa cells and theca cells of antral follicles. Compared with DAPT-treated groups, the control group had a higher number of granulosa cells (P<0.05) and a higher estradiol production (P<0.05). Compared with the control group, the mRNA abundances of HES1, MYC, BAX, BCL2 and CYP19A1 in DAPT-treated groups was lower (P<0.05), respectively; whereas, the expression of CCND2, CDKN1A and TP53 mRNA showed no remarkable difference compared with control group. Collectively, Notch signaling pathway could be involved in the ovine follicular development by regulating the growth and estradiol production of granulosa cells.
Collapse
Affiliation(s)
- Jiongjie Jing
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaolong Jiang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jianwei Chen
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Xiaolei Yao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Miaomiao Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Pengfei Li
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yangyang Pan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Youshe Ren
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Wenzhong Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Lihua Lyu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China.
| |
Collapse
|
8
|
Vanorny DA, Mayo KE. The role of Notch signaling in the mammalian ovary. Reproduction 2017; 153:R187-R204. [PMID: 28283672 DOI: 10.1530/rep-16-0689] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/03/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022]
Abstract
The Notch pathway is a contact-dependent, or juxtacrine, signaling system that is conserved in metazoan organisms and is important in many developmental processes. Recent investigations have demonstrated that the Notch pathway is active in both the embryonic and postnatal ovary and plays important roles in events including follicle assembly and growth, meiotic maturation, ovarian vasculogenesis and steroid hormone production. In mice, disruption of the Notch pathway results in ovarian pathologies affecting meiotic spindle assembly, follicle histogenesis, granulosa cell proliferation and survival, corpora luteal function and ovarian neovascularization. These aberrations result in abnormal folliculogenesis and reduced fertility. The knowledge of the cellular interactions facilitated by the Notch pathway is an important area for continuing research, and future studies are expected to enhance our understanding of ovarian function and provide critical insights for improving reproductive health. This review focuses on the expression of Notch pathway components in the ovary, and on the multiple functions of Notch signaling in follicle assembly, maturation and development. We focus on the mouse, where genetic investigations are possible, and relate this information to the human ovary.
Collapse
Affiliation(s)
- Dallas A Vanorny
- Department of Molecular Biosciences and Center for Reproductive ScienceNorthwestern University, Evanston, Illinois, USA
| | - Kelly E Mayo
- Department of Molecular Biosciences and Center for Reproductive ScienceNorthwestern University, Evanston, Illinois, USA
| |
Collapse
|
9
|
Rudolph LM, Bentley GE, Calandra RS, Paredes AH, Tesone M, Wu TJ, Micevych PE. Peripheral and Central Mechanisms Involved in the Hormonal Control of Male and Female Reproduction. J Neuroendocrinol 2016; 28:10.1111/jne.12405. [PMID: 27329133 PMCID: PMC5146987 DOI: 10.1111/jne.12405] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 05/25/2016] [Accepted: 06/20/2016] [Indexed: 12/18/2022]
Abstract
Reproduction involves the integration of hormonal signals acting across multiple systems to generate a synchronised physiological output. A critical component of reproduction is the luteinising hormone (LH) surge, which is mediated by oestradiol (E2 ) and neuroprogesterone interacting to stimulate kisspeptin release in the rostral periventricular nucleus of the third ventricle in rats. Recent evidence indicates the involvement of both classical and membrane E2 and progesterone signalling in this pathway. A metabolite of gonadotrophin-releasing hormone (GnRH), GnRH-(1-5), has been shown to stimulate GnRH expression and secretion, and has a role in the regulation of lordosis. Additionally, gonadotrophin release-inhibitory hormone (GnIH) projects to and influences the activity of GnRH neurones in birds. Stress-induced changes in GnIH have been shown to alter breeding behaviour in birds, demonstrating another mechanism for the molecular control of reproduction. Peripherally, paracrine and autocrine actions within the gonad have been suggested as therapeutic targets for infertility in both males and females. Dysfunction of testicular prostaglandin synthesis is a possible cause of idiopathic male infertility. Indeed, local production of melatonin and corticotrophin-releasing hormone could influence spermatogenesis via immune pathways in the gonad. In females, vascular endothelial growth factor A has been implicated in an angiogenic process that mediates development of the corpus luteum and thus fertility via the Notch signalling pathway. Age-induced decreases in fertility involve ovarian kisspeptin and its regulation of ovarian sympathetic innervation. Finally, morphological changes in the arcuate nucleus of the hypothalamus influence female sexual receptivity in rats. The processes mediating these morphological changes have been shown to involve the rapid effects of E2 controlling synaptogenesis in this hypothalamic nucleus. In summary, this review highlights new research in these areas, focusing on recent findings concerning the molecular mechanisms involved in the central and peripheral hormonal control of reproduction.
Collapse
Affiliation(s)
- L M Rudolph
- Department of Neurobiology, Laboratory of Neuroendocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - G E Bentley
- Department of Integrative Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - R S Calandra
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - A H Paredes
- Laboratory of Neurobiochemistry, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Independencia, Santiago, Chile
| | - M Tesone
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - T J Wu
- Department of Obstetrics and Gynecology, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, USA
| | - P E Micevych
- Department of Neurobiology, Laboratory of Neuroendocrinology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
10
|
Maalouf SW, Smith CL, Pate JL. Changes in MicroRNA Expression During Maturation of the Bovine Corpus Luteum: Regulation of Luteal Cell Proliferation and Function by MicroRNA-34a. Biol Reprod 2016; 94:71. [PMID: 26864197 DOI: 10.1095/biolreprod.115.135053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/29/2016] [Indexed: 01/28/2023] Open
Abstract
The corpus luteum (CL) develops from the remnants of the ovulatory follicle and produces progesterone, required for maintenance of pregnancy in mammals. The differentiation of granulosal and thecal cells into luteal cells is accompanied by hypertrophy and hyperplasia of cells. As the CL matures, growth ceases and in ruminants, the tissue acquires the ability to undergo regression in response to prostaglandin F2alpha. The regulators of this transition are poorly understood. MicroRNA, which are posttranscriptional regulators of tissue development and function, are expressed in the CL. However, the pattern of their expression and their function during the transition from developing to functional CL is not known. The objectives of this study were to profile the expression of miRNA in developing versus mature bovine CL and determine effects of miRNA on bovine luteal cell survival and function. Knockdown of Drosha in midcycle (MC) luteal cells decreased progesterone and increased luteal cell apoptosis in the presence or absence of proinflammatory cytokines. Microarray analysis demonstrated that a greater number of miRNA were expressed in MC compared to D4 CL. Ingenuity pathway analysis (IPA) predicted that D4-specific miRNA regulate pathways related to carbohydrate metabolism, while MC-specific miRNA regulate pathways related to cell cycle and apoptosis signaling. Both predictions are consistent with a switch in the CL from a growing phase to a maintenance phase. One of the MC specific miRNA, miR-34a, was selected for further analysis. Increased concentrations of miR-34a in MC luteal cells resulted in decreased luteal cell proliferation, increased progesterone production, and inhibition of Notch1 and YY1 translation, but had no effect on luteal cell apoptosis. In conclusion, these data support a role for miRNA in general, and miR-34a in particular, in luteal formation and function.
Collapse
Affiliation(s)
- Samar W Maalouf
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania
| | - Courtney L Smith
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania
| | - Joy L Pate
- Department of Animal Science, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
11
|
Murta D, Batista M, Silva E, Trindade A, Henrique D, Duarte A, Lopes-da-Costa L. Notch signaling in the epididymal epithelium regulates sperm motility and is transferred at a distance within epididymosomes. Andrology 2016; 4:314-27. [DOI: 10.1111/andr.12144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 10/28/2015] [Accepted: 11/09/2015] [Indexed: 12/17/2022]
Affiliation(s)
- D. Murta
- Reproduction and Development; CIISA; Faculty of Veterinary Medicine; University of Lisbon; Lisbon Portugal
- CBIOS - Research Centre for Biosciences and Health Technologies; Faculty of Veterinary Medicine; Lusófona University of Humanities and Technologies; Lisboa Portugal
| | - M. Batista
- Reproduction and Development; CIISA; Faculty of Veterinary Medicine; University of Lisbon; Lisbon Portugal
| | - E. Silva
- Reproduction and Development; CIISA; Faculty of Veterinary Medicine; University of Lisbon; Lisbon Portugal
| | - A. Trindade
- Reproduction and Development; CIISA; Faculty of Veterinary Medicine; University of Lisbon; Lisbon Portugal
- Gulbenkian Institute of Science; Oeiras Portugal
| | - D. Henrique
- Institute of Molecular Medicine; Faculty of Medicine; University of Lisbon; Lisbon Portugal
| | - A. Duarte
- Reproduction and Development; CIISA; Faculty of Veterinary Medicine; University of Lisbon; Lisbon Portugal
- Gulbenkian Institute of Science; Oeiras Portugal
| | - L. Lopes-da-Costa
- Reproduction and Development; CIISA; Faculty of Veterinary Medicine; University of Lisbon; Lisbon Portugal
| |
Collapse
|
12
|
Miyado M, Miyado K, Katsumi M, Saito K, Nakamura A, Shihara D, Ogata T, Fukami M. Parturition failure in mice lacking Mamld1. Sci Rep 2015; 5:14705. [PMID: 26435405 PMCID: PMC4592954 DOI: 10.1038/srep14705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
In mice, the onset of parturition is triggered by a rapid decline in circulating progesterone. Progesterone withdrawal occurs as a result of functional luteolysis, which is characterized by an increase in the enzymatic activity of 20α-hydroxysteroid dehydrogenase (20α-HSD) in the corpus luteum and is mediated by the prostaglandin F2α (PGF2α) signaling. Here, we report that the genetic knockout (KO) of Mamld1, which encodes a putative non-DNA-binding regulator of testicular steroidogenesis, caused defective functional luteolysis and subsequent parturition failure and neonatal deaths. Progesterone receptor inhibition induced the onset of parturition in pregnant KO mice, and MAMLD1 regulated the expression of Akr1c18, the gene encoding 20α-HSD, in cultured cells. Ovaries of KO mice at late gestation were morphologically unremarkable; however, Akr1c18 expression was reduced and expression of its suppressor Stat5b was markedly increased. Several other genes including Prlr, Cyp19a1, Oxtr, and Lgals3 were also dysregulated in the KO ovaries, whereas PGF2α signaling genes remained unaffected. These results highlight the role of MAMLD1 in labour initiation. MAMLD1 likely participates in functional luteolysis by regulating Stat5b and other genes, independent of the PGF2α signaling pathway.
Collapse
Affiliation(s)
- Mami Miyado
- Department of Molecular Endocrinology, National Research Institute of Child Health and Development, Tokyo 157-8535, Japan
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute of Child Health and Development, Tokyo 157-8535, Japan
| | - Momori Katsumi
- Department of Molecular Endocrinology, National Research Institute of Child Health and Development, Tokyo 157-8535, Japan
| | - Kazuki Saito
- Department of Molecular Endocrinology, National Research Institute of Child Health and Development, Tokyo 157-8535, Japan
| | - Akihiro Nakamura
- Department of Reproductive Biology, National Research Institute of Child Health and Development, Tokyo 157-8535, Japan
| | - Daizou Shihara
- Department of Molecular Endocrinology, National Research Institute of Child Health and Development, Tokyo 157-8535, Japan
| | - Tsutomu Ogata
- Department of Molecular Endocrinology, National Research Institute of Child Health and Development, Tokyo 157-8535, Japan.,Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute of Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
13
|
Accialini P, Hernández SF, Bas D, Pazos MC, Irusta G, Abramovich D, Tesone M. A link between Notch and progesterone maintains the functionality of the rat corpus luteum. Reproduction 2015; 149:1-10. [DOI: 10.1530/rep-14-0449] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we investigated the interaction between the Notch pathway and progesterone to maintain the functionality of the corpus luteum (CL). When Notch signaling is activated, the γ-secretase complex releases the active intracellular domains (NICD) of their receptors, which exert survival effects. We designed studies to analyze whether thein vitroinhibition of Notch affects progesterone production, steroidogenic regulators, apoptotic parameters, and signaling transduction pathways in the cultures of CL isolated from pregnant and superovulated rats. We detected a decrease in progesterone production when corpora lutea (CL) were incubated withN-(N-(3,5-difluorophenacetyl-l-alanyl))-S-phenylglycine t-butyl ester (DAPT), a γ-secretase inhibitor. This effect could be in part due to the decrease detected in the CL protein levels of P450scc because STAR and 3β-hydroxysteroid dehydrogenase were not affected by Notch inhibition. Besides, the addition of aminoglutethimide to the CL culture medium decreased NICD of NOTCH1. We observed an increase in the expression of active CASPASE3 (CASP3) after inhibition by Notch, which was reversed by the presence of progesterone. The BAX:BCLXLratio was increased in CL treated with DAPT and the presence of progesterone reversed this effect. In addition, phosphorylation of AKT was inhibited in CL treated with DAPT, but had no effect on ERK activation. To demonstrate that the action of DAPT is specifically related with the inhibition of Notch, CLs were incubated with DLL4 antibody and a decrease in progesterone production was detected. These results suggest the existence of a novel link between progesterone and the Notch signaling pathway to maintain the functionality of the CL.
Collapse
|
14
|
Murta D, Batista M, Trindade A, Silva E, Henrique D, Duarte A, Lopes-da-Costa L. In vivo notch signaling blockade induces abnormal spermatogenesis in the mouse. PLoS One 2014; 9:e113365. [PMID: 25412258 PMCID: PMC4239051 DOI: 10.1371/journal.pone.0113365] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/22/2014] [Indexed: 12/19/2022] Open
Abstract
In a previous study we identified active Notch signaling in key cellular events occurring at adult spermatogenesis. In this study, we evaluated the function of Notch signaling in spermatogenesis through the effects of in vivo Notch blockade. Adult CD1 male mice were either submitted to a long term DAPT (?-secretase inhibitor) or vehicle treatment. Treatment duration was designed to attain one half the time (25 days) or the time (43 days) required to accomplish a complete cycle of spermatogenesis. Blockade of Notch signaling was depicted from decreased transcription of Notch effector genes. Notch signaling blockade disrupted the expression patterns of Notch components in the testis, induced male germ cell fate aberrations, and significantly increased germ cell apoptosis, mainly in the last stages of the spermatogenic cycle, and epididymis spermatozoa morphological defects. These effects were more pronounced following the 43 day than the 25 day DAPT treatment schedule. These results indicate a relevant regulatory role of Notch signaling in mammalian spermatogenesis.
Collapse
Affiliation(s)
- Daniel Murta
- Reproduction and Development, Interdisciplinary Centre of Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Marta Batista
- Reproduction and Development, Interdisciplinary Centre of Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Alexandre Trindade
- Reproduction and Development, Interdisciplinary Centre of Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Gulbenkian Institute of Science, Oeiras, Portugal
| | - Elisabete Silva
- Reproduction and Development, Interdisciplinary Centre of Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Domingos Henrique
- Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - António Duarte
- Reproduction and Development, Interdisciplinary Centre of Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Gulbenkian Institute of Science, Oeiras, Portugal
| | - Luís Lopes-da-Costa
- Reproduction and Development, Interdisciplinary Centre of Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
15
|
García-Pascual CM, Ferrero H, Zimmermann RC, Simón C, Pellicer A, Gómez R. Inhibition of Delta-like 4 mediated signaling induces abortion in mice due to deregulation of decidual angiogenesis. Placenta 2014; 35:501-8. [PMID: 24780197 DOI: 10.1016/j.placenta.2014.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 03/23/2014] [Accepted: 03/26/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To explore whether the Dll4/Notch1 pathway plays a key role in regulating the vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) driven decidual angiogenesis and related pregnancy through induction of a tip/stalk phenotype. METHODS Progesterone-replaced ovariectomized pregnant mice received a single injection of YW152F (Dll4 blocking antibody, BAb) or placebo at embryonic day (E) 4.5. Animals were sacrificed at different time points; blood and uterus were collected for further analysis. Number of embryos and implantation site, uteri weight, and serum progesterone levels were assessed. Alterations in the tip/stalk phenotype were determined by quantitative immunofluorescent analysis of vascularization, Dll4 expression, cellular proliferation and apoptosis in uterine sections. RESULTS Abrogation of Dll4 signaling leads to a promiscuous expression of Dll4, increased cell proliferation, apoptosis and vascularization at E 6.5. Such an abrogation was associated with a dramatic disruption of embryo growth and development starting at E 9.5. DISCUSSION The observed promiscuous expression of Dll4 and the increase in cell proliferation, apoptosis and vascularization are events compatible with loss of the tip/stalk phenotype. Excessive (although very likely defective) decidual angiogenesis due to such vascular alterations is the most likely cause of subsequent interruption of embryo development and related pregnancy in Dll4 treated mice. CONCLUSIONS Dll4 plays a key role in regulating decidual angiogenesis and related pregnancy through induction of a tip/stalk phenotype.
Collapse
Affiliation(s)
- C M García-Pascual
- Fundación IVI, Instituto Universitario IVI/INCLIVA, 46015, C/Catedrático Agustín Escardino n° 9, PARC CIENTIFIC UNIVERSITAT DE VALENCIA Edificio 3, CUE. 2ª Planta. Despacho 2.02, 46980 Paterna (Valencia), Spain
| | - H Ferrero
- Fundación IVI, Instituto Universitario IVI/INCLIVA, 46015, C/Catedrático Agustín Escardino n° 9, PARC CIENTIFIC UNIVERSITAT DE VALENCIA Edificio 3, CUE. 2ª Planta. Despacho 2.02, 46980 Paterna (Valencia), Spain
| | - R C Zimmermann
- Department of Obstetrics and Gynecology, Columbia University, 630 West 168th Street, New York 10032, United States.
| | - C Simón
- Fundación IVI, Instituto Universitario IVI/INCLIVA, 46015, C/Catedrático Agustín Escardino n° 9, PARC CIENTIFIC UNIVERSITAT DE VALENCIA Edificio 3, CUE. 2ª Planta. Despacho 2.02, 46980 Paterna (Valencia), Spain
| | - A Pellicer
- Fundación IVI, Instituto Universitario IVI/INCLIVA, 46015, C/Catedrático Agustín Escardino n° 9, PARC CIENTIFIC UNIVERSITAT DE VALENCIA Edificio 3, CUE. 2ª Planta. Despacho 2.02, 46980 Paterna (Valencia), Spain
| | - R Gómez
- Fundación IVI, Instituto Universitario IVI/INCLIVA, 46015, C/Catedrático Agustín Escardino n° 9, PARC CIENTIFIC UNIVERSITAT DE VALENCIA Edificio 3, CUE. 2ª Planta. Despacho 2.02, 46980 Paterna (Valencia), Spain
| |
Collapse
|
16
|
Zhang X, Li J, Liu J, Luo H, Gou K, Cui S. Prostaglandin F2α upregulates Slit/Robo expression in mouse corpus luteum during luteolysis. J Endocrinol 2013; 218:299-310. [PMID: 23814012 DOI: 10.1530/joe-13-0088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Prostaglandin F2 α (PGF2 α) is a key factor in the triggering of the regression of the corpus luteum (CL). Furthermore, it has been reported that Slit/Robo signaling is involved in the regulation of luteolysis. However, the interactions between PGF2 α and Slit/Robo in the progression of luteolysis remain to be established. This study was designed to determine whether luteolysis is regulated by the interactions of PGF2 α and Slit/Robo in the mouse CL. Real-time PCR and immunohistochemistry results showed that Slit2 and its receptor Robo1 are highly and specifically co-expressed in the mouse CL. Functional studies showed that Slit/Robo participates in mouse luteolysis by enhancing cell apoptosis and upregulating caspase3 expression. Both in vitro and in vivo studies showed that PGF2 α significantly increases the expression of Slit2 and Robo1 during luteolysis through protein kinase C-dependent ERK1/2 and P38 MAPK signaling pathways, whereas an inhibitor of Slit/Robo signaling significantly decreases the stimulating effect of PGF2 α on luteolysis. These findings indicate that Slit/Robo signaling plays important roles in PGF2 α-induced luteolysis by mediating the PGF2 α signaling pathway in the CL.
Collapse
Affiliation(s)
- Xuejing Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan Xilu, Beijing 100193, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Irusta G, Maidana CP, Abramovich D, De Zúñiga I, Parborell F, Tesone M. Effects of an Inhibitor of the Gamma-Secretase Complex on Proliferation and Apoptotic Parameters in a FOXL2-Mutated Granulosa Tumor Cell Line (KGN)1. Biol Reprod 2013; 89:9. [DOI: 10.1095/biolreprod.113.108100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
18
|
Fraser HM, Hastings JM, Allan D, Morris KD, Rudge JS, Wiegand SJ. Inhibition of delta-like ligand 4 induces luteal hypervascularization followed by functional and structural luteolysis in the primate ovary. Endocrinology 2012; 153:1972-83. [PMID: 22334711 PMCID: PMC3413503 DOI: 10.1210/en.2011-1688] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Using specific inhibitors established that angiogenesis in the ovarian follicle and corpus luteum is driven by vascular endothelial growth factor. Recently, it has been demonstrated that the Notch ligand, delta-like ligand 4 (Dll4) negatively regulates vascular endothelial growth factor-mediated vessel sprouting and branching. To investigate the role of Dll4 in regulation of the ovarian vasculature, we administered a neutralizing antibody to Dll4 to marmosets at the periovulatory period. The vasculature was examined on luteal d 3 or d 10: angiogenesis was determined by incorporation of bromodeoxyuridine, staining for CD31 and cell death by staining for activated caspase-3. Ovulatory progesterone rises were monitored to determine effects of treatment on luteal function and time to recover normal cycles in a separate group of animals. Additionally, animals were treated in the follicular or midluteal phase to determine effects of Dll4 inhibition on follicular development and luteal function. Controls were treated with human IgG (Fc). Corpora lutea from marmosets treated during the periovulatory period exhibited increased angiogenesis and increased vascular density on luteal d 3, but plasma progesterone was significantly suppressed. By luteal d 10, corpora lutea in treated ovaries were significantly reduced in size, with involution of luteal cells, increased cell death, and suppressed plasma progesterone concentrations. In contrast, initiation of anti-Dll4 treatment during the midluteal phase produced only a slight suppression of progesterone for the remainder of the cycle. Moreover, Dll4 inhibition had no appreciable effect on follicular development. These results show that Dll4 has a specific and critical role in the development of the normal luteal vasculature.
Collapse
Affiliation(s)
- Hamish M Fraser
- Room C1.04, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland, United Kingdom.
| | | | | | | | | | | |
Collapse
|