1
|
Huang H, Liang L, Sun D, Li J, Wang W, Zha L, Yang J, Pan K, Fan X, He C, Tang X, Zhang P. Rab37 Promotes Endothelial Differentiation and Accelerates ADSC-Mediated Diabetic Wound Healing through Regulating Secretion of Hsp90α and TIMP1. Stem Cell Rev Rep 2023; 19:1019-1033. [PMID: 36627432 DOI: 10.1007/s12015-022-10491-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/12/2023]
Abstract
Accumulating evidence indicates that adipose tissue-derived mesenchymal stem cells (ADSCs) are an effective treatment for diabetic refractory wounds. However, the application of ADSCs to diabetic wounds is still limited, indicating that we still lack sufficient knowledge regarding regulators/mediators of ADSCs during wound healing. Rab37, a member of RabGTPase, may function as regulator of vesicle trafficking, which is a crucial event for the secretion of cytokines by ADSCs. Our previous study indicated that Rab37 promotes the adiopogenic differentiation of ADSCs. In this study, we explored the role of Rab37 in ADSC-mediated diabetic wound healing. An in vivo study in db/db diabetic mice showed that Rab37-expressing ADSCs shortened the wound closure time, improved re-epithelialization and collagen deposition, and promoted angiogenesis during wound healing. An in vitro study showed that Rab37 promoted the proliferation, migration and endothelial differentiation of ADSCs. LC-MS/MS analysis identified Hsp90α and TIMP1 as up-regulated cytokines in conditioned media of Rab37-ADSCs. The up-regulation of Rab37 enhanced the secretion of Hsp90α and TIMP1 during endothelial differentiation and under high-glucose exposure. Interestingly, Rab37 promoted the expression of TIMP1, but not Hsp90α, during endothelial differentiation. PLA showed that Rab37 can directly bind to Hsp90α orTIMP1 in ADSCs. Moreover, Hsp90α and TIMP1 knockdown compromised the promoting effects of Rab37 on the proliferation, migration and endothelial differentiation of ADSCs. In conclusion, Rab37 promotes the proliferation, migration and endothelial differentiation of ADSCs and accelerates ADSC-mediated diabetic wound healing through regulating the secretion of Hsp90α and TIMP1.
Collapse
Affiliation(s)
- Haili Huang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Ling Liang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Dan Sun
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Jin Li
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Wentao Wang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Lixia Zha
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Jiaqi Yang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Kunyan Pan
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Xianmou Fan
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Chengzhang He
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Xudong Tang
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for Antitumor Active Substance Research and development, Guangdong Medical University, Zhanjiang, China
| | - Peihua Zhang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China.
| |
Collapse
|
2
|
Li T, Qin P, Chen B, Niu X, Wang Y, Niu Y, Wei C, Hou D, Ma H, Han R, Li H, Liu X, Kang X, Li Z. A novel 27-bp indel in the intron region of the YBX3 gene is associated with growth traits in chickens. Br Poult Sci 2022; 63:590-596. [PMID: 35382648 DOI: 10.1080/00071668.2022.2059340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. The DNA/RNA binding protein YBX3 is associated with gene transcription, DNA repair, and the progression of various diseases and is highly conserved from bacteria to humans.2. The following experiment found a 27-bp insertion/deletion polymorphism in the intron region of the YBX3 gene through resequencing. In cross-designed, F2 resource groups, the indel was significantly associated with broiler weight and body size at 0, 2, 4, 6, 8, 10 and 12 weeks of age and several other traits (semi evisceration weight (SEW), evisceration weight (EW), semi evisceration rate (SER), evisceration rate (ER), head weight (HW), claw weight (CLW), wing weight (DWW), gizzard weight (GW), pancreas weight (PW), chest muscle weight (CMW), leg weight (LW), leg muscle weight (LMW), shedding weight (SW), carcass weight (CW) and pectoral area (PA)) (P<0.05).3. The insertion-insertion (II) genotype was significantly associated with the greatest growth traits and carcass traits, whereas the values associated with the insertion-deletion (ID) genotype were the lowest in the F2 reciprocal cross chickens.4. The mutation sites were genotyped in 3611 individuals from 13 different chicken breeds and cross-designed F2 resource groups. The II genotype is the most important in commercial broilers, and the I allele frequency observed in these breeds was relatively high. However, there is still considerable potential in breeding dual-purpose chickens and commercial laying hens.5. The mRNA expression of the YBX3 gene in tissues from different breeds and developmental stages demonstrated that the 27-bp indel may affect the entire development process of poultry by affecting muscle development. These findings are beneficial for elucidating the function of the YBX3 gene and facilitating enhanced reproduction in the chicken industry.
Collapse
Affiliation(s)
- Tong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Panpan Qin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Bingjie Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinran Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Chengjie Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Dan Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Haoxiang Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.,Henan Innovative Engineering Research Centre of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.,Henan Innovative Engineering Research Centre of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China.,Henan Innovative Engineering Research Centre of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
3
|
Zhong S, Wu B, Wang X, Sun D, Liu D, Jiang S, Ge J, Zhang Y, Liu X, Zhou X, Jin R, Chen Y. Identification of driver genes and key pathways of prolactinoma predicts the therapeutic effect of genipin. Mol Med Rep 2019; 20:2712-2724. [PMID: 31322266 PMCID: PMC6691206 DOI: 10.3892/mmr.2019.10505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/11/2019] [Indexed: 11/06/2022] Open
Abstract
The purpose of the present study was to identify the potential targets and markers for diagnosis, therapy and prognosis in patients with prolactinoma at the molecular level and to determine the therapeutic effects of genipin in prolactinoma. The gene expression profiles of GSE2175, GSE26966 and GSE36314 were obtained from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified after comparing between gene expression profiles of the prolactinoma tissues and normal tissues. Then, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and protein‑protein interaction (PPI) network analysis were conducted. In addition, in vitro, scratch assay, colony‑forming assay, Cell Counting Kit 8 (CCK8) assay and flow cytometry were performed to verify the functional effects of genipin. An aggregate of 12,695, 3,847 and 5,310 DEGs were identified from GSE2175, GSE26966 and GSE36314, respectively. The results of GO and KEGG analysis showed that the DEGs significant and important for prolactinoma were mostly involved with 'spindle pole' and 'oocyte meiosis'. A total of 20 genes were selected as hub genes with high degrees after PPI network analysis, including mitogen‑activated protein kinase 1 (MAPK1), MYC, early growth response 1 (EGR1), Bcl2 and calmodulin 1 (CALM1). CCK8 assay, colony‑forming assay and scratch assay were performed to verify the anti‑prolactinoma effect of genipin. The results of flow cytometry showed that apoptosis was increased by genipin. MAPK1, MYC, EGR1, Bcl2 and CALM1 were screened as main hub genes. Genipin upregulated the expression level of EGR1 and p21 (downstream mediator of EGR1) and EGR1, inhibited the proliferation and migration of prolactinoma cells. Genipin is a promising drug for treatment of patients with prolactinoma.
Collapse
Affiliation(s)
- Sheng Zhong
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| | - Bo Wu
- Clinical College, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Xinhui Wang
- Clinical College, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Dandan Sun
- Clinical College, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Daqun Liu
- Clinical College, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Shanshan Jiang
- College of Pharmacy, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Junliang Ge
- Clinical College, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yuan Zhang
- Clinical College, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Xinrui Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| | - Xiaoli Zhou
- Department of Cell Biology, Basic Medical College, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Rihua Jin
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
4
|
Bernstein HG, Lindquist JA, Keilhoff G, Dobrowolny H, Brandt S, Steiner J, Bogerts B, Mertens PR. Differential distribution of Y-box-binding protein 1 and cold shock domain protein A in developing and adult human brain. Brain Struct Funct 2014; 220:2235-45. [PMID: 24817634 DOI: 10.1007/s00429-014-0786-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/23/2014] [Indexed: 11/24/2022]
Abstract
The two cold shock domain containing proteins, Y-box-binding protein-1 and cold shock domain protein A were immunolocalized in developing and adult human brain. With the exception of a small population of hypothalamic astrocytes, brain Y-box-binding protein-1 was predominantly found in multiple neurons in the mature human CNS, which might be related to its involvement in neurotransmission and other neuron-associated functions. Cold shock domain protein A was typically observed in astrocytes, oligodendrocytes, choroid plexus epithelia and nerve fibers. However, in circumscribed brain regions as hypothalamus, habenula, and cerebellum, this protein was also expressed in neurons. In the prenatal brain, both proteins were found to be abundantly expressed in radial glial cells, neuroblasts and neurons, which might be an anatomical correlate of the proposed roles of both proteins in cell proliferation and differentiation. In addition, Y-box-binding protein-1 was identified in cultured, lipopolysaccharide-stimulated microglial cells, which underscores its putative role as a mediator in immune and inflammatory processes.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, Medical School, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kim T, Do MHT, Lawson MA. Translational control of gene expression in the gonadotrope. Mol Cell Endocrinol 2014; 385:78-87. [PMID: 24035865 PMCID: PMC4009948 DOI: 10.1016/j.mce.2013.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/30/2013] [Accepted: 09/03/2013] [Indexed: 12/15/2022]
Abstract
The study of gene expression in gonadotropes has largely focused on the variety of mechanisms regulating transcription of the gonadotropin genes and ancillary factors that contribute to the overall phenotype and function of these cells in reproduction. However, there are aspects of the response to GNRH signaling that are not readily explained by changes at the level of transcription. As our understanding of regulation at the level of mRNA translation has increased, it has become evident that GNRH receptor signaling engages multiple aspects of translational regulation. This includes activation of cap-dependent translation initiation, translational pausing caused by the unfolded protein response and RNA binding protein interaction. Gonadotropin mRNAs and the mRNAs of other factors that control the transcriptional and signaling responses to GNRH have been identified as targets of regulation at the level of translation. In this review we examine the impact of translational control of the expression of gonadotropin genes and other genes relevant to GNRH-mediated control of gonadotrope function.
Collapse
Affiliation(s)
- Taeshin Kim
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Minh-Ha T Do
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Mark A Lawson
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|