1
|
Lee S, Yoo I, Cheon Y, Ka H. Complement system molecules: Expression and regulation at the maternal-conceptus interface during pregnancy in pigs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105229. [PMID: 39004297 DOI: 10.1016/j.dci.2024.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
The complement system, composed of complement components and complement control proteins, plays an essential role in innate immunity. Complement system molecules are expressed at the maternal-conceptus interface, and inappropriate activation of the complement system is associated with various adverse pregnancy outcomes in humans and rodents. However, the expression, regulation, and function of the complement system at the maternal-conceptus interface in pigs have not been studied. In this study, we investigated the expression, localization, and regulation of complement system molecules at the maternal-conceptus interface in pigs. Complement components and complement control proteins were expressed in the endometrium, early-stage conceptus, and chorioallantoic tissues during pregnancy. The expression of complement components acting on the early stage of complement activation increased in the endometrium on Day 15 of pregnancy, with greater levels on that day compared with the estrous cycle. Localization of several complement components and complement control proteins was cell-type specific in the endometrium. The expression of C1QC, C2, C3, C4A, CFI, ITGB2, MASP1, and SERPING1 was increased by IFNG in endometrial explant tissues. Furthermore, cleaved C3 fragments were detected in endometrial tissues and uterine flushings on Day 15 of the estrous cycle and Day 15 of pregnancy, with greater levels on Day 15 of pregnancy. These results suggest that complement system molecules in pigs expressed at the maternal-conceptus interface play important roles in the establishment and maintenance of pregnancy by regulating innate immunity and modulating the maternal immune environment during pregnancy.
Collapse
Affiliation(s)
- Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| | - Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Yugyeong Cheon
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
2
|
Ando A, Matsubara T, Suzuki S, Imaeda N, Takasu M, Shigenari A, Miyamoto A, Ohshima S, Kametani Y, Shiina T, Kulski JK, Kitagawa H. Genetic Links between Reproductive Traits and Amino Acid Pairwise Distances of Swine Leukocyte Antigen Alleles among Mating Partners in Microminipigs. Int J Mol Sci 2024; 25:7362. [PMID: 39000468 PMCID: PMC11242825 DOI: 10.3390/ijms25137362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Previously, we found that a greater dissimilarity in swine leukocyte antigen (SLA) class I and class II alleles between mating partners resulted in increased farrowing rates in a highly inbred population of Microminipigs (MMPs). In this follow-up study, we have analyzed the effects of dissimilarity in SLA alleles between mating partners for seven different reproductive traits, including litter size and the number of stillborn and live or dead weaned piglets. We determined the relationships among reproductive traits within each mating event and the amino acid distances of SLA alleles as markers of diversity between mating partners. Our results indicate that mating partners with greater amino acid pairwise genetic distances in the SLA-1 class I gene or DQB1 class II gene alleles were associated with significantly larger litter sizes and higher numbers of live piglets at birth and weaning. Also, partners with greater pairwise distances in the SLA-2 class I gene alleles exhibited fewer pre-weaning deaths. These findings suggest that the dissimilarity in SLA class I and class II alleles between mating partners may affect not only farrowing rates but also other key reproductive traits such as litter size and improved piglet survival rates. Consequently, SLA alleles could serve as valuable genetic markers for selecting mating partners in breeding programs and for conducting epistatic studies on various reproductive traits in MMPs.
Collapse
Affiliation(s)
- Asako Ando
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.S.); (A.S.); (A.M.); (S.O.); (Y.K.); (T.S.); or (J.K.K.)
| | - Tatsuya Matsubara
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan; (T.M.); (N.I.)
| | - Shingo Suzuki
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.S.); (A.S.); (A.M.); (S.O.); (Y.K.); (T.S.); or (J.K.K.)
| | - Noriaki Imaeda
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan; (T.M.); (N.I.)
| | - Masaki Takasu
- Gifu University Institute for Advanced Study, Gifu University, Gifu 501-1193, Japan;
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu 501-1193, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.S.); (A.S.); (A.M.); (S.O.); (Y.K.); (T.S.); or (J.K.K.)
| | - Asuka Miyamoto
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.S.); (A.S.); (A.M.); (S.O.); (Y.K.); (T.S.); or (J.K.K.)
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.S.); (A.S.); (A.M.); (S.O.); (Y.K.); (T.S.); or (J.K.K.)
| | - Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.S.); (A.S.); (A.M.); (S.O.); (Y.K.); (T.S.); or (J.K.K.)
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.S.); (A.S.); (A.M.); (S.O.); (Y.K.); (T.S.); or (J.K.K.)
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan; (S.S.); (A.S.); (A.M.); (S.O.); (Y.K.); (T.S.); or (J.K.K.)
- Faculty of Health and Medical Sciences, School of Biomedical Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Hitoshi Kitagawa
- Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan; (T.M.); (N.I.)
- Laboratory of Veterinary Internal Medicine, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan
| |
Collapse
|
3
|
Geisert RD, Bazer FW, Lucas CG, Pfeiffer CA, Meyer AE, Sullivan R, Johns DN, Sponchiado M, Prather RS. Maternal recognition of pregnancy in the pig: A servomechanism involving sex steroids, cytokines and prostaglandins. Anim Reprod Sci 2024; 264:107452. [PMID: 38522133 DOI: 10.1016/j.anireprosci.2024.107452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Maternal recognition of pregnancy (MRP) is a term utilized in mammals to describe pathways in which the conceptus alters the endometrial environment to prevent regression of corpora lutea to ensure continued production of progesterone (P4) required for establishment and maintenance of pregnancy. For nearly 40 years after publication of the endocrine/exocrine theory, conceptus estrogen (E2) was considered the primary maternal recognition signal in the pig. Conceptus production of prostaglandin E2 (PGE2) was also considered to be a major factor in preventing luteolysis. An addition to E2 and PGE2, pig conceptuses produce interleukin 1B2 (IL1B2) and interferons (IFN) delta (IFND) and gamma (IFNG). The present review provides brief history of the discovery of E2, PGs and IFNS which led to research investigating the role of these conceptus secreted factors in establishing and maintaining pregnancy in the pig. The recent utilization of gene editing technology allowed a more direct approach to investigate the in vivo roles of IL1B2, E2, PGE2, AND IFNG for establishment of pregnancy. These studies revealed unknown functions for IFNG and ILB2 in addition to PGE2 and E2. Thus, pregnancy recognition signal is via a servomechanism in requiring sequential effects of P4, E2, IL1B2, PGE2 and IFNG. Results indicate that the original established dogma for the role of conceptus E2 and PGs in MRP is a far too simplified model that involves the interplay of numerous mechanisms for inhibiting luteolysis, inducing critical elongation of the conceptuses and resolution of inflammation in pigs.
Collapse
Affiliation(s)
- Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Caroline A Pfeiffer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Ashley E Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Riley Sullivan
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Destiny N Johns
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Mariana Sponchiado
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
4
|
Velez C, Williamson D, Cánovas ML, Giai LR, Rutland C, Pérez W, Barbeito CG. Changes in Immune Response during Pig Gestation with a Focus on Cytokines. Vet Sci 2024; 11:50. [PMID: 38275932 PMCID: PMC10819333 DOI: 10.3390/vetsci11010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/28/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Pigs have the highest percentage of embryonic death not associated with specific diseases of all livestock species, at 20-45%. During gestation processes, a series of complex alterations can arise, including embryonic migration and elongation, maternal immunological recognition of pregnancy, and embryonic competition for implantation sites and subsequent nutrition requirements and development. Immune cells and cytokines act as mediators between other molecules in highly complex interactions between various cell types. However, other non-immune cells, such as trophoblast cells, are important in immune pregnancy regulation. Numerous studies have shed light on the crucial roles of several cytokines that regulate the inflammatory processes that characterize the interface between the fetus and the mother throughout normal porcine gestation, but most of these reports are limited to the implantational and peri-implantational periods. Increase in some proinflammatory cytokines have been found in other gestational periods, such as placental remodeling. Porcine immune changes during delivery have not been studied as deeply as in other species. This review details some of the immune system cells actively involved in the fetomaternal interface during porcine gestation, as well as the principal cells, cytokines, and molecules, such as antibodies, that play crucial roles in sow pregnancy, both in early and mid-to-late gestation.
Collapse
Affiliation(s)
- Carolina Velez
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
- National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires 2690, Argentina;
| | - Delia Williamson
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
| | - Mariela Lorena Cánovas
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
| | - Laura Romina Giai
- Laboratory of Histology, Faculty of Veterinary Science, National University of La Pampa (UNLPam), Santa Rosa 6300, Argentina; (C.V.); (D.W.); (L.R.G.)
| | - Catrin Rutland
- Sutton Bonington Campus, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - William Pérez
- Department of Veterinary Anatomy, University of Montevideo, Montevideo 11600, Uruguay
| | - Claudio Gustavo Barbeito
- National Scientific and Technical Research Council of Argentina (CONICET), Buenos Aires 2690, Argentina;
- Laboratory of Descriptive, Comparative and Experimental Histology and Embriology (LHYEDEC), Department of Basic Sciences, Faculty of Veterinary Science, National University of La Plata (UNLP), La Plata 1900, Argentina
| |
Collapse
|
5
|
Wang W, Cao C, Zhang B, Wang F, Deng D, Cao J, Li H, Yu M. Integrating Transcriptomic and ChIP-Seq Reveals Important Regulatory Regions Modulating Gene Expression in Myometrium during Implantation in Pigs. Biomolecules 2022; 13:biom13010045. [PMID: 36671430 PMCID: PMC9856092 DOI: 10.3390/biom13010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The myometrium is the outer layer of the uterus. Its contraction and steroidogenic activities are required for embryo implantation. However, the molecular mechanisms underlying its functions remain unknown in pigs. The myometrium includes the inner circular muscle (CM) and the outer longitudinal muscle (LM) layers. In this study, we collected the CM and LM samples from the mesometrial side (named M) of the uterus on days 12 (pre-implantation stage) and 15 (implantation stage) of pregnancy and day 15 of the estrous cycle. The transcriptomic results revealed distinct differences between the uterine CM and LM layers in early pregnancy: the genes expressed in the LM layer were mainly related to contraction pathways, whereas the transcriptional signatures in the CM layer on day 15 of pregnancy were primarily involved in the immune response processes. Subsequent comparisons in the CM layer between pregnant and cyclic gilts show that the transcriptional signatures of the CM layer are implantation-dependent. Next, we investigated the genome-wide profiling of histone H3 lysine 27 acetylation (H3K27ac) and histone H3 lysine 4 trimethylation (H3K4me3) in pig uterine CM and LM layers. The genomic regions that had transcriptional activity and were associated with the expression of genes in the two layers were characterized. Taken together, the regulatory regions identified in the study may contribute to modulating the gene expression in pig uterine CM and LM layers during implantation.
Collapse
Affiliation(s)
- Weiwei Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Caiqin Cao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Botao Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China
| | - Feiyu Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dadong Deng
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhua Cao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan 528225, China
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
6
|
Ando A, Matsubara T, Suzuki S, Imaeda N, Takasu M, Shigenari A, Miyamoto A, Ohshima S, Kametani Y, Shiina T, Kulski JK, Kitagawa H. Genetic Association between Farrowing Rates and Swine Leukocyte Antigen Alleles or Haplotypes in Microminipigs. Cells 2022; 11:3138. [PMID: 36231100 PMCID: PMC9563624 DOI: 10.3390/cells11193138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
We have previously reported specific swine leukocyte antigen (SLA) haplotype associations with significant effects on several reproduction performance traits in a highly inbred miniature pig population of Microminipigs (MMPs). In this study, to clarify the effects on farrowing rates of SLA similarity between mating partners in the MMP population, we compared the farrowing rates as a measure of reproductive success after 1063-cumulative matings among the following three groups of mating partners: (1) completely sharing SLA class I or class II haplotypes or alleles between partners (CS), (2) only one sharing the haplotypes or alleles (OS), and (3) non-sharing the haplotypes or alleles (NS). Average farrowing rates in CS groups consisting of completely sharing SLA class II haplotypes or DRBI and DQB1 alleles were lowest in the three groups. Moreover, lower farrowing rates were indicated in mating pairs with smaller amino acid pairwise genetic distances of SLA-1, SLA-3, DRB1 and DQB1 alleles between the pairs. These results suggested that the dissimilarity of SLA class I and class II alleles between mating partners markedly improved reproductive performance; therefore, SLA alleles or haplotypes are potentially useful genetic markers for the selection of mating pairs in breeding programs and epistatic studies of reproductive traits of MMPs.
Collapse
Affiliation(s)
- Asako Ando
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Tatsuya Matsubara
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Shingo Suzuki
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Noriaki Imaeda
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Asuka Miyamoto
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Hitoshi Kitagawa
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
- Laboratory of Veterinary Internal Medicine, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari 794-8555, Japan
| |
Collapse
|
7
|
Martinez CA, Alvarez-Rodriguez M, Rodriguez-Martinez H. A decreased expression of interferon stimulated genes in peri-implantation endometrium of embryo transfer recipient sows could contribute to embryo death. Animal 2022; 16:100590. [PMID: 35843191 DOI: 10.1016/j.animal.2022.100590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 12/20/2022] Open
Abstract
Pig pregnancy succeeds thanks to a well-coordinated system ruling both maternal immune activation and embryonic antigen tolerance. In physiological pregnancies, the maternal immune system should tolerate the presence of hemi-allogeneic conceptuses from the pre-implantation phase to term, while maintaining maternal defence against pathogens. Allogeneic pregnancies, as after embryo transfer (ET), depict high embryo mortality during the attachment phase, calling for studies of the dynamic modifications in immune processes occurring at the maternal-foetal interface, for instance, of interferon (IFN)-stimulated genes (ISGs). These ISGs are generally activated by IFN secreted by the conceptus during the process of maternal recognition of pregnancy (MRP) and responsible for recruiting immune cells to the site of embryo attachment, thus facilitating cell-antigen presentation and angiogenesis. We performed RNA-Seq analysis in peri-implantation (days 18 and 24) endometrial samples retrieved from artificially inseminated sows (hemi-allogeneic embryos (HAL) group) or sows subjected to ET (allogeneic embryos (AL) group) to monitor alterations of gene expression that could be jeopardising early pregnancy. Our results showed that endometrial gene expression patterns related to immune responses differed between hemi- or allogeneic embryo presence, with allogeneic embryos apparently inducing conspicuous modifications of immune-related genes and pathways. A decreased expression (P < 0.05; FC < -2) of several interferon ISGs, such as CXCL8, CXCL10, IRF1, IRF9, STAT1, and B2M, among others was detected in the endometrium of sows carrying allogeneic embryos on day 24 of pregnancy. This severe downregulation of ISGs in allogeneic pregnancies could represent a failure of ET-embryos to signal IFN to the endometrium to warrant the development of adequate immunotolerance mechanisms to facilitate embryo development, thus contributing to elevated embryo death.
Collapse
Affiliation(s)
- C A Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden.
| | - M Alvarez-Rodriguez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
| | - H Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
| |
Collapse
|
8
|
Martinez CA, Rodriguez‐Martinez H. Context is key: Maternal immune responses to pig allogeneic embryos. Mol Reprod Dev 2022. [PMCID: PMC9542102 DOI: 10.1002/mrd.23624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Successful establishment of pregnancy includes the achievement of a state of immune tolerance toward the embryos (and placenta), where the well‐coordinated maternal immune system is capable of recognizing conceptus antigens while maintaining maternal defense against pathogens. In physiological pregnancies, following natural mating or artificial insemination (AI), the maternal immune system is exposed to the presence of hemi‐allogeneic embryos, that is, embryos containing maternal self‐antigens and foreign antigens from the paternal side. In this scenario, the hemi‐allogeneic embryo is recognized by the mother, but the immune system is locally modified to facilitate embryo implantation and pregnancy progression. Pig allogeneic pregnancies (with embryos containing both paternal and maternal material foreign to the recipient female), occur during embryo transfer (ET), with conspicuously high rates of embryonic death. Mortality mainly occurs during the peri‐attachment phase, suggesting that immune responses to allogeneic embryos are more complex and less efficient, hindering the conceptuses to survive to term. Reaching a similar maternal tolerance as in conventional breeding would render ET successful. The present review critically summarizes mechanisms of maternal immune recognition of pregnancy and factors associated with impaired maternal immune response to the presence of allogeneic embryos in the porcine species.
Collapse
Affiliation(s)
- Cristina A. Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences Linköping University Linköping Sweden
| | - Heriberto Rodriguez‐Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences Linköping University Linköping Sweden
| |
Collapse
|
9
|
Han J, Yoo I, Lee S, Cheon Y, Yun CH, Ka H. Interleukin-10 and Its Receptors at the Maternal-Conceptus Interface: Expression, Regulation, and Implication for Th2 Cytokine Predominance and Maternal Immune Tolerance in the Pig, a True Epitheliochorial Placentation Species†. Biol Reprod 2022; 106:1159-1174. [PMID: 35348632 DOI: 10.1093/biolre/ioac058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/19/2022] [Accepted: 03/14/2022] [Indexed: 11/12/2022] Open
Abstract
The appropriate balance between pro-inflammatory and anti-inflammatory cytokines is important for the maternal immune tolerance during pregnancy in mammals. Among the various cytokines, interleukin (IL)-10 (IL10) plays an essential role in anti-inflammatory responses, while IL12 is involved in pro-inflammatory responses during pregnancy. However, the roles of IL10 and IL12 in the endometrium during pregnancy have not been studied in pigs. Thus, we investigated the expression of IL10, IL12 (IL12A and IL12B) and their receptors (IL10RA, IL10RB, IL12RB1, and IL12RB2) at the maternal-conceptus interface. IL10, IL12, and their receptors were expressed in the endometrium during the estrous cycle and pregnancy in a pregnancy stage-specific manner. During pregnancy, IL10 expression increased on Day 15, whereas the expression of IL12A and IL12B decreased after the implantation period. IL10 protein was localized to luminal epithelial (LE), stromal cells, and macrophages; IL10RA protein to LE, endothelial, stromal, and T cells; and IL10RB mRNA to LE cells in the endometrium. IL10 and IL10RA proteins and IL10RB mRNA were also localized to chorionic epithelial (CE) cells. In endometrial explants, the expression of IL10RA and IL10RB was induced by estradiol-17β, IL-1β, and/or interferon-γ. Heme oxygenase 1, an IL10-inducible factor, was expressed in the endometrium with highest levels on Day 30 of pregnancy and was localized to LE and CE cells. These results in pigs suggest that conceptus-derived signals change the endometrial immune environment by regulating the expression of IL10 and IL10 receptors at the maternal-conceptus interface and that IL10 may provide anti-inflammatory conditions for the maternal immune tolerance. Summary Sentence: IL10 expression increases at the maternal-conceptus interface in pigs.
Collapse
Affiliation(s)
- Jisoo Han
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Yugyeong Cheon
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| |
Collapse
|
10
|
Le QVC, Youk S, Choi M, Jeon H, Kim WI, Ho CS, Park C. Development of an Immortalized Porcine Fibroblast Cell Panel With Different Swine Leukocyte Antigen Genotypes. Front Genet 2022; 13:815328. [PMID: 35198008 PMCID: PMC8859410 DOI: 10.3389/fgene.2022.815328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Immortalized cell lines are valuable resources to expand the molecular characterization of major histocompatibility complex genes and their presented antigens. We generated a panel of immortalized cell lines by transfecting human telomerase reverse transcriptase (hTERT) into primary fibroblast cells prepared from ear, fetal, and lung tissues of 10 pigs from five breeds and successfully cultured them for 30-45 passages. The cell growth characteristic of the immortalized fibroblasts was similar to that of primary fibroblast, which was unable to form colonies on soft agar. The genotypes of major swine leukocyte antigen (SLA) genes, including three classical class I (SLA-1, -2, and -3) and three class II genes (DQB1, DRB1, and DQA), were determined using high-resolution typing. A total of 58 alleles, including a novel allele for SLA-2, were identified. Each cell line was unique. A cell line derived from a National Institutes of Health miniature pig was homozygous across the six major SLA genes. The expression levels of SLA classical class I genes varied among the cell lines and were slightly upregulated in the immortalized compared to the primary cells based on semiquantitative reverse transcription polymerase chain reaction. The immortalized porcine fibroblast cell lines with diverse SLA haplotypes that were developed in this study have potential to be applied in studies regarding the molecular characteristics and genetic structure of SLA genes and epitope-major histocompatibility complex interactions in pigs.
Collapse
Affiliation(s)
- Quy Van Chanh Le
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - SeungYeon Youk
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Munjeong Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Hyoim Jeon
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Chonbuk National University, Iksan, South Korea
| | - Chak-Sum Ho
- Gift of Hope Organ & Tissue Donor Network, Itasca, IL, United States
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
11
|
Johns DN, Lucas CG, Pfeiffer CA, Chen PR, Meyer AE, Perry SD, Spate LD, Cecil RF, Fudge MA, Samuel MS, Spinka CM, Liu H, Lucy MC, Wells KD, Prather RS, Spencer TE, Geisert RD. Conceptus interferon gamma is essential for establishment of pregnancy in the pig. Biol Reprod 2021; 105:1577-1590. [PMID: 34608481 DOI: 10.1093/biolre/ioab186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/10/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023] Open
Abstract
Establishment and maintenance of pregnancy in the pig is a complex process that relies on conceptus regulation of the maternal proinflammatory response to endometrial attachment. Following elongation, pig conceptuses secrete interferon gamma (IFNG) during attachment to the endometrial luminal epithelium. The objective here was to determine if conceptus production of IFNG is important for early development and establishment of pregnancy. CRISPR/Cas9 gene editing and somatic cell nuclear transfer technologies were used to create an IFNG loss-of-function study in pigs. Wild-type (IFNG+/+) and null (IFNG-/-) fibroblast cells were used to create embryos through somatic cell nuclear transfer. IFNG expression was not detected in IFNG-/- conceptuses on either day 15 or day 17 of pregnancy. Ablation of conceptus IFNG production resulted in the reduction of stromal CD3+ and mast cells which localized to the site of conceptus attachment on day 15. The uteri of recipients with IFNG-/- conceptuses were inflamed, hyperemic and there was an abundance of erythrocytes in the uterine lumen associated with the degenerating conceptuses. The endometrial stromal extracellular matrix was altered in the IFNG-/- embryo pregnancies and there was an increased endometrial mRNA levels for collagen XVII (COL17A1), matrilin 1 (MATN1), secreted phosphoprotein 1 (SPP1) and cysteine-rich secretory protein 3 (CRISP3), which are involved with repair and remodeling of the extracellular matrix. These results indicate conceptus IFNG production is essential in modulating the endometrial proinflammatory response for conceptus attachment and survival in pigs.
Collapse
Affiliation(s)
- Destiny N Johns
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Caroline G Lucas
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | | | - Paula R Chen
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Ashley E Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Shelbi D Perry
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Lee D Spate
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Raissa F Cecil
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Melissa A Fudge
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Melissa S Samuel
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | | | - Hongyu Liu
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Matthew C Lucy
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Kevin D Wells
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Randall S Prather
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| | - Rodney D Geisert
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211
| |
Collapse
|
12
|
Yoo I, Kye YC, Han J, Kim M, Lee S, Jung W, Hong M, Park TS, Yun CH, Ka H. Uterine epithelial expression of the tumor necrosis factor superfamily: a strategy for immune privilege during pregnancy in a true epitheliochorial placentation species. Biol Reprod 2021; 102:828-842. [PMID: 31901087 DOI: 10.1093/biolre/ioz233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/06/2020] [Accepted: 12/31/2019] [Indexed: 12/13/2022] Open
Abstract
The maternal immune system tolerates semi-allogeneic placental tissues during pregnancy. Fas ligand (FASLG) and tumor necrosis factor superfamily 10 (TNFSF10) are known to be components of maternal immune tolerance in humans and mice. However, the role of FASLG and TNFSF10 in the tolerance process has not been studied in pigs, which form a true epitheliochorial type placenta. Thus, the present study examined the expression and function of FASLG and TNFSF10 and their receptors at the maternal-conceptus interface in pigs. The endometrium and conceptus tissues expressed FASLG and TNFSF10 and their receptor mRNAs during pregnancy in a stage-specific manner. During pregnancy, FASLG and TNFSF10 proteins were localized predominantly to endometrial luminal epithelial cells with strong signals on Day 30 to term and on Day 15, respectively, and receptors for TNFSF10 were localized to some stromal cells. Interferon-γ (IFNG) increased the expression of TNFSF10 and FAS in endometrial tissues. Co-culture of porcine endometrial epithelial cells over-expressing TNFSF10 with peripheral blood mononuclear cells yielded increased apoptotic cell death of lymphocytes and myeloid cells. In addition, many apoptotic T cells were found in the endometrium on Day 15 of pregnancy. The present study demonstrated that FASLG and TNFSF10 were expressed at the maternal-conceptus interface and conceptus-derived IFNG increased endometrial epithelial TNFSF10, which, in turn, induced apoptotic cell death of immune cells. These results suggest that endometrial epithelial FASLG and TNFSF10 may be critical for the formation of micro-environmental immune privilege at the maternal-conceptus interface for the establishment and maintenance of pregnancy in pigs.
Collapse
Affiliation(s)
- Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| | - Yoon Chul Kye
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826
| | - Jisoo Han
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| | - Minjeong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| | - Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| | - Wonchul Jung
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| | - Tae Sub Park
- Graduate School of International Agricultural Technology and Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493
| |
Collapse
|
13
|
Bidarimath M, Lingegowda H, Miller JE, Koti M, Tayade C. Insights Into Extracellular Vesicle/Exosome and miRNA Mediated Bi-Directional Communication During Porcine Pregnancy. Front Vet Sci 2021; 8:654064. [PMID: 33937376 PMCID: PMC8081834 DOI: 10.3389/fvets.2021.654064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
Spontaneous fetal loss is one of the most important challenges that commercial pig industry is still facing in North America. Research over the decade provided significant insights into some of the associated mechanisms including uterine capacity, placental efficiency, deficits in vasculature, and immune-inflammatory alterations at the maternal-fetal interface. Pigs have unique epitheliochorial placentation where maternal and fetal layers lay in opposition without any invasion. This has provided researchers opportunities to accurately tease out some of the mechanisms associated with maternal-fetal interface adaptations to the constantly evolving needs of a developing conceptus. Another unique feature of porcine pregnancy is the conceptus derived recruitment of immune cells during the window of conceptus attachment. These immune cells in turn participate in pregnancy associated vascular changes and contribute toward tolerance to the semi-allogeneic fetus. However, the precise mechanism of how maternal-fetal cells communicate during the critical times in gestation is not fully understood. Recently, it has been established that bi-directional communication between fetal trophoblasts and maternal cells/tissues is mediated by extracellular vesicles (EVs) including exosomes. These EVs are detected in a variety of tissues and body fluids and their role has been described in modulating several physiological and pathological processes including vascularization, immune-modulation, and homeostasis. Recent literature also suggests that these EVs (exosomes) carry cargo (nucleic acids, protein, and lipids) as unique signatures associated with some of the pregnancy associated pathologies. In this review, we provide overview of important mechanisms in porcine pregnancy success and failure and summarize current knowledge about the unique cargo containing biomolecules in EVs. We also discuss how EVs (including exosomes) transfer their contents into other cells and regulate important biological pathways critical for pregnancy success.
Collapse
Affiliation(s)
- Mallikarjun Bidarimath
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | | | - Jessica E. Miller
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Madhuri Koti
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Obstetrics and Gynecology, Queen's University, Kingston, ON, Canada
| | - Chandrakant Tayade
- Department Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
14
|
Zang X, Gu T, Hu Q, Xu Z, Xie Y, Zhou C, Zheng E, Huang S, Xu Z, Meng F, Cai G, Wu Z, Hong L. Global Transcriptomic Analyses Reveal Genes Involved in Conceptus Development During the Implantation Stages in Pigs. Front Genet 2021; 12:584995. [PMID: 33719331 PMCID: PMC7943634 DOI: 10.3389/fgene.2021.584995] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 02/08/2021] [Indexed: 01/18/2023] Open
Abstract
Prenatal mortality remains a significant concern to the pig farming industry around the world. Spontaneous fetal loss ranging from 20 to 45% by term occur after fertilization, with most of the loss happening during the implantation period. Since the factors regulating the high mortality rates of early conceptus during implantation phases are poorly understood, we sought to analyze the overall gene expression changes during this period, and identify the molecular mechanisms involved in conceptus development. This work employed Illumina's next-generation sequencing (RNA-Seq) and quantitative real-time PCR to analyze differentially expressed genes (DEGs). Soft clustering was subsequently used for the cluster analysis of gene expression. We identified 8236 DEGs in porcine conceptus at day 9, 12, and 15 of pregnancy. Annotation analysis of these genes revealed rRNA processing (GO:0006364), cell adhesion (GO:1904874), and heart development (GO:0007507), as the most significantly enriched biological processes at day 9, 12, and 15 of pregnancy, respectively. In addition, we found various genes, such as T-complex 1, RuvB-like AAA ATPase 2, connective tissue growth factor, integrins, interferon gamma, SLA-1, chemokine ligand 9, PAG-2, transforming growth factor beta receptor 1, and Annexin A2, that play essential roles in conceptus morphological development and implantation in pigs. Furthermore, we investigated the function of PAG-2 in vitro and found that PAG-2 can inhibit trophoblast cell proliferation and migration. Our analysis provides a valuable resource for understanding the mechanisms of conceptus development and implantation in pigs.
Collapse
Affiliation(s)
- Xupeng Zang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Qun Hu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zhiqian Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Chen Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Fanming Meng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou, China
| |
Collapse
|
15
|
Chaney HL, Grose LF, Charpigny G, Behura SK, Sheldon IM, Cronin JG, Lonergan P, Spencer TE, Mathew DJ. Conceptus-induced, interferon tau-dependent gene expression in bovine endometrial epithelial and stromal cells†. Biol Reprod 2020; 104:669-683. [PMID: 33330929 DOI: 10.1093/biolre/ioaa226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/13/2020] [Accepted: 12/13/2020] [Indexed: 12/21/2022] Open
Abstract
Bovine endometrium consists of epithelial and stromal cells that respond to conceptus interferon tau (IFNT), the maternal recognition of pregnancy (MRP) signal, by increasing expression of IFN-stimulated genes (ISGs). Endometrial epithelial and stromal-cell-specific ISGs are largely unknown but hypothesized to have essential functions during pregnancy establishment. Bovine endometrial epithelial cells were cultured in inserts above stromal fibroblast (SF) cells for 6 h in medium alone or with IFNT. The epithelial and SF transcriptomic response was analyzed separately using RNA sequencing and compared to a list of 369 DEGs recently identified in intact bovine endometrium in response to elongating bovine conceptuses and IFNT. Bovine endometrial epithelial and SF shared 223 and 70 DEGs in common with the list of 369 endometrial DEGs. Well-known ISGs identified in the epithelial and SF were ISG15, MX1, MX2, and OAS2. DEGs identified in the epithelial but not SF included a number of IRF molecules (IRF1, IRF2, IRF3, and IRF8), mitochondria SLC transporters (SLC25A19, SLC25A28, and SLC25A30), and a ghrelin receptor. Expression of ZC3HAV1, an anti-retroviral gene, increased specifically within the SF. Gene ontology analysis identified the type I IFN signaling pathway and activation of nuclear factor kappa B transcription factors as biological processes associated with the epithelial cell DEGs. This study has identified biologically relevant IFNT-stimulated genes within specific endometrial cell types. The findings provide critical information regarding the effects of conceptus IFNT on specific endometrial compartments during early developmental processes in cattle.
Collapse
Affiliation(s)
- Heather L Chaney
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Lindsay F Grose
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV, USA
| | - Gilles Charpigny
- INRA, Biologie du Développement et Reproduction, Jouy en Josas, France
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - I Martin Sheldon
- Swansea University Medical School, Swansea University, Swansea, UK
| | - James G Cronin
- Swansea University Medical School, Swansea University, Swansea, UK
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Daniel J Mathew
- Department of Animal Science, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
16
|
McLendon BA, Seo H, Kramer AC, Burghardt RC, Bazer FW, Johnson GA. Pig conceptuses secrete interferon gamma to recruit T cells to the endometrium during the peri-implantation period†. Biol Reprod 2020; 103:1018-1029. [PMID: 32716497 DOI: 10.1093/biolre/ioaa132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
The emerging paradigm in the immunology of pregnancy is that implantation of conceptuses does not progress in an immunologically suppressed environment. Rather, the endometrium undergoes a controlled inflammatory response during implantation as trophectoderm of elongating and implanting pig conceptuses secrete the pro-inflammatory cytokine interferon gamma (IFNG). Results of this study with pigs revealed: (1) accumulation of immune cells and apoptosis of stromal cells within the endometrium at sites of implantation during the period of IFNG secretion by conceptuses; (2) accumulation of proliferating cell nuclear antigen (PCNA)-positive T cells within the endometrium at sites of implantation; (3) significant increases in expression of T cell co-signaling receptors including programmed cell death 1 (PDCD1), CD28, cytotoxic T-lymphocyte associated protein 4 (CTLA-4), and inducible T cell co-stimulator (ICOS), as well as chemokines CXCL9, 10, and 11 within the endometrium at sites of implantation; (4) significant increases in T cell co-signaling receptors, PDCD1 and ICOS, and chemokine CXCL9 in the endometrium of cyclic gilts infused with IFNG; and (5) identification of CD4+ (22.59%) as the major T cell subpopulation, with minor subpopulations of CD8+ (1.38%), CD4+CD25+ (1.08%), and CD4+CD8+ (0.61%) T cells within the endometrium at sites of implantation. Our results provide new insights into the immunology of implantation to suggest that trophectoderm cells of pigs secrete IFNG to recruit various subpopulations of T cells to the endometrium to contribute to a controlled inflammatory environment that supports the active breakdown and restructuring of the endometrium in response to implantation of the conceptus.
Collapse
Affiliation(s)
- Bryan A McLendon
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Avery C Kramer
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Greg A Johnson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, College Station, TX, USA
| |
Collapse
|
17
|
Transcriptomic analysis of interferon-γ-regulated genes in endometrial explants and their possible role in regulating maternal endometrial immunity during the implantation period in pigs, a true epitheliochorial placentation species. Theriogenology 2020; 155:114-124. [PMID: 32659448 DOI: 10.1016/j.theriogenology.2020.05.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 01/02/2023]
Abstract
The implantation process requires precisely controlled interactions between the maternal uterine endometrium and the implanting conceptus. Conceptus-derived secretions affect endometrial cells to facilitate the adhesion and attachment of trophoblasts, and endometrial secretions support the growth and development of the conceptus. In pigs, the conceptus secretes a large amount of type II interferon, interferon-γ (IFNG), during the implantation period. However, the role of IFNG in the implantation process has not been fully understood in pigs. Thus, to determine the role of IFNG in the endometrium during early pregnancy in pigs, we treated endometrial explant tissues with increasing doses of IFNG and analyzed the transcriptome regulated by IFNG using an RNA-sequencing analysis. Data analyses identified 276 differentially regulated genes, their Gene Ontology terms, and 94 signature genes in a Gene Set Enrichment Analysis. Furthermore, we analyzed the expression of IFNG-regulated genes, including CIITA, KYNU, IDO1, WARS, and MHC class II molecules, in the endometrium throughout pregnancy and found that levels of those genes in the endometrium were highest on Day 15 of pregnancy, corresponding to the time of peak IFNG secretion by porcine conceptuses. In addition, immunohistochemical analyses revealed that CIITA, KYNU, and IDO proteins were expressed in a cell type- and pregnancy status-specific manner in the endometrium. These results show that genes overrepresented in endometrial tissues in response to IFNG were mainly related to immune responses, suggesting that conceptus-derived IFNG could play critical roles in regulating the maternal immune response for the establishment of pregnancy in pigs.
Collapse
|
18
|
Hammer SE, Ho CS, Ando A, Rogel-Gaillard C, Charles M, Tector M, Tector AJ, Lunney JK. Importance of the Major Histocompatibility Complex (Swine Leukocyte Antigen) in Swine Health and Biomedical Research. Annu Rev Anim Biosci 2019; 8:171-198. [PMID: 31846353 DOI: 10.1146/annurev-animal-020518-115014] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In pigs, the major histocompatibility complex (MHC), or swine leukocyte antigen (SLA) complex, maps to Sus scrofa chromosome 7. It consists of three regions, the class I and class III regions mapping to 7p1.1 and the class II region mapping to 7q1.1. The swine MHC is divided by the centromere, which is unique among mammals studied to date. The SLA complexspans between 2.4 and 2.7 Mb, depending on haplotype, and encodes approximately 150 loci, with at least 120 genes predicted to be functional. Here we update the whole SLA complex based on the Sscrofa11.1 build and annotate the organization for all recognized SLA genes and their allelic sequences. We present SLA nomenclature and typing methods and discuss the expression of SLA proteins, as well as their role in antigen presentation and immune, disease, and vaccine responses. Finally, we explore the role of SLA genes in transplantation and xenotransplantation and their importance in swine biomedical models.
Collapse
Affiliation(s)
- Sabine E Hammer
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria
| | - Chak-Sum Ho
- Gift of Hope Organ & Tissue Donor Network, Itasca, Illinois 60143, USA
| | - Asako Ando
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan
| | | | - Mathieu Charles
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Matthew Tector
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.,Current address: Makana Therapeutics, Wilmington, Delaware 19801, USA
| | - A Joseph Tector
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.,Current address: Department of Surgery, University of Miami, Miami, Florida 33136, USA
| | - Joan K Lunney
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, Maryland 20705, USA;
| |
Collapse
|
19
|
Yoo I, Seo H, Choi Y, Jang H, Han J, Lee S, Choi Y, Ka H. Analysis of interferon-γ receptor IFNGR1 and IFNGR2 expression and regulation at the maternal-conceptus interface and the role of interferon-γ on endometrial expression of interferon signaling molecules during early pregnancy in pigs. Mol Reprod Dev 2019; 86:1993-2004. [PMID: 31680343 DOI: 10.1002/mrd.23287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022]
Abstract
It has long been known that pig conceptuses produce interferon-γ (IFNG) at the time of implantation, but the role of IFNG and its mechanism of action at the maternal-conceptus interface are not fully understood. Accordingly, we analyzed the expression and regulation of IFNG receptors IFNGR1 and IFNGR2 in the endometrium during the estrous cycle and pregnancy in pigs. Levels of IFNGR1 and IFNGR2 messenger RNA (mRNA) expression changed in the endometrium, with the highest levels during mid pregnancy for IFNGR1 and on Day 12 of pregnancy for IFNGR2. The expression of IFNGR1 and IFNGR2 mRNAs was also detected in conceptuses during early pregnancy and chorioallantoic tissues during mid to late pregnancy. IFNGR1 and IFNGR2 mRNAs were localized to endometrial epithelial and stromal cells and to the chorionic membrane during pregnancy. IFNGR2 protein was also localized to endometrial epithelial and stromal cells, and increased epithelial expression of IFNGR2 mRNA and protein was detectable during early pregnancy than the estrous cycle. Explant culture studies showed that estrogen increased levels of IFNGR2, but not IFNGR1, mRNAs, while interleukin-1β did not affect levels of IFNGR1 and IFNGR2 mRNAs. Furthermore, IFNG increased levels of IRF1, IRF2, STAT1, and STAT2 mRNAs in the endometrial explants. These results in pigs indicate that IFNGR1 and IFNGR2 are expressed in a stage of pregnancy- and cell-type specific manner in the endometrium and that sequential cooperative action of conceptus signals estrogen and IFNG may be critical for endometrial responsiveness to IFNs for the establishment of pregnancy in pigs.
Collapse
Affiliation(s)
- Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Heewon Seo
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Yohan Choi
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Hwanhee Jang
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Jisoo Han
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Youngsok Choi
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
20
|
Zeng S, Ulbrich SE, Bauersachs S. Spatial organization of endometrial gene expression at the onset of embryo attachment in pigs. BMC Genomics 2019; 20:895. [PMID: 31752681 PMCID: PMC6873571 DOI: 10.1186/s12864-019-6264-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND During the preimplantation phase in the pig, the conceptus trophoblast elongates into a filamentous form and secretes estrogens, interleukin 1 beta 2, interferons, and other signaling molecules before attaching to the uterine epithelium. The processes in the uterine endometrium in response to conceptus signaling are complex. Thus, the objective of this study was to characterize transcriptome changes in porcine endometrium during the time of conceptus attachment considering the specific localization in different endometrial cell types. RESULTS Low-input RNA-sequencing was conducted for the main endometrial compartments, luminal epithelium (LE), glandular epithelium (GE), blood vessels (BV), and stroma. Samples were isolated from endometria collected on Day 14 of pregnancy and the estrous cycle (each group n = 4) by laser capture microdissection. The expression of 12,000, 11,903, 11,094, and 11,933 genes was detectable in LE, GE, BV, and stroma, respectively. Differential expression analysis was performed between the pregnant and cyclic group for each cell type as well as for a corresponding dataset for complete endometrium tissue samples. The highest number of differentially expressed genes (DEGs) was found for LE (1410) compared to GE, BV, and stroma (800, 1216, and 384). For the complete tissue, 3262 DEGs were obtained. The DEGs were assigned to Gene Ontology (GO) terms to find overrepresented functional categories and pathways specific for the individual endometrial compartments. GO classification revealed that DEGs in LE were involved in 'biosynthetic processes', 'related to ion transport', and 'apoptotic processes', whereas 'cell migration', 'cell growth', 'signaling', and 'metabolic/biosynthetic processes' categories were enriched for GE. For blood vessels, categories such as 'focal adhesion', 'actin cytoskeleton', 'cell junction', 'cell differentiation and development' were found as overrepresented, while for stromal samples, most DEGs were assigned to 'extracellular matrix', 'gap junction', and 'ER to Golgi vesicles'. CONCLUSIONS The localization of differential gene expression to different endometrial cell types provided a significantly improved view on the regulation of biological processes involved in conceptus implantation, such as the control of uterine fluid secretion, trophoblast attachment, growth regulation by Wnt signaling and other signaling pathways, as well as the modulation of the maternal immune system.
Collapse
Affiliation(s)
- Shuqin Zeng
- Genetics and Functional Genomics, Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Eschikon 27 AgroVet-Strickhof, Zurich, Switzerland
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Lindau, ZH 8315 Switzerland
| | - Susanne E. Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Lindau, ZH 8315 Switzerland
| | - Stefan Bauersachs
- Genetics and Functional Genomics, Clinic of Reproductive Medicine, Department for Farm Animals, Vetsuisse Faculty, University of Zurich, Eschikon 27 AgroVet-Strickhof, Zurich, Switzerland
| |
Collapse
|
21
|
Han J, Jeong W, Gu MJ, Yoo I, Yun CH, Kim J, Ka H. Cysteine-X-cysteine motif chemokine ligand 12 and its receptor CXCR4: expression, regulation, and possible function at the maternal-conceptus interface during early pregnancy in pigs. Biol Reprod 2019; 99:1137-1148. [PMID: 29945222 DOI: 10.1093/biolre/ioy147] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/23/2018] [Indexed: 12/15/2022] Open
Abstract
Cysteine-X-cysteine (CXC) motif chemokine ligand 12 (CXCL12) and its receptor, CXC chemokine receptor type 4 (CXCR4), are involved in regulating the proliferation, migration, and survival of trophoblast cells and the maternal immune response in humans and mice. The present study examined the expression, regulation, and function of CXCL12 and CXCR4 at the maternal-conceptus interface during pregnancy in pigs. The endometrium expressed CXCL12 and CXCR4 mRNAs with the greatest CXCL12 abundance on Day 15 of pregnancy. CXCL12 protein was localized mainly in endometrial epithelial cells, while CXCR4 protein was localized in subepithelial stromal cells, vascular endothelial cells, and immune cells in blood vessels in the endometrium during the estrous cycle and pregnancy. CXCL12 protein was detected in uterine flushing on Day 15 of pregnancy. The conceptus during early pregnancy and chorioallantoic tissues during mid-to-late pregnancy expressed CXCL12 and CXCR4. Interferon-γ increased the abundance of CXCL12, but not CXCR4 mRNA in endometrial explants. Recombinant CXCL12 (rCXCL12) protein dose-dependently increased migration of cultured porcine trophectoderm cells and peripheral blood mononuclear cells (PBMCs). Furthermore, rCXCL12 caused migration of T cells, but not natural killer cells, in PBMCs. This study revealed that interferon-γ-induced CXCL12 and its receptor, CXCR4, were expressed at the maternal-conceptus interface and increased the migration of trophectoderm cells and T cells at the time of implantation in pigs. These results suggest that CXCL12 may be critical for the establishment of pregnancy by regulating trophoblast migration and T cell recruitment into the endometrium during the implantation period in pigs.
Collapse
Affiliation(s)
- Jisoo Han
- Department of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Wooyoung Jeong
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Min Jeong Gu
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Inkyu Yoo
- Department of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinyoung Kim
- Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Hakhyun Ka
- Department of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
22
|
Han J, Yoo I, Lee S, Jung W, Kim HJ, Hyun SH, Lee E, Ka H. Atypical chemokine receptors 1, 2, 3 and 4: Expression and regulation in the endometrium during the estrous cycle and pregnancy and with somatic cell nucleus transfer-cloned embryos in pigs. Theriogenology 2019; 129:121-129. [PMID: 30844653 DOI: 10.1016/j.theriogenology.2019.02.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/03/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Atypical chemokine receptor (ACKR) 1, ACKR2, ACKR3, and ACKR4, chemokine decoy receptors that lack G-protein-mediated signaling pathways, internalize and degrade chemokines to control their availability and function. Chemokines play important roles in the endometrium during the estrous cycle and pregnancy, but the expression and regulation of ACKRs have not been determined in pigs. Therefore, we examined the expression of ACKRs in the endometrium throughout the estrous cycle and pregnancy and in conceptus tissues in pigs. ACKR1, ACKR2, ACKR3, and ACKR4 mRNA was expressed in the endometrium, with higher levels of ACKR3 on day 12 of the estrous cycle than in pregnancy and higher levels of ACKR4 on day 15 of pregnancy than in the estrous cycle. ACKR1, ACKR2, and ACKR3, but not ACKR4, mRNA was detected in conceptus and chorioallantoic tissues during pregnancy. ACKR2 and ACKR3 mRNA and ACKR4 protein were mainly localized to luminal epithelial cells and weakly to glandular epithelial cells in the endometrium. Increasing doses of progesterone increased the expression of ACKR2 and ACKR4 and decreased the expression of ACKR3 in endometrial tissues. On day 12 of pregnancy, the expression of ACKR4 mRNA was lower in the endometria of gilts with somatic cell nucleus transfer-derived conceptuses than in the endometria of gilts carrying conceptuses derived from natural mating. These results indicate that the expression of ACKRs is dynamically regulated at the maternal-conceptus interface, suggesting that ACKR proteins might play critical roles in regulating endometrial chemokines to support the establishment and maintenance of pregnancy in pigs.
Collapse
Affiliation(s)
- Jisoo Han
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Inkyu Yoo
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Soohyung Lee
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Wonchul Jung
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Hyun Jong Kim
- Swine Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan, 31000, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Eunsong Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Gangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
23
|
Analysis of stage-specific expression of the toll-like receptor family in the porcine endometrium throughout the estrous cycle and pregnancy. Theriogenology 2018; 125:173-183. [PMID: 30448720 DOI: 10.1016/j.theriogenology.2018.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/10/2018] [Accepted: 11/06/2018] [Indexed: 01/04/2023]
Abstract
Toll-like receptors (TLRs) play critical roles in innate immunity by regulating antimicrobial responses in mucosal tissues. The expression and function of TLRs in female reproductive tissues have been studied in several species, but the expression and function of TLRs and MYD88, an adaptor molecule in the TLR signaling pathway, at the maternal-conceptus interface are not well understood in pigs. Thus, we determined the expression of TLR1 - TLR10 and MYD88 in the endometrium, conceptus, and chorioallantoic tissues of pigs. TLR1 - TLR10 and MYD88 mRNAs were expressed in the endometrium during the estrous cycle and pregnancy in a stage-dependent manner. TLR and MYD88 mRNAs were also detected in early stage conceptuses and chorioallantoic tissues from Day 30 to term pregnancy. The expression of TLR2, TLR4, TLR5, and TLR7 was localized to epithelial and stromal cells in endometrial and chorioallantoic tissues. Increasing doses of P4, but not E2, induced the expression of TLR4, TLR5, TLR6, TLR7, and TLR8, while interferon-γ increased the expression of TLR2 and TLR7 in endometrial explant tissues. Expression of TLR3, TLR5, TLR6, TLR7, and MYD88 was higher in the endometrium with somatic cell nucleus transfer-derived conceptuses than conceptuses derived from natural mating on Day 12. These results indicate that the expression of TLR1 - TLR10 and MYD88 is dynamically regulated at the maternal-conceptus interface in pigs, suggesting that TLRs expressed in the endometrium and the placenta may play a critical role in regulating mucosal immune responses to support the establishment and maintenance of pregnancy.
Collapse
|
24
|
Ka H, Seo H, Choi Y, Yoo I, Han J. Endometrial response to conceptus-derived estrogen and interleukin-1β at the time of implantation in pigs. J Anim Sci Biotechnol 2018; 9:44. [PMID: 29928500 PMCID: PMC5989395 DOI: 10.1186/s40104-018-0259-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/25/2018] [Indexed: 12/20/2022] Open
Abstract
The establishment of pregnancy is a complex process that requires a well-coordinated interaction between the implanting conceptus and the maternal uterus. In pigs, the conceptus undergoes dramatic morphological and functional changes at the time of implantation and introduces various factors, including estrogens and cytokines, interleukin-1β2 (IL1B2), interferon-γ (IFNG), and IFN-δ (IFND), into the uterine lumen. In response to ovarian steroid hormones and conceptus-derived factors, the uterine endometrium becomes receptive to the implanting conceptus by changing its expression of cell adhesion molecules, secretory activity, and immune response. Conceptus-derived estrogens act as a signal for maternal recognition of pregnancy by changing the direction of prostaglandin (PG) F2α from the uterine vasculature to the uterine lumen. Estrogens also induce the expression of many endometrial genes, including genes related to growth factors, the synthesis and transport of PGs, and immunity. IL1B2, a pro-inflammatory cytokine, is produced by the elongating conceptus. The direct effect of IL1B2 on endometrial function is not fully understood. IL1B activates the expression of endometrial genes, including the genes involved in IL1B signaling and PG synthesis and transport. In addition, estrogen or IL1B stimulates endometrial expression of IFN signaling molecules, suggesting that estrogen and IL1B act cooperatively in priming the endometrial function of conceptus-produced IFNG and IFND that, in turn, modulate endometrial immune response during early pregnancy. This review addresses information about maternal-conceptus interactions with respect to endometrial gene expression in response to conceptus-derived factors, focusing on the roles of estrogen and IL1B during early pregnancy in pigs.
Collapse
Affiliation(s)
- Hakhyun Ka
- 1Department of Biological Science and Technology, Yonsei University, Wonju, 26493 Republic of Korea
| | - Heewon Seo
- 1Department of Biological Science and Technology, Yonsei University, Wonju, 26493 Republic of Korea.,2Department of Veterinary Integrated Biosciences, Texas A&M University, College Station, TX 77843-2471 USA
| | - Yohan Choi
- 1Department of Biological Science and Technology, Yonsei University, Wonju, 26493 Republic of Korea.,3Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298 USA
| | - Inkyu Yoo
- 1Department of Biological Science and Technology, Yonsei University, Wonju, 26493 Republic of Korea
| | - Jisoo Han
- 1Department of Biological Science and Technology, Yonsei University, Wonju, 26493 Republic of Korea
| |
Collapse
|
25
|
Han J, Seo H, Choi Y, Lee C, Kim MI, Jeon Y, Lee J, Hong M, Hyun SH, Lee E, Ka H. Expression and regulation of inhibitor of DNA binding proteins ID1, ID2, ID3, and ID4 at the maternal-conceptus interface in pigs. Theriogenology 2018; 108:46-55. [DOI: 10.1016/j.theriogenology.2017.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/09/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022]
|
26
|
Roles of Interferons in Pregnant Women with Dengue Infection: Protective or Dangerous Factors. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2017; 2017:1671607. [PMID: 29081814 PMCID: PMC5610849 DOI: 10.1155/2017/1671607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/01/2017] [Accepted: 08/06/2017] [Indexed: 01/13/2023]
Abstract
Dengue infection is a serious public health problem in tropical and subtropical areas. With the recent outbreaks of Zika disease and its reported correlation with microcephaly, the large number of pregnancies with dengue infection has become a serious concern. This review describes the epidemiological characteristics of pregnancy with dengue and the initial immune response to dengue infection, especially in IFNs production in this group of patients. Dengue is much more prevalent in pregnant women compared with other populations. The severity of dengue is correlated with the level of IFNs, while the serum IFN level must be sufficiently high to maintain the pregnancy and to inhibit virus replication.
Collapse
|
27
|
Bidarimath M, Tayade C. Pregnancy and spontaneous fetal loss: A pig perspective. Mol Reprod Dev 2017; 84:856-869. [PMID: 28661560 DOI: 10.1002/mrd.22847] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
Pigs have a unique, non-invasive epitheliochorial placenta where maternal and fetal layers lay in apposition. Indentation of fetal capillaries into the trophoblasts and maternal capillaries into the uterine epithelium reduce the distance between the fetal and maternal blood, ensuring nutrient transfer for proper conceptus development. Another unique feature of pig pregnancy is conceptus-mediated immune cell enrichment during the early stages of conceptus attachment (around gestation Day 15). This period coincides with the development of vasculature networks at the maternal-fetal interface, which is critical for successful conceptus growth. Specific chemokines, their receptors, and chemokine decoy receptor networks coordinate this immune cell enrichment and the positioning at the maternal-fetal interface. The recruited immune cells, in turn, adopt a specialized phenotype to support key processes of maternal-fetal adaptations, including tolerance to the semi-allogeneic fetus and supporting vascularization. Disturbance in coordinated cross talk between the conceptus and maternal endometrium is an important mechanism associated with spontaneous fetal loss. The exact mechanism of fetal loss is still not yet identified, although research in the last two decades point to various factors including genetics, nutrition, uterine capacity, placental efficiency, and imbalanced immune factors at the maternal-fetal interface. In this review, we summarize some of the recent advances in endometrial immune cell functions and their regulation. We also provide insights into endometrial/placental transcriptome, microRNA biology, and extravesicular transport across the maternal-fetal interface, as well as their potential implications in porcine pregnancy success or failure.
Collapse
Affiliation(s)
- Mallikarjun Bidarimath
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
28
|
Deep sequencing of transcriptome profiling of GSTM2 knock-down in swine testis cells. Sci Rep 2016; 6:38254. [PMID: 27905550 PMCID: PMC5131268 DOI: 10.1038/srep38254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/07/2016] [Indexed: 12/25/2022] Open
Abstract
Glutathione-S-transferases mu 2 (GSTM2), a kind of important Phase II antioxidant enzyme of eukaryotes, is degraded by nonsense mediated mRNA decay due to a C27T substitution in the fifth exon of pigs. As a reproductive performance-related gene, GSTM2 is involved in embryo implantation, whereas, functional deficiency of GSTM2 induces pre- or post-natal death in piglets potentially. To have some insight into the role of GSTM2 in embryo development, high throughput RNA sequencing is performed using the swine testis cells (ST) with the deletion of GSTM2. Some embryo development-related genes are observed from a total of 242 differentially expressed genes, including STAT1, SRC, IL-8, DUSP family, CCL family and integrin family. GSTM2 affects expression of SRC, OPN, and SLCs. GSTM2 suppresses phosphorylation of STAT1 by binding to STAT1. In addition, as an important transcription factor, STAT1 regulates expression of uterus receptive-related genes including CCLs, IRF9, IFITs, MXs, and OAS. The present study provides evidence to molecular mechanism of GSTM2 modulating embryo development.
Collapse
|
29
|
Characterization of interferon α and β receptor IFNAR1 and IFNAR2 expression and regulation in the uterine endometrium during the estrous cycle and pregnancy in pigs. Theriogenology 2016; 88:166-173. [PMID: 27769575 DOI: 10.1016/j.theriogenology.2016.09.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 11/24/2022]
Abstract
Type I interferons (IFNs) bind to the heterodimeric receptor composed of IFN-α/β receptor 1 (IFNAR1) and IFN-α and β receptor 2 (IFNAR2) to transmit signals into the cell. It is well known that IFN-δ (IFND), a type I IFN, is secreted by the conceptus during early pregnancy in pigs. However, expression and regulation of IFNAR1 and IFNAR2 in the porcine uterine endometrium are not well understood. Thus, we analyzed the expression and regulation of IFNAR1 and IFNAR2 in the uterine endometrium during the estrous cycle and pregnancy and conceptus and chorioallantoic tissues during pregnancy in pigs. The IFNAR1 and IFNAR2 mRNAs were expressed in the uterine endometrium, and their levels on Day 12 of pregnancy were higher than those on Day 12 of the estrous cycle and highest during pregnancy. The IFNAR1 and IFNAR2 mRNAs were also expressed in conceptuses during early pregnancy, in chorioallantoic tissues during mid-to-term pregnancy, and in endometrial epithelial cells and chorionic membrane during mid-to-late pregnancy. The abundance of IFNAR1 and IFNAR2 mRNAs was increased by interleukin-1β (IL1B), and the abundance of IFNAR2 was increased by estradiol in endometrial tissue explants. Thus, IFNAR1 and IFNAR2 mRNAs were expressed in the uterine endometrium during the estrous cycle and pregnancy in a pregnancy status- and stage-specific manner, and their expression was affected by estradiol and/or IL1B. These results suggest that endometrial and conceptus IFNAR1 and IFNAR2 may mediate the action of type I IFNs during the implantation period for the establishment and maintenance of pregnancy in pigs.
Collapse
|
30
|
Mathew DJ, Lucy MC, D Geisert R. Interleukins, interferons, and establishment of pregnancy in pigs. Reproduction 2016; 151:R111-22. [PMID: 27001998 DOI: 10.1530/rep-16-0047] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/21/2016] [Indexed: 01/27/2023]
Abstract
Early pregnancy in mammals requires complex and highly orchestrated cellular and molecular interactions between specialized cells within the endometrium and the conceptus. Proinflammatory cytokines are small signaling proteins released by leukocytes that augment innate and adaptive immune responses. They are also released by the mammalian trophectoderm as the conceptus apposes the uterine surface for implantation. On approximately day 12 of development in pigs, the conceptus undergoes a rapid morphological transformation referred to as elongation while simultaneously releasing estrogens and a novel conceptus form of interleukin-1 beta (IL1β). Following elongation, pig conceptuses express interferon gamma (IFNγ) and, in lesser amounts, interferon delta (IFNδ). Significant IFN signaling takes place within the endometrium between day 14 and 18 of pregnancy as the conceptus intimately associates with the uterine epithelium. Based on studies carried out in pigs and other mammals, the combined spacio-temporal activities of conceptus estrogens, IL1β, and IFN set in motion a series of coordinated events that promote establishment of pregnancy. This is achieved through enhancement of conceptus development, uterine receptivity, maternal-fetal hemotropic exchange, and endometrial leukocyte function. These events require activation of specific signaling pathways within the uterine luminal epithelium, glandular epithelium, and stroma. Here, we review proinflammatory cytokine expression by pig conceptuses and the hypothesized actions of these molecules during establishment of pregnancy.
Collapse
Affiliation(s)
- Daniel J Mathew
- School of Agriculture and Food ScienceUniversity College Dublin, Belfield, Dublin, Ireland
| | - Matthew C Lucy
- Division of Animal SciencesUniversity of Missouri, Columbia, Missouri, USA
| | - Rodney D Geisert
- Division of Animal SciencesUniversity of Missouri, Columbia, Missouri, USA
| |
Collapse
|
31
|
Placentation, maternal-fetal interface, and conceptus loss in swine. Theriogenology 2015; 85:135-44. [PMID: 26324112 DOI: 10.1016/j.theriogenology.2015.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 12/20/2022]
Abstract
Pregnancy is a delicate yet complex physiological process that requires fine-tuning of many factors (hormones, growth factors, cytokines, and receptors) between the mother and the conceptus to ensure the survival of the conceptus(es) to term. Any disturbance in the maternal-conceptus dialog can have detrimental effects on the affected conceptus or even the outcome of pregnancy as a whole. Being a litter-bearing species, such disruptions can lead to a loss of up to 45% of the totally healthy offspring during early (periattachment) and midgestation to late gestation in pigs. Although the exact mechanism is not entirely understood, several factors have been associated with the fetal loss including but not limited to uterine capacity, placental efficiency, genetics, nutrition, and deficits in vascularization at the maternal-fetal interface. Over the years, we investigated how immune cells are recruited to the porcine maternal-fetal interface and whether they contribute to vascularization. We also delineated how cytokines, chemokines, and cytokine destabilizing factors fine-tune inflammation and whether the cytokine shift from early to midpregnancy exists at the porcine maternal-fetal interface. Finally, we evaluated the role of microRNAs in regulating immune cell recruitment and their angiogenic functions during pregnancy. Collectively our research points out that the immune-angiogenesis axis at the porcine maternal interface is significantly involved in promoting new blood vessel development, regulating inflammatory responses and ultimately contributing to pregnancy success. In this review, we summarized current knowledge on spontaneous fetal loss in swine, with special attention to the mechanisms in immune reactivity and interplay at the maternal-fetal interface.
Collapse
|
32
|
Liu LX, Zhao SG, Lu HN, Yang QL, Huang XY, Gun SB. Association between polymorphisms of the swine MHC-DQA gene and diarrhoea in three Chinese native piglets. Int J Immunogenet 2015; 42:208-16. [PMID: 25736511 DOI: 10.1111/iji.12186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 12/30/2014] [Accepted: 02/02/2015] [Indexed: 12/26/2022]
Abstract
Swine leucocyte antigen (SLA) is a highly polymorphic multigene family that plays a crucial role in swine immune response and disease resistance. Here, we identified polymorphisms and gene variations of SLA-DQA exon 2 using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing analysis, and further investigated the correlation between the polymorphisms and piglet diarrhoea in three Chinese native pig breeds (Bamei, Juema and Gansu Black pigs). Consequently, 12 genotypes and 8 alleles including two novel alleles were detected. Nucleotide polymorphism was compared with the actual functional polymorphism in the peptide-binding region (PBR), binding pockets P1, P6 and P9, and the antigen-binding groove, variations in the antigen-binding groove of alleles DQA*01xa01, DQA*01xa03, DQA*01xb01, DQA*We02, DQA*03xb03 and DQA*wy06 were higher than alleles DQA*03xa01 and DQA*03xa03, while amino acid variations in peptide-binding pockets of allele DQA*03xa03 were most abundant among all alleles. The results of association analysis showed the diarrhoea score of Gansu Black pigs (-0.08 ± 0.78) was significantly higher than Bamei and Juema pigs (P < 0.01), and genotype DQA*03xa0103xa01 (0.39 ± 0.54) was significantly higher relative to other genotypes (P < 0.01), while that of genotype DQA*03xa0303xa03 (-1.31 ± 0.88) was markedly lower than scores obtained with genotypes DQA*03xa0103xa01 and DQA*03xa0101xa01 (P < 0.01), as well as DQA*01xa0101xa01 (P < 0.05), indicating that amino acid variations in the peptide-binding pockets play a more important role than the antigen-binding groove in piglet diarrhoea resistance. Further studies on other SLA molecules of native pigs are required to validate the link between this gene complex and diarrhoea.
Collapse
Affiliation(s)
- L X Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, China
| | - S G Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - H N Lu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou, China
| | - Q L Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - X Y Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - S B Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, China
| |
Collapse
|
33
|
Implantation and Establishment of Pregnancy in the Pig. REGULATION OF IMPLANTATION AND ESTABLISHMENT OF PREGNANCY IN MAMMALS 2015; 216:137-63. [DOI: 10.1007/978-3-319-15856-3_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Bogacka I, Bogacki M, Boruszewska D, Wasielak M. Expression of peroxisome proliferator activated receptor (PPAR) genes in porcine endometrium exposed in vitro to IL-6 and INFγ. Reprod Biol 2012; 12:157-70. [DOI: 10.1016/s1642-431x(12)60083-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|