1
|
Burato S, Walker MB, Goncalves LM, Oosthuizen N, Zoca SM, Henry DD, Ciriaco FM, Ranches J, Fontes PLP. Influence of early progesterone removal on follicular development, expression of estrus, and pregnancy rates in presynchronized postpartum beef cows. Anim Reprod Sci 2024; 267:107541. [PMID: 38909485 DOI: 10.1016/j.anireprosci.2024.107541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The objective of this study was to evaluate the impact of early progesterone removal on pregnancy rates to fixed-time artificial insemination (FTAI) in presynchronized beef cows. Postpartum beef cows (n = 882) were randomly assigned to 1 of 2 treatments: 1) 7&7 Synch: cows received a controlled internal drug release insert (CIDR) and a 25-mg injection of prostaglandin F2α on day 0, 100 μg of GnRH on day 7, a second injection of prostaglandin F2α (PG2) at CIDR removal on day 14, and a second injection of GnRH at FTAI 60-66 h after PG2 (day 17); 2) 7&6 Synch: cows received the same treatment as 7&7 Synch; however, CIDR removal occurred in conjunction with PG2 on day 13, while FTAI remained at 60-66 h after CIDR removal (day 16). Ovarian ultrasonography was performed to determine follicle diameter at PG2 and FTAI in a subset of cows (n = 40). Cows exposed to the 7&7 Synch tended to have larger follicle diameter at PG2 compared with 7&6 Synch cows (P = 0.09); however, there were no differences in follicle diameter at FTAI. No differences were determined between treatments for the expression of estrus (7&7 Synch: 61.6 ± 5.30; 7&6 Synch: 54.1 ± 5.45; P = 0.31) or pregnancy rates to FTAI (7&7 Synch: 60.8 ± 3.83; 7&6 Synch: 57.0 ± 3.84; P = 0.42). In conclusion, early removal of progesterone did not impact pregnancy rates in presynchronized beef cows.
Collapse
Affiliation(s)
- Samir Burato
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Madison Blake Walker
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Lucas Melo Goncalves
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | | | | | - Darren Dwayne Henry
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | | | - Juliana Ranches
- Eastern Oregon Agricultural Research Center, Oregon State University, Burns, OR 97720, USA
| | | |
Collapse
|
2
|
Min T, Lee SH, Lee S. Angiogenesis and Apoptosis: Data Comparison of Similar Microenvironments in the Corpus Luteum and Tumors. Animals (Basel) 2024; 14:1118. [PMID: 38612357 PMCID: PMC11011057 DOI: 10.3390/ani14071118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
The corpus luteum is a temporary endocrine gland formed in the ovary after ovulation, and it plays a critical role in animal reproductive processes. Tumors rely on the development of an adequate blood supply to ensure the delivery of nutrients and oxygen and the removal of waste products. While angiogenesis occurs in various physiological and pathological contexts, the corpus luteum and tumors share similarities in terms of the signaling pathways that promote angiogenesis. In the corpus luteum and tumors, apoptosis plays a crucial role in controlling cell numbers and ensuring proper tissue development and function. Interestingly, there are similarities between the apoptotic-regulated signaling pathways involved in apoptosis in the corpus luteum and tumors. However, the regulation of apoptosis in both can differ due to their distinct physiological and pathological characteristics. Thus, we reviewed the biological events of the corpus luteum and tumors in similar microenvironments of angiogenesis and apoptosis.
Collapse
Affiliation(s)
| | | | - Seunghyung Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
3
|
Berisha B, Thaqi G, Sinowatz F, Schams D, Rodler D, Pfaffl MW. Prostaglandins as local regulators of ovarian physiology in ruminants. Anat Histol Embryol 2024; 53:e12980. [PMID: 37788129 DOI: 10.1111/ahe.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 10/05/2023]
Abstract
Prostaglandins are synthesized from arachidonic acid through the catalytic activities of cyclooxygenase, while the production of different prostaglandin types, prostaglandin F2 alpha (PGF) and prostaglandin E2 (PGE), are regulated by specific prostaglandin synthases (PGFS and PGES). Prostaglandin ligands (PGF and PGE) bind to specific high-affinity receptors and initiate biologically distinct signalling pathways. In the ovaries, prostaglandins are known to be important endocrine regulators of female reproduction, in addition to maintaining local function through autocrine and/or paracrine effect. Many research groups in different animal species have already identified a variety of factors and molecular mechanisms that are responsible for the regulation of prostaglandin functions. In addition, prostaglandins stimulate their intrafollicular and intraluteal production via the pathway of prostaglandin self-regulation in the ovary. Therefore, the objective of the review article is to discuss recent findings about local regulation patterns of prostaglandin ligands PGF and PGE during different physiological stages of ovarian function in domestic ruminants, especially in bovine. In conclusion, the discussed local regulation mechanisms of prostaglandins in the ovary may stimulate further research activities in different methodological approaches, especially during final follicle maturation and ovulation, as well as corpus luteum formation and function.
Collapse
Affiliation(s)
- Bajram Berisha
- Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Prishtina, Kosovo
- Academy of Science of Albania, Tirana, Albania
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising Weihenstephan, Germany
| | - Granit Thaqi
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising Weihenstephan, Germany
| | - Fred Sinowatz
- Department of Veterinary Sciences, Ludwig-Maximilian-University of Munich, Munich, Germany
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dieter Schams
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising Weihenstephan, Germany
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Michael W Pfaffl
- Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising Weihenstephan, Germany
| |
Collapse
|
4
|
Thaqi G, Berisha B, Pfaffl MW. Local Expression Dynamics of Various Adipokines during Induced Luteal Regression (Luteolysis) in the Bovine Corpus Luteum. Animals (Basel) 2023; 13:3221. [PMID: 37893945 PMCID: PMC10603666 DOI: 10.3390/ani13203221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The study aimed to evaluate the mRNA expression levels of various local novel adipokines, including vaspin, adiponectin, visfatin, and resistin, along with their associated receptors, heat shock 70 protein 5, adiponectin receptor 1, and adiponectin receptor 2, in the corpus luteum (CL) during luteal regression, also known as luteolysis, in dairy cows. We selected Fleckvieh cows in the mid-luteal phase (days 8-12, control group) and administered cloprostenol (PGF analog) to experimentally induce luteolysis. We collected CL samples at different time points following PGF application: before treatment (days 8-12, control group) and at 0.5, 2, 4, 12, 24, 48, and 64 h post-treatment (n = 5) per group. The mRNA expression was measured via real-time reverse transcription polymerase chain reaction (RT-qPCR). Vaspin was characterized by high mRNA levels at the beginning of the regression stage, followed by a significant decrease 48 h and 64 h after PGF treatment. Adiponectin mRNA levels were elevated 48 h after PGF. Resistin showed upregulation 4 h post PGF application. In summary, the alterations observed in the adipokine family within experimentally induced regressing CL tissue potentially play an integral role in the local regulatory processes governing the sequence of events culminating in functional luteolysis and subsequent structural changes in the bovine ovary.
Collapse
Affiliation(s)
- Granit Thaqi
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephan, 85354 Munich, Germany; (B.B.); (M.W.P.)
| | - Bajram Berisha
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephan, 85354 Munich, Germany; (B.B.); (M.W.P.)
- Department of Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, 10000 Prishtina, Kosovo
| | - Michael W. Pfaffl
- Chair of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Weihenstephan, 85354 Munich, Germany; (B.B.); (M.W.P.)
| |
Collapse
|
5
|
Monaco CF, Davis JS. Mechanisms of angioregression of the corpus luteum. Front Physiol 2023; 14:1254943. [PMID: 37841308 PMCID: PMC10568036 DOI: 10.3389/fphys.2023.1254943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
The corpus luteum is a transient ovarian endocrine gland that produces the progesterone necessary for the establishment and maintenance of pregnancy. The formation and function of this gland involves angiogenesis, establishing the tissue with a robust blood flow and vast microvasculature required to support production of progesterone. Every steroidogenic cell within the corpus luteum is in direct contact with a capillary, and disruption of angiogenesis impairs luteal development and function. At the end of a reproductive cycle, the corpus luteum ceases progesterone production and undergoes rapid structural regression into a nonfunctional corpus albicans in a process initiated and exacerbated by the luteolysin prostaglandin F2α (PGF2α). Structural regression is accompanied by complete regression of the luteal microvasculature in which endothelial cells die and are sloughed off into capillaries and lymphatic vessels. During luteal regression, changes in nitric oxide transiently increase blood flow, followed by a reduction in blood flow and progesterone secretion. Early luteal regression is marked by an increased production of cytokines and chemokines and influx of immune cells. Microvascular endothelial cells are sensitive to released factors during luteolysis, including thrombospondin, endothelin, and cytokines like tumor necrosis factor alpha (TNF) and transforming growth factor β 1 (TGFB1). Although PGF2α is known to be a vasoconstrictor, endothelial cells do not express receptors for PGF2α, therefore it is believed that the angioregression occurring during luteolysis is mediated by factors downstream of PGF2α signaling. Yet, the exact mechanisms responsible for angioregression in the corpus luteum remain unknown. This review describes the current knowledge on angioregression of the corpus luteum and the roles of vasoactive factors released during luteolysis on luteal vasculature and endothelial cells of the microvasculature.
Collapse
Affiliation(s)
- Corrine F. Monaco
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
| | - John S. Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, United States
- US Department of Veterans Affairs Nebraska-Western Iowa Healthcare System, Omaha, NE, United States
| |
Collapse
|
6
|
Sharawy HA, Hegab AO, Mostagir A, Adlan F, Bazer FW, Elmetwally MA. Expression of genes for transport of water and angiogenesis, as well as biochemical biomarkers in Holstein dairy cows during the ovsynch program. Theriogenology 2023; 208:52-59. [PMID: 37315443 DOI: 10.1016/j.theriogenology.2023.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
Changes in expression of genes associated with angiogenesis and transport of water by cells, as well as biomarkers of oxidative stress were determined at specific times during the ovsynch protocol to synchronize estrus and breed Holstein dairy cows. Blood samples were taken from 82 lactating Holstein cows at the time of the 1st GnRH injection (G1), 7 days later at the time of the PGF2a (PG) injection, and 48 h after the PGF2a treatment when the second injection of GnRH was administered (G2). The serum was analyzed for malondialdehyde (MDA), reduced glutathione (GSH), glutathione peroxidase (GPX), nitric oxide (NO), catalase (CAT), and total antioxidant capacity (TAC). The expression of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), endothelial nitric oxide synthase (eNOS3), aquaporin 3 (AQP3), and AQP4 mRNAs in peripheral blood mononuclear cells (PBMCs) was analyzed. The number of copies of each of the mRNAs was quantified using qPCR. Pregnancy status was determining at 32 ± 3 days after insemination using an ultrasound "Sonoscape-5V″ model. Receiver operating curves (ROC) were used to assess the sensitivity and specificity of the biochemical parameters in serum to predict establishment of p The expression of MDA, GPX, and Catalase changed (P < 0·05) between G1, PG and G2 phases of the ovsynch protocol with higher levels at PG than at G1 and G2. The highest levels of NO were detected at G2. The ROC analyses identified NO, TAC and CAT as the most sensitive and specific biomarker for pregnancy with areas under the curve being 0.875 (P < 0.0001), 0.843 (P < 0.03), 0.833 (P < 0.017), sensitivity being 75.3, 42.86, and 26.27%, and specificity being 90, 90 and 85% respectively. The expression for VEGF, VEGFR2, eNOS3, AQP3, and AQP4 mRNAs was upregulated at PG compared to G1 and G2 phases of the ovsynch protocol. The results suggest that following the first injection of GnRH, there is an increase in expression of VEGF, VEGFR2, eNOS3, AQP3, and AQP4 mRNAs by the time of the PGF2a injection and then expression decreased. Further, ROC analyses identified increases in NO, TAC and CAT as the most sensitive and specific biomarkers with the greatest potential to predict establishment of pregnancy in Holstein cows.
Collapse
Affiliation(s)
- Heba A Sharawy
- Departments of Theriogenology, 35516, Mansoura, Egypt; Center for Reproductive Biotechnology, 35516, Mansoura, Egypt
| | - AbdelRaouf O Hegab
- Departments of Theriogenology, 35516, Mansoura, Egypt; Center for Reproductive Biotechnology, 35516, Mansoura, Egypt
| | - Amira Mostagir
- Departments of Theriogenology, 35516, Mansoura, Egypt; Center for Reproductive Biotechnology, 35516, Mansoura, Egypt; Clinical Teaching Hospital, Faculty of Veterinary Medicine, Mansoura University, 35516, Mansoura, Egypt
| | - Fatma Adlan
- Departments of Theriogenology, 35516, Mansoura, Egypt; Center for Reproductive Biotechnology, 35516, Mansoura, Egypt; Clinical Teaching Hospital, Faculty of Veterinary Medicine, Mansoura University, 35516, Mansoura, Egypt
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Mohammed A Elmetwally
- Departments of Theriogenology, 35516, Mansoura, Egypt; Center for Reproductive Biotechnology, 35516, Mansoura, Egypt; Clinical Teaching Hospital, Faculty of Veterinary Medicine, Mansoura University, 35516, Mansoura, Egypt.
| |
Collapse
|
7
|
Monaco CF, Plewes MR, Przygrodzka E, George JW, Qiu F, Xiao P, Wood JR, Cupp AS, Davis JS. Basic fibroblast growth factor induces proliferation and collagen production by fibroblasts derived from the bovine corpus luteum†. Biol Reprod 2023; 109:367-380. [PMID: 37283496 PMCID: PMC10502575 DOI: 10.1093/biolre/ioad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/11/2023] [Indexed: 06/08/2023] Open
Abstract
Cyclic regression of the ovarian corpus luteum, the endocrine gland responsible for progesterone production, involves rapid matrix remodeling. Despite fibroblasts in other systems being known for producing and maintaining extracellular matrix, little is known about fibroblasts in the functional or regressing corpus luteum. Vast transcriptomic changes occur in the regressing corpus luteum, among which are reduced levels of vascular endothelial growth factor A (VEGFA) and increased expression of fibroblast growth factor 2 (FGF2) after 4 and 12 h of induced regression, when progesterone is declining and the microvasculature is destabilizing. We hypothesized that FGF2 activates luteal fibroblasts. Analysis of transcriptomic changes during induced luteal regression revealed elevations in markers of fibroblast activation and fibrosis, including fibroblast activation protein (FAP), serpin family E member 1 (SERPINE1), and secreted phosphoprotein 1 (SPP1). To test our hypothesis, we treated bovine luteal fibroblasts with FGF2 to measure downstream signaling, type 1 collagen production, and proliferation. We observed rapid and robust phosphorylation of various signaling pathways involved in proliferation, such as ERK, AKT, and STAT1. From our longer-term treatments, we determined that FGF2 has a concentration-dependent collagen-inducing effect, and that FGF2 acts as a mitogen for luteal fibroblasts. FGF2-induced proliferation was greatly blunted by inhibition of AKT or STAT1 signaling. Our results suggest that luteal fibroblasts are responsive to factors that are released by the regressing bovine corpus luteum, an insight into the contribution of fibroblasts to the microenvironment in the regressing corpus luteum.
Collapse
Affiliation(s)
- Corrine F Monaco
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michele R Plewes
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- US Department of Veterans Affairs-Nebraska Western Iowa Healthcare System, Omaha, NE, USA
| | - Emilia Przygrodzka
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jitu W George
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- US Department of Veterans Affairs-Nebraska Western Iowa Healthcare System, Omaha, NE, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peng Xiao
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jennifer R Wood
- Department of Animal Science, University of Nebraska—Lincoln, Lincoln, NE, USA
| | - Andrea S Cupp
- Department of Animal Science, University of Nebraska—Lincoln, Lincoln, NE, USA
| | - John S Davis
- Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- US Department of Veterans Affairs-Nebraska Western Iowa Healthcare System, Omaha, NE, USA
| |
Collapse
|
8
|
Molecular insight into pentraxin-3: update advances in innate immunity, inflammation, tissue remodeling, diseases, and drug role. Biomed Pharmacother 2022; 156:113783. [DOI: 10.1016/j.biopha.2022.113783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
|
9
|
Passos JRS, Guerreiro DD, Otávio KS, Dos Santos-Neto PC, Souza-Neves M, Cuadro F, Nuñez-Olivera R, Crispo M, Vasconcelos FR, Bezerra MJB, Silva RF, Lima LF, Figueiredo JR, Bustamante-Filho IC, Menchaca A, Moura AA. How in vitro maturation changes the proteome of ovine cumulus-oocyte complexes? Mol Reprod Dev 2022; 89:459-470. [PMID: 35901249 DOI: 10.1002/mrd.23638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/29/2022] [Accepted: 07/21/2022] [Indexed: 11/11/2022]
Abstract
The present study evaluated the effects of in vitro maturation (IVM) on the proteome of cumulus-oocyte complexes (COCs) from ewes. Extracted COC proteins were analyzed by LC-MS/MS. Differences in protein abundances (p < 0.05) and functional enrichments in immature versus in vitro-matured COCs were evaluated using bioinformatics tools. There were 2550 proteins identified in the COCs, with 89 and 87 proteins exclusive to immature and mature COCs, respectively. IVM caused downregulation of 84 and upregulation of 34 proteins. Major upregulated proteins in mature COCs were dopey_N domain-containing protein, structural maintenance of chromosomes protein, ubiquitin-like modifier-activating enzyme 2. Main downregulated proteins in mature COCs were immunoglobulin heavy constant mu, inter-alpha-trypsin inhibitor heavy chain 2, alpha-2-macroglobulin. Proteins exclusive to mature COCs and upregulated after IVM related to immune response, complement cascade, vesicle-mediated transport, cell cycle, and extracellular matrix organization. Proteins of immature COCs and downregulated after IVM were linked to metabolic processes, immune response, and complement cascade. KEGG pathways and miRNA-regulated genes attributed to downregulated and mature COC proteins related to complement and coagulation cascades, metabolism, humoral response, and B cell-mediated immunity. Thus, IVM influenced the ovine COC proteome. This knowledge supports the future development of efficient IVM protocols for Ovis aries.
Collapse
Affiliation(s)
- José Renato S Passos
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Denise D Guerreiro
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Kamila S Otávio
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | | | - Marcela Souza-Neves
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | - Federico Cuadro
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay
| | | | - Martina Crispo
- Unidad de Biotecnología en Animales de Laboratorio, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Fábio R Vasconcelos
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Maria Julia B Bezerra
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| | - Renato F Silva
- Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), Ceará State University, Fortaleza, Brazil
| | - Laritza F Lima
- Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), Ceará State University, Fortaleza, Brazil
| | - José Ricardo Figueiredo
- Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), Ceará State University, Fortaleza, Brazil
| | | | - Alejo Menchaca
- Instituto de Reproducción Animal Uruguay, Fundación IRAUy, Montevideo, Uruguay.,Plataforma de Investigación en Salud Animal, Instituto Nacional de Investigación Agropecuaria, Montevideo, Uruguay
| | - Arlindo A Moura
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
10
|
Bishop CV, Selvaraj V, Townson DH, Pate JL, Wiltbank MC. History, insights, and future perspectives on studies into luteal function in cattle. J Anim Sci 2022; 100:skac143. [PMID: 35772753 PMCID: PMC9246667 DOI: 10.1093/jas/skac143] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
The corpus luteum (CL) forms following ovulation from the remnant of the Graafian follicle. This transient tissue produces critical hormones to maintain pregnancy, including the steroid progesterone. In cattle and other ruminants, the presence of an embryo determines if the lifespan of the CL will be prolonged to ensure successful implantation and gestation, or if the tissue will undergo destruction in the process known as luteolysis. Infertility and subfertility in dairy and beef cattle results in substantial economic loss to producers each year. In addition, this has the potential to exacerbate climate change because more animals are needed to produce high-quality protein to feed the growing world population. Successful pregnancies require coordinated regulation of uterine and ovarian function by the developing embryo. These processes are often collectively termed "maternal recognition of pregnancy." Research into the formation, function, and destruction of the bovine CL by the Northeast Multistate Project, one of the oldest continuously funded Hatch projects by the USDA, has produced a large body of evidence increasing our knowledge of the contribution of ovarian processes to fertility in ruminants. This review presents some of the seminal research into the regulation of the ruminant CL, as well as identifying mechanisms that remain to be completely validated in the bovine CL. This review also contains a broad discussion of the roles of prostaglandins, immune cells, as well as mechanisms contributing to steroidogenesis in the ruminant CL. A triadic model of luteolysis is discussed wherein the interactions among immune cells, endothelial cells, and luteal cells dictate the ability of the ruminant CL to respond to a luteolytic stimulus, along with other novel hypotheses for future research.
Collapse
Affiliation(s)
- Cecily V Bishop
- Department of Animal and Rangeland Sciences, College of Agricultural Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - David H Townson
- Department of Animal and Veterinary Sciences, The University of Vermont, Burlington, VT 05405, USA
| | - Joy L Pate
- Department of Animal Science, Center for Reproductive Biology and Health, Pennsylvania State University, State College, PA 16802, USA
| | - Milo C Wiltbank
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
11
|
Flores R, Ramirez M, Ayala L, Benavides EA, Xie F, Arellano AA, Stanko RL, Garcia MR. Adiponectin Influences FGF2 in the Developing Porcine Corpus Luteum. Vet Sci 2022; 9:vetsci9020077. [PMID: 35202330 PMCID: PMC8875662 DOI: 10.3390/vetsci9020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 01/27/2023] Open
Abstract
Luteal angiogenesis is regulated by pro-angiogenic hormones including fibroblast growth factor 2 (FGF2) and angiopoietin 1 (Ang1), which are regulated by the adipokine leptin during development. Another adipokine, adiponectin, exhibits an inverse relationship with leptin and has been identified in the CL. Therefore, it is hypothesized that adiponectin will influence pro-angiogenic hormones in the developing porcine CL. Crossbred sows were randomly allocated to one of two days of the estrous cycle, day 5 (D5; n = 4) or day 7 (D7; n = 5) for CL collection. Tissue was processed for immunohistochemical localization of adiponectin receptor 2 (AdipoR2), gene expression of FGF2, Ang1, leptin, AdipoR2, and cell culture for adiponectin treatment. The expression of AdipoR2 tended (p = 0.09) to be higher in D7 lutea and was more prevalently localized to the cell surface of large and small luteal cells than in D5 tissue. Adiponectin influenced (p ≤ 0.05) FGF2, leptin, and AdipoR2 gene expression relative to the dose and day (D5 or D7). Collectively, the evidence supports the supposition that adiponectin influences angiogenic factors in the developing CL.
Collapse
Affiliation(s)
- Rita Flores
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Martha Ramirez
- Department of Animal Science and Veterinary Technology, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (M.R.); (L.A.); (R.L.S.)
| | - Luis Ayala
- Department of Animal Science and Veterinary Technology, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (M.R.); (L.A.); (R.L.S.)
| | | | - Fang Xie
- Department of Surgery, University of California-San Francisco, San Francisco, CA 94142, USA;
| | - Adrian Aaron Arellano
- College of Veterinary Medicine, College Station, Texas A&M University, Corpus Christi, TX 77843, USA;
| | - Randy Louis Stanko
- Department of Animal Science and Veterinary Technology, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (M.R.); (L.A.); (R.L.S.)
| | - Michelle Renee Garcia
- Department of Animal Science and Veterinary Technology, Texas A&M University-Kingsville, Kingsville, TX 78363, USA; (M.R.); (L.A.); (R.L.S.)
- Correspondence: ; Tel.: +1-361-593-3197
| |
Collapse
|
12
|
Jonczyk AW, Piotrowska-Tomala KK, Skarzynski DJ. Comparison of Intra-CL Injection and Peripheral Application of Prostaglandin F 2α Analog on Luteal Blood Flow and Secretory Function of the Bovine Corpus Luteum. Front Vet Sci 2022; 8:811809. [PMID: 35087892 PMCID: PMC8787071 DOI: 10.3389/fvets.2021.811809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
We investigated the effects of different doses of dinoprost injected directly into the bovine corpus luteum (CL) on (i) concentrations of progesterone (P4) and oxytocin (OT) in peripheral blood and (ii) mRNA levels of steroidogenic acute regulatory protein (STAR), cytochrome P450 family 11 subfamily A member 1 (P450scc), hydroxy-delta-5-steroid dehydrogenase, 3 β- and steroid delta-isomerase 1 (HSD3B), and receptor-interacting protein kinases 1 and 3 (RIPK1, RIPK3) in CL tissue. Moreover, we examined the effects of dinoprost, injected intra-CL or administered intramuscularly (IM), on CL secretory function and on indicators of CL vascular network status: luteal tissue area (LTA), CL blood flow (CLBF), and the CLBF:LTA ratio (Adj. CLBF), in cows at the early and mid-luteal phases. In the Experiment 1, cows (day 10 of the cycle) were allocated to (i) an intra-CL injection of saline (control; n = 3); (ii) an intra-CL injection of dinoprost (1.25 mg; 2.5 mg, or 5 mg; n = 3 for each dose); (iii) an IM administration of saline (control; n = 3); or (iv) an IM administration of dinoprost (25 mg; positive control; n = 3). Concentrations of OT and P4 were measured in plasma samples. The mRNA expression of steroidogenesis- or necroptosis-related factors was determined in CL tissue 4 h after treatments. In Experiment 2, cows on day 4 (n = 12) or day 10 (n = 12) were allocated to (i) an intra-CL injection of dinoprost (2.5 mg/0.5 ml; n = 6), or (ii) IM administration of dinoprost (25 mg/5 ml; n = 6). Concentrations of P4 were measured in plasma samples. Luteal tissue area, CLBF, and Adj. CLBF were assessed based on color Doppler ultrasonography. An intra-CL injection of dinoprost increased OT and decreased P4 levels in the jugular vein (JV) in a dose-dependent manner in cows at the mid-luteal phase. Increased CLBF and Adj. CLBF, accompanied by reduced P4 levels, were observed 2 h after intra-CL dinoprost injection in middle-stage CL. Decreased STAR and increased RIPK1 and RIPK3 mRNA levels confirmed that 2.5 mg dinoprost injected directly into CL is the minimum dose that induces luteolytic cascade. Injection of dinoprost directly into the CL (at a dosage lower than recommended for peripheral application) results in a pattern similar to IM dinoprost administration.
Collapse
|
13
|
Meidan R, Basavaraja R. Interferon-Tau regulates a plethora of functions in the corpus luteum. Domest Anim Endocrinol 2022; 78:106671. [PMID: 34509740 DOI: 10.1016/j.domaniend.2021.106671] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023]
Abstract
The corpus luteum (CL) plays a vital role in regulating the reproductive cycle, fertility, and in maintaining pregnancy. Interferon-tau (IFNT) is the maternal recognition of a pregnancy signal in domestic ruminants; its uterine, paracrine actions, which extend the CL lifespan, are widely established. However, considerable evidence also suggests a direct, endocrine role for IFNT. The purpose of this review is to highlight the importance of IFNT in CL maintenance, acting directly and in a cell-specific manner. A transcriptomic study revealed a distinct molecular profile of IFNT-exposed day 18, pregnant bovine CL, compared to the non-pregnant gland. A substantial fraction of the differentially expressed genes was downregulated, many of which are known to be elevated by prostaglandin F2A (PGF2A). In vitro, IFNT was found to mimic changes observed in the luteal transcriptome of early pregnancy. Key luteolytic genes such as endothelin-1 (EDN1), transforming growth factor-B1 (TGFB1), thrombospondins (THBSs) 1&2 and serpine-1 (SERPINE1) were downregulated in luteal endothelial cells. Luteal steroidogenic large cells (LGCs) were also found to be a target for the antilutelotytic actions of IFNT. IFNT-treated LGCs showed a significant reduction in the expression of the proapoptotic, antiangiogenic THBS1&2, as well as TGFBR1 and 2. Furthermore, IFNT was shown to be a potent survival factor for luteal cells in vivo and in vitro, activating diverse pathways to promote cell survival while suppressing cell death signals. Pentraxin 3 (PTX3), robustly upregulated by IFNT in various luteal cell types, mediated many of the prosurvival effects of IFNT in LGCs. A novel reciprocal inhibitory crosstalk between PTX3 and THBS1 lends further support to their respective survival and apoptotic actions in the CL. Even though IFNT did not directly regulate progesterone synthesis, it could maintain its concentrations, by increasing luteal cell survival and by supporting vascular stabilization. The direct effects of IFNT in the CL, enhancing cell survival and vasculature stabilization while curbing luteolytic activities, may constitute an important complementary branch leading to the extension of the luteal lifespan during early pregnancy.
Collapse
Affiliation(s)
- Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001 Israel.
| | - Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001 Israel
| |
Collapse
|
14
|
Changes in Porcine Corpus Luteum Proteome Associated with Development, Maintenance, Regression, and Rescue during Estrous Cycle and Early Pregnancy. Int J Mol Sci 2021; 22:ijms222111740. [PMID: 34769171 PMCID: PMC8583735 DOI: 10.3390/ijms222111740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/29/2022] Open
Abstract
Corpus luteum (CL), a transitory gland, undergoes rapid growth in a limited time to produce progesterone (P4) followed by its regression. A complex molecular signaling is involved in controlling luteal P4 production. In the present study, 2D gel electrophoresis-based proteomics and in silico functional analysis were used to identify changes in key proteins and pathways in CL along the different stages of the estrous cycle as its development progresses from early (Day 3) to mid-luteal phase (Day 9), effective functioning (Day 12) followed by regression (Day 15) or, in the case of pregnancy, rescue of function (Day 15). A total of 273 proteins were identified by MALDI-MS/MS analysis that showed significant changes in abundances at different stages of CL development or regression and rescue. Functional annotation of differentially abundant proteins suggested enrichment of several important pathways and functions during CL development and function maintenance including cell survival, endocytosis, oxidative stress response, estradiol metabolism, and angiogenesis. On the other hand, differentially abundant proteins during CL regression were associated with decreased steroid synthesis and metabolism and increased apoptosis, necrosis, and infiltration of immune cells. Establishment of pregnancy rescues CL from regression by maintaining the expression of proteins that support steroidogenesis as pathways such as the super-pathway of cholesterol biosynthesis, RhoA signaling, and functions such as fatty acid metabolism and sterol transport were enriched in CL of pregnancy. In this study, some novel proteins were identified along CL development that advances our understanding of CL survival and steroidogenesis.
Collapse
|
15
|
Rytelewska E, Kiezun M, Zaobidna E, Gudelska M, Kisielewska K, Dobrzyn K, Kaminski T, Smolinska N. CHEMERIN as a modulator of angiogenesis and apoptosis processes in the corpus luteum of pigs: An in vitro study. Biol Reprod 2021; 105:1002-1015. [PMID: 34192738 DOI: 10.1093/biolre/ioab126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/09/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022] Open
Abstract
The corpus luteum (CL) undergoes rapid changes, and its functional capabilities are influenced by processes such as angiogenesis and apoptosis. According to the literature, chemerin - a protein which participates in the regulation of energy homeostasis and the immune response, may also affect angiogenesis and apoptosis. Therefore, the aim of this study was to investigate the in vitro effect of chemerin on angiogenesis and apoptosis in porcine luteal cells (Lc) during specific phases related to CL physiology. Luteal cells were harvested from gilts during the early-, mid-, and late-luteal phases of the estrous cycle. The cells were preincubated for 48 h and incubated for 24 h with chemerin or a serum-free medium (controls). The abundance of angiogenesis- and apoptosis-related proteins was determined by ELISA in spent culture media, or by ELISA and Western Blot in protein extracts. The current study demonstrated that chemerin stimulates the production of VEGF-A and bFGF by porcine Lc and increases the protein abundance of angiogenic factors receptors (VEGFR1, VEGFR2, VEGFR3, FGFR1, FGFR2) in these cells. The study also revealed that chemerin exerts a modulatory effect (stimulatory/inhibitory, depending on the phase of the cycle) on the protein abundance of Fas, FasL, Bcl-2 and caspase-3 in porcine Lc. These results imply that chemerin may affect angiogenesis and apoptosis processes in the porcine CL, as evidenced by its modulatory effect of chemerin on the protein abundance of crucial angiogenesis- and apoptosis-related factors, observed in an in vitro study of porcine Lc.
Collapse
Affiliation(s)
- Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Zaobidna
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marlena Gudelska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Katarzyna Kisielewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Dobrzyn
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Tadeusz Kaminski
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Nina Smolinska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
16
|
Basavaraja R, Drum JN, Sapuleni J, Bibi L, Friedlander G, Kumar S, Sartori R, Meidan R. Downregulated luteolytic pathways in the transcriptome of early pregnancy bovine corpus luteum are mimicked by interferon-tau in vitro. BMC Genomics 2021; 22:452. [PMID: 34134617 PMCID: PMC8207607 DOI: 10.1186/s12864-021-07747-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/21/2021] [Indexed: 12/15/2022] Open
Abstract
Background Maintenance of the corpus luteum (CL) beyond the time of luteolysis is essential for establishing pregnancy. Identifying the distinct features of early pregnancy CL remains unresolved, hence we analyzed here the transcriptome of CL on day 18 pregnant (P) and non-pregnant (NP) cows using RNA-Seq. CL of P cows expressed ISGs, verifying exposure to the pregnancy recognition signal, interferon-tau (IFNT), whereas the CL of NP cows had elevated luteal progesterone levels, implying that luteolysis had not yet commenced. Results The DEGs, IPA, and metascape canonical pathways, along with GSEA analysis, differed markedly in the CL of P cows from those of NP cows, at the same day of the cycle. Both metascape and IPA identified similar significantly enriched pathways such as interferon alpha/beta, sonic hedgehog pathway, TNFA, EDN1, TGFB1, and PDGF. However, type-1 interferon and sonic hedgehog pathways were positively enriched whereas most of the enriched pathways were downregulated in the P compared to NP samples. Thirty-four % of these pathways are known to be elevated by PGF2A during luteolysis. Notably, selective DEGs in luteinized granulosa cells were modulated by IFNT in vitro in a similar manner to their regulation in the CL of P cows. Conclusion This study unraveled the unique transcriptomic signature of the IFNT-exposed, early pregnancy CL, highlighting the abundance of downregulated pathways known to be otherwise induced during luteolysis. These and IFNT-regulated in vitro pregnancy-specific DEGs suggest that IFNT contributes to the characteristics and maintenance of early pregnancy CL. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07747-3.
Collapse
Affiliation(s)
- Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Jessica N Drum
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil
| | - Jackson Sapuleni
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Lonice Bibi
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Gilgi Friedlander
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Sai Kumar
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | - Roberto Sartori
- Department of Animal Science, University of São Paulo, Piracicaba, Brazil
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001, Rehovot, Israel.
| |
Collapse
|
17
|
Estradiol-17β Regulates Expression of Luteal DNA Methyltransferases and Genes Involved in the Porcine Corpus Luteum Function In Vivo. Int J Mol Sci 2021; 22:ijms22073655. [PMID: 33915762 PMCID: PMC8037867 DOI: 10.3390/ijms22073655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The corpus luteum (CL) is a temporary endocrine gland vital for pregnancy establishment and maintenance. Estradiol-17β (E2) is the major embryonic signal in pigs supporting the CL's function. The mechanisms of the luteoprotective action of E2 are still unclear. The present study aimed to determine the effect of E2 on luteal expression of factors involved in CL function. An in vivo model of intrauterine E2 infusions was applied. Gilts on day 12 of pregnancy and the estrous cycle were used as referential groups. Concentrations of E2 and progesterone were elevated in CLs of gilts receiving E2 infusions, compared to placebo-treated gilts. Estradiol-17β stimulated luteal expression of DNA-methyltransferase 1 (DNMT1), but decreased expression of DNMT3B gene and protein, as well as DNMT3A protein. Similar results for DNMT3A and 3B were observed in CLs on day 12 of pregnancy compared to day 12 of the estrous cycle. Intrauterine infusions of E2 altered luteal expression of the genes involved in CL function: PTGFR, PTGES, STAR, HSD17B1, CYP19A1, and PGRMC1. Our findings indicate a role for E2 in expression regulation of factors related to CL function and a novel potential for E2 to regulate DNA methylation as putative physiological mechanisms controlling luteal gene expression.
Collapse
|
18
|
Punetha M, Kumar S, Paul A, Jose B, Bharati J, Sonwane A, Green JA, Whitworth K, Sarkar M. Deciphering the functional role of EGR1 in Prostaglandin F2 alpha induced luteal regression applying CRISPR in corpus luteum of buffalo. Biol Res 2021; 54:9. [PMID: 33712084 PMCID: PMC7953609 DOI: 10.1186/s40659-021-00333-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Background PGF2α is essential for the induction of the corpus luteum regression which in turn reduces progesterone production. Early growth response (EGR) proteins are Cys2-His2-type zinc-finger transcription factor that are strongly linked to cellular proliferation, survival and apoptosis. Rapid elevation of EGR1 was observed after luteolytic dose of PGF2α. EGR1 is involved in the transactivation of many genes, including TGFβ1, which plays an important role during luteal regression. Methods The current study was conducted in buffalo luteal cells with the aim to better understand the role of EGR1 in transactivation of TGFβ1 during PGF2α induced luteal regression. Luteal cells from mid stage corpus luteum of buffalo were cultured and treated with different doses of PGF2α for different time durations. Relative expression of mRNAs encoding for enzymes within the progesterone biosynthetic pathway (3βHSD, CYP11A1 and StAR); Caspase 3; AKT were analyzed to confirm the occurrence of luteolytic event. To determine if EGR1 is involved in the PGF2α induced luteal regression via induction of TGFβ1 expression, we knocked out the EGR1 gene by using CRISPR/Cas9. Result The present experiment determined whether EGR1 protein expression in luteal cells was responsive to PGF2α treatment. Quantification of EGR1 and TGFβ1 mRNA showed significant up regulation in luteal cells of buffalo at 12 h post PGF2α induction. In order to validate the role of PGF2α on stimulating the expression of TGFβ1 by an EGR1 dependent mechanism we knocked out EGR1. The EGR1 ablated luteal cells were stimulated with PGF2α and it was observed that EGR1 KO did not modulate the PGF2α induced expression of TGFβ1. In PGF2α treated EGR1 KO luteal cell, the mRNA expression of Caspase 3 was significantly increased compared to PGF2α treated wild type luteal cells maintained for 12 h. We also studied the influence of EGR1 on steroidogenesis. The EGR1 KO luteal cells with PGF2α treatment showed no substantial difference either in the progesterone concentration or in StAR mRNA expression with PGF2α-treated wild type luteal cells. Conclusion These results suggest that EGR1 signaling is not the only factor which plays a role in the regulation of PGF2α induced TGFβ1 signaling for luteolysis.
Collapse
Affiliation(s)
- Meeti Punetha
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Sai Kumar
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Avishek Paul
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Bosco Jose
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Jaya Bharati
- Animal Physiology, ICAR-National Research Centre on Pig, Guwahati, Assam, India
| | - Arvind Sonwane
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Jonathan A Green
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO, USA
| | - Kristin Whitworth
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO, USA
| | - Mihir Sarkar
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
19
|
Witek P, Enguita FJ, Grzesiak M, Costa MC, Gabriel A, Koziorowski M, Slomczynska M, Knapczyk-Stwora K. Effects of neonatal exposure to methoxychlor on corpus luteum in gilts: A transcriptomic analysis. Mol Reprod Dev 2021; 88:238-248. [PMID: 33655673 DOI: 10.1002/mrd.23463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/07/2021] [Accepted: 02/20/2021] [Indexed: 11/10/2022]
Abstract
This study investigated the effects of neonatal exposure to methoxychlor (MXC), a synthetic organochlorine used as an insecticide with estrogenic, antiestrogenic, and antiandrogenic activities, on luteal function in pigs. Piglets were injected subcutaneously with MXC (20 μg/kg body weight) or corn oil (control) between postnatal Days 1 and 10 (N = 5/group). Corpora lutea from sexually mature gilts were examined for luteal steroid and prostaglandin concentrations and processed for total RNA isolation and subsequent RNA sequencing. Intra-luteal concentrations of androstenedione and prostaglandin E2 were greater, while that of estrone was lower when compared to control. Fifty-three differentially expressed (DE) microRNAS (miRNAs) (p-adjusted <.05 and log2(fold change) ≥.5) and 359 DE genes (p-adjusted <.05 and log2(fold change) ≥1) were identified in luteal tissue in response to neonatal MXC treatment. MXC was found to affect the expression of genes related to lipogenesis, steroidogenesis, membrane transport, immune response, cell signaling and adhesion. These results suggest an earlier onset of structural luteolysis in pigs caused by MXC actions in neonates. Since negative correlation analysis showed the potential interactions of miRNAs with specific messenger RNAs, we propose that these miRNAs are potential mediators of the long-term MXC effect on the CL function in pigs.
Collapse
Affiliation(s)
- Patrycja Witek
- Department of Endocrinology, Jagiellonian University in Krakow, Krakow, Poland
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Malgorzata Grzesiak
- Department of Endocrinology, Jagiellonian University in Krakow, Krakow, Poland
| | - Marina C Costa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - André Gabriel
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Marek Koziorowski
- Department of Physiology and Reproduction of Animals, Institute of Biotechnology, University of Rzeszow, Kolbuszowa, Poland
| | - Maria Slomczynska
- Department of Endocrinology, Jagiellonian University in Krakow, Krakow, Poland
| | | |
Collapse
|
20
|
Sabaner MC, Duman R, Vurmaz A, Ertekin T. Effects of topical prostaglandin drops on angiogenesis in an in ovo chick chorioallantoic membrane model. Cutan Ocul Toxicol 2021; 40:54-60. [PMID: 33461354 DOI: 10.1080/15569527.2021.1874009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND To investigate the effects of bimatoprost, latanoprost and travoprost on angiogenesis in the chick chorioallantoic membrane (CAM) model in ovo. MATERIALS AND METHODS Fifty fertilized specific-pathogen-free chick eggs were used in this preclinical, prospective, experimental embryo study. Eggs were randomly distributed into 5 groups of ten eggs. Eggs were placed in the incubator after disinfection of their shells with alcohol and monitored appropriate temperature and humidity. On the 3rd day of incubation, a small window was opened on the eggshell. Bimatoprost in group 1, latanoprost in group 2, travoprost in group 3, bevacizumab in group 4, phosphate-buffered-saline (PBS) used in group 5 was applied by injection to CAM. The sterile film was glued onto the broken part of the shell and the eggs were placed in the incubator again. On the 8th day of incubation, eggs were opened and vascular structures on CAMs were examined. Digital photographs were taken, analysed in the ImageJ open source image processing software and differences between groups were evaluated. Thereafter, VEGF (Vascular endothelial growth factor) levels were measured appropriately in the embryo samples. RESULTS All embryos in the prostaglandin groups and the PBS control group were observed to have life signs confirmed by heart rate. In 8 embryos in the bevacizumab group, no life signs were confirmed, while 2 embryos with life signs showed severe hypoplasia. Vascular density, number of vessels and VEGF levels in the bimatoprost, latanoprost and travoprost groups, there were statistically significantly higher than the PBS control group. CONCLUSION This study demonstrates that topical prostaglandin drops increase angiogenesis in the chick CAM model in ovo.
Collapse
Affiliation(s)
| | - Resat Duman
- Department of Ophthalmology, Ministry of Health Bursa City Hospital, Bursa, Turkey
| | - Ayhan Vurmaz
- Department of Biochemistry, Afyonkarahisar Health Sciences University, Faculty of Medicine, Afyonkarahisar, Turkey
| | - Tolga Ertekin
- Department of Anatomy, Afyonkarahisar Health Sciences University, Faculty of Medicine, Afyonkarahisar, Turkey
| |
Collapse
|
21
|
Piotrowska-Tomala KK, Jonczyk AW, Kordowitzki P, Jalali BM, Skarzynski DJ. The effect of basic fibroblast growth factor 2 on the bovine corpus luteum depends on the stage of the estrous cycle and modulates prostaglandin F 2α action. Animal 2020; 15:100048. [PMID: 33516003 DOI: 10.1016/j.animal.2020.100048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
The roles of fibroblast growth factor 2 (FGF2) in the corpus luteum (CL) function and its modulatory effect on prostaglandin (PG) F2α during the bovine estrous cycle were studied using the following design of in vivo and in vitro experiments: (1) effects of FGF2 and FGF receptor 1 inhibitor (PD173074) on bovine CL function in the early (PGF2α-resistant) and mid (PGF2α-responsive) luteal stage in vivo, (2) the modulatory effect of FGF2 on PGF2α action during the luteal phase in vivo and (3) effects of FGF2 and PD173074 on bovine CL secretory function in vitro. Cows were treated by injection into the CL with: (1) saline (control), (2) FGF2, (3) PD173074, (4) FGF2 followed by intramuscular (i.m.) PGF2α, (5) PD173074 followed by i.m. PGF2α and (6) i.m. PGF2α as a positive control. For in vitro experiments, CL explants were treated with the aforementioned factors. Progesterone (P4) concentrations of blood samples or culture media were determined by radioimmunoassay. Relative mRNA expressions of the genes involved in angiogenesis and steroidogenesis were determined by quantitative real-time PCR. Although FGF2 treatment on day 4 of the estrous cycle did not change the cycle length, FGF2 with PGF2α decreased the P4 concentrations observed during the estrous cycle compared to the control group (P < 0.001). Moreover, FGF2 treatment on day 10 prolonged CL function as indicated by a significantly greater concentration of P4 on day 21 compared to the control group. In the in vitro study, FGF2 decreased cytochrome P450 family 11 subfamily A member 1 (CYP11A1) and hydroxy-delta-5-steroid dehydrogenase (HSD3B1) mRNA expression (P < 0.01) and decreased P4 production in the early-stage CL (P < 0.001). However, FGF2 + PGF2α or PGF2α alone resulted in an elevation of steroidogenic acute regulatory protein and CYP11A1 mRNA expression and P4 secretion in the early-stage CL (P < 0.01). In the mid-luteal phase, FGF2 upregulated CYP11A1 and HSD3B1 mRNA expression (P < 0.01), while FGF2 + PGF2α increased only HSD3B1 mRNA expression (P < 0.001). In conclusion, FGF2 seems to play a modulatory role in CL development or luteolysis, differentially regulating steroidogenesis and angiogenic factors as well as PGF2α actions.
Collapse
Affiliation(s)
- K K Piotrowska-Tomala
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland.
| | - A W Jonczyk
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - P Kordowitzki
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - B M Jalali
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| | - D J Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-747 Olsztyn, Poland
| |
Collapse
|
22
|
Effects of prostaglandin F 2α (PGF 2α) on cell-death pathways in the bovine corpus luteum (CL). BMC Vet Res 2019; 15:416. [PMID: 31752870 PMCID: PMC6873574 DOI: 10.1186/s12917-019-2167-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prostaglandin F2α (PGF2α) may differentially affect viability of luteal cells by inducing either proliferation or cell death (via apoptosis or necroptosis). The diverse effects of PGF2α may depend on its local vs. systemic actions. In our study, we determined changes in expression of genes related to: (i) apoptosis: caspase (CASP) 3, CASP8, BCL2 associated X (BAX), B-cell lymphoma 2 (BCL2) and (ii) necroptosis: receptor-interacting protein kinase (RIPK) 1, RIPK3, cylindromatosis (CYLD), and mixed lineage kinase domain-like (MLKL) in the early and mid-stage corpus luteum (CL) that accompany local (intra-CL) vs. systemic (i.m.) analogue of PGF2α (aPGF2α) actions. Cows at day 4 (n = 24) or day 10 (n = 24) of the estrous cycle were treated by injections as follows: (1) systemic saline, (2) systemic aPGF2α (25 mg; Dinoprost), (3) local saline, (4) local aPGF2α (2.5 mg; Dinoprost). After 4 h, CLs were collected by ovariectomy. Expression levels of mRNA and protein were investigated by RT-q PCR, Western blotting and immunohistochemistry, respectively. RESULTS We found that local and systemic administration of aPGF2α in the early-stage CL resulted in decreased expression of CASP3 (P < 0.01), but CASP8 mRNA expression was up-regulated (P < 0.05). However, the expression of CASP3 was up-regulated after local aPGF2α treatment in the middle-stage CL, whereas systemic aPGF2α administration increased both CASP3 and CASP8 expression (P < 0.01). Moreover, we observed that both local and systemic aPGF2α injections increased RIPK1, RIPK3 and MLKL expression in the middle-stage CL (P < 0.05) while CYLD expression was markedly higher after i.m. aPGF2α injections (P < 0.001). Moreover, we investigated the localization of necroptotic factors (RIPK1, RIPK3, CYLD and MLKL) in bovine CL tissue after local and systemic aPGF2α injections in the bovine CL. CONCLUSION Our results demonstrated for the first time that genes related to cell death pathways exhibit stage-specific responses to PGF2α administration depending on its local or systemic actions. Locally-acting PGF2α plays a luteoprotective role by inhibiting apoptosis and necroptosis in the early CL. Necroptosis is a potent mechanism responsible for structural CL regression during PGF2α-induced luteolysis in cattle.
Collapse
|
23
|
Abdulrahman N, Fair T. Contribution of the immune system to follicle differentiation, ovulation and early corpus luteum formation. Anim Reprod 2019; 16:440-448. [PMID: 32435287 PMCID: PMC7234072 DOI: 10.21451/1984-3143-ar2019-0087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022] Open
Abstract
Much of what we know about the involvement of the immune system in periovulatory follicle differentiation, ovulation and subsequent formation of the corpus luteum in cattle is drawn from the findings of studies in several mammalian livestock species. By integrating published histological data from cattle, sheep and pigs and referring back to the more comprehensive knowledge bank that exists for mouse and humans we can sketch out the key cells of the immune system and the cytokines and growth factors that they produce that are involved in follicle differentiation and luteinization, ovulation and early follicle development. These contributions are reviewed and the key findings, discussed.
Collapse
Affiliation(s)
- Noof Abdulrahman
- School of Agriculture & Food Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Trudee Fair
- School of Agriculture & Food Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
24
|
Interferon-Tau Exerts Direct Prosurvival and Antiapoptotic Actions in Luteinized Bovine Granulosa Cells. Sci Rep 2019; 9:14682. [PMID: 31605002 PMCID: PMC6789004 DOI: 10.1038/s41598-019-51152-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Interferon-tau (IFNT), serves as a signal to maintain the corpus luteum (CL) during early pregnancy in domestic ruminants. We investigated here whether IFNT directly affects the function of luteinized bovine granulosa cells (LGCs), a model for large-luteal cells. Recombinant ovine IFNT (roIFNT) induced the IFN-stimulated genes (ISGs; MX2, ISG15, and OAS1Y). IFNT induced a rapid and transient (15–45 min) phosphorylation of STAT1, while total STAT1 protein was higher only after 24 h. IFNT treatment elevated viable LGCs numbers and decreased dead/apoptotic cell counts. Consistent with these effects on cell viability, IFNT upregulated cell survival proteins (MCL1, BCL-xL, and XIAP) and reduced the levels of gamma-H2AX, cleaved caspase-3, and thrombospondin-2 (THBS2) implicated in apoptosis. Notably, IFNT reversed the actions of THBS1 on cell viability, XIAP, and cleaved caspase-3. Furthermore, roIFNT stimulated proangiogenic genes, including FGF2, PDGFB, and PDGFAR. Corroborating the in vitro observations, CL collected from day 18 pregnant cows comprised higher ISGs together with elevated FGF2, PDGFB, and XIAP, compared with CL derived from day 18 cyclic cows. This study reveals that IFNT activates diverse pathways in LGCs, promoting survival and blood vessel stabilization while suppressing cell death signals. These mechanisms might contribute to CL maintenance during early pregnancy.
Collapse
|
25
|
Jonczyk AW, Piotrowska-Tomala KK, Kordowitzki P, Skarzynski DJ. Effects of prostaglandin F 2α on angiogenic and steroidogenic pathways in the bovine corpus luteum may depend on its route of administration. J Dairy Sci 2019; 102:10573-10586. [PMID: 31521364 DOI: 10.3168/jds.2019-16644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
Prostaglandin (PG) F2α and its analogs (aPGF2α) are used to induce regression of the corpus luteum (CL); their administration during the middle stage of the estrous cycle causes luteolysis in cattle. However, the bovine CL is resistant to the luteolytic actions of aPGF2α in the early stage of the estrous cycle. The mechanisms underlying this differential luteal sensitivity, as well as acquisition of luteolytic sensitivity by the CL, are still not fully understood. Therefore, to characterize possible differences in response to aPGF2α administration, we aimed to determine changes in expression of genes related to (1) angiogenesis-fibroblast growth factor 2 (FGF2), fibroblast growth factor receptor 1 (FGFR1), fibroblast growth factor receptor 2 (FGFR2), vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor receptor 1 (VEGFR1), vascular endothelial growth factor receptor 2 (VEGFR2); and (2) steroidogenesis-steroidogenic acute regulatory protein (STAR), cytochrome P450 family 11 subfamily A member 1 (P450scc), and hydroxy-delta-5-steroid dehydrogenase, 3 β- and steroid delta-isomerase 1 (HSD3B) in early- and middle-stage CL that accompany local (intra-CL) versus systemic (i.m.) aPGF2α injection. Cows at d 4 (early stage) or d 10 (middle stage) of the estrous cycle were treated as follows: (1) systemic saline injection, (2) systemic aPGF2α injection (25 mg), (3) local saline injection, and (4) local aPGF2α injection (2.5 mg). Progesterone (P4) concentration was measured in jugular vein blood samples during the entire set of experiments. After 4 h of treatment, CL were collected by ovariectomy, and mRNA and protein expression levels were determined by reverse transcription quantitative-PCR and Western blotting, respectively. Local and systemic aPGF2α injections upregulated FGF2 expression but decreased expression of VEGFA in both CL stages. Both aPGF2α injections increased the expression of STAR in early-stage CL, but downregulated it in middle-stage CL. In the early-stage CL, local administration of aPGF2α upregulated HSD3B, whereas systemic injection decreased its mRNA expression in early- and middle-stage CL. Moreover, we observed a decrease in the P4 level earlier after local aPGF2α injection than after systemic administration. These results indicate that aPGF2α acting locally may play a luteotrophic role in early-stage CL. The systemic effect of aPGF2α on the mRNA expression of genes participating in steroidogenesis seems to be more substantial than its local effect in middle-stage CL.
Collapse
Affiliation(s)
- A W Jonczyk
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - K K Piotrowska-Tomala
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland.
| | - P Kordowitzki
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - D J Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| |
Collapse
|
26
|
Javan MR, Khosrojerdi A, Moazzeni SM. New Insights Into Implementation of Mesenchymal Stem Cells in Cancer Therapy: Prospects for Anti-angiogenesis Treatment. Front Oncol 2019; 9:840. [PMID: 31555593 PMCID: PMC6722482 DOI: 10.3389/fonc.2019.00840] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment interacts with tumor cells, establishing an atmosphere to contribute or suppress the tumor development. Among the cells which play a role in the tumor microenvironment, mesenchymal stem cells (MSCs) have been demonstrated to possess the ability to orchestrate the fate of tumor cells, drawing the attention to the field. MSCs have been considered as cells with double-bladed effects, implicating either tumorigenic or anti-tumor activity. On the other side, the promising potential of MSCs in treating human cancer cells has been observed from the clinical studies. Among the beneficial characteristics of MSCs is the natural tumor-trophic migration ability, providing facility for drug delivery and, therefore, targeted treatment to detach tumor and metastatic cells. Moreover, these cells have been the target of engineering approaches, due to their easily implemented traits, in order to obtain the desired expression of anti-angiogenic, anti-proliferative, and pro-apoptotic properties, according to the tumor type. Tumor angiogenesis is the key characteristic of tumor progression and metastasis. Manipulation of angiogenesis has become an attractive approach for cancer therapy since the introduction of the first angiogenesis inhibitor, namely bevacizumab, for metastatic colorectal cancer therapy. This review tries to conclude the approaches, with focus on anti-angiogenesis approach, in implementing the MSCs to combat against tumor cell progression.
Collapse
Affiliation(s)
- Mohammad Reza Javan
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arezou Khosrojerdi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mohammad Moazzeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
27
|
Paul A, Punetha M, Kumar S, Sonwane A, Chouhan VS, Singh G, Maurya VP, Sarkar M. Regulation of steroidogenic function of luteal cells by thrombospondin and insulin in water buffalo (Bubalus bubalis). Reprod Fertil Dev 2019; 31:751-759. [DOI: 10.1071/rd18188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
The present study examined the effect of exogenous thrombospondin 1 (TSP1) on the steroidogenic function of luteal cells cultured invitro. Furthermore, the transcriptional interaction of insulin with TSP1 and its receptor, cluster of differentiation 36 (CD36) were also investigated. At the highest dose (500ngmL−1) TSP1 significantly downregulated the expression of the angiogenic marker von Willebrand factor (vWF) and progesterone production in cultured luteal cells. Moreover, the simultaneous upregulation in the expression of caspase 3 by exogenous TSP1 was consistent with a reduction in the number of viable luteal cells as determined by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltertrazolium bromide (MTT) assay after 72h of culture. However, the expression of critical enzymes in the progesterone synthetic pathway was not significantly modulated by treatment with TSP1 in cultured luteal cells. Knocking out of endogenous TSP1 with the clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPRassociated protein9 (Cas9) system improved the viability of luteal cells as well as increasing progesterone production and decreasing caspase 3 activation. Insulin treatment suppressed the expression of TSP1 and CD36 in cultured luteal cells in a dose- and time-dependent manner. To conclude, TSP1 acts as a negative endogenous regulator of angiogenesis that attenuates progesterone production, possibly by reducing the number of luteal cells via apoptosis during luteal regression, whereas insulin as a luteinising signal may have inhibited the thrombospondin system for the efficient development of luteal function.
Collapse
|
28
|
Berisha B, Rodler D, Schams D, Sinowatz F, Pfaffl MW. Prostaglandins in Superovulation Induced Bovine Follicles During the Preovulatory Period and Early Corpus Luteum. Front Endocrinol (Lausanne) 2019; 10:467. [PMID: 31354631 PMCID: PMC6635559 DOI: 10.3389/fendo.2019.00467] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to characterize the regulation pattern of prostaglandin family members namely prostaglandin F2alpha (PTGF), prostaglandin E2 (PTGE), their receptors (PTGFR, PTGER2, PTGER4), cyclooxygenase 2 (COX-2), PTGF synthase (PTGFS), and PTGE synthase (PTGES) in the bovine follicles during preovulatory period and early corpus luteum (CL). Ovaries containing preovulatory follicles or CL were collected by transvaginal ovariectomy (n = 5 cows/group), and the follicles were classified: (I) before GnRH treatment; (II) 4 h after GnRH; (III) 10 h after GnRH; (IV) 20 h after GnRH; (V) 25 h after GnRH, and (VI) 60 h after GnRH (early CL). In these samples, the concentrations of progesterone (P4), estradiol (E2), PTGF and PTGE were investigated in the follicular fluid (FF) by validated EIA. Relative mRNA abundance of genes encoding for prostaglandin receptors (PTGFR, PTGER2, PTGER4), COX-2, PTGFS and PTGES were quantified by RT-qPCR. The localization of COX-2 and PTGES were investigated by established immunohistochemistry in fixed follicular and CL tissue samples. The high E2 concentration in the FF of the follicle group before GnRH treatment (495.8 ng/ml) and during luteinizing hormone (LH) surge (4 h after GnRH, 574.36 ng/ml), is followed by a significant (P<0.05) downregulation afterwards with the lowest level during ovulation (25 h after GnRH, 53.11 ng/ml). In contrast the concentration of P4 was very low before LH surge (50.64 mg/ml) followed by a significant upregulation (P < 0.05) during ovulation (537.18 ng/ml). The mRNA expression of COX-2 increased significantely (P < 0.05) 4 h after GnRH and again 20 h after GnRH, followed by a significant decrease (P < 0.05) after ovulation (early CL). The mRNA of PTGFS in follicles before GnRH was high followed by a continuous and significant downregulation (P < 0.05) afterwards. In contrast, PTGES mRNA abundance increased significantely (P < 0.05) in follicles 20 h after GnRH treatment and remained high afterwards. The mRNA abundance of PTGFR, PTGER2, and PTGER4 in follicles before GnRH was high, followed by a continuous and significant down regulation afterwards and significant increase (P < 0.05) only after ovulation (early CL). The low concentration of PTGF (0.04 ng/ml) and PTGE (0.15 ng/ml) in FF before GnRH, increased continuously in follicle groups before ovulation and displayed a further significant and dramatic increase (P < 0.05) around ovulation (101.01 ng/ml, respectively, 484.21 ng/ml). Immunohistochemically, the granulosa cells showed an intensive signal for COX-2 and PTGES in follicles during preovulation and in granulosa-luteal cells of the early CL. In conclusion, our results indicate that the examined bovine prostaglandin family members are involved in the local mechanisms regulating final follicle maturation and ovulation during the folliculo-luteal transition and CL formation.
Collapse
Affiliation(s)
- Bajram Berisha
- Department of Animal Biotechnology, Faculty of Agriculture and Veterinary, University of Prishtina, Pristina, Kosovo
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
- *Correspondence: Bajram Berisha
| | - Daniela Rodler
- Department of Veterinary Sciences, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dieter Schams
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| | - Fred Sinowatz
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| | - Michael W. Pfaffl
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, Munich, Germany
| |
Collapse
|
29
|
Walewska E, Wołodko K, Skarzynski D, Ferreira-Dias G, Galvão A. The Interaction Between Nodal, Hypoxia-Inducible Factor 1 Alpha, and Thrombospondin 1 Promotes Luteolysis in Equine Corpus Luteum. Front Endocrinol (Lausanne) 2019; 10:667. [PMID: 31632347 PMCID: PMC6779822 DOI: 10.3389/fendo.2019.00667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022] Open
Abstract
The regulation of corpus luteus (CL) luteolysis is a complex process involving a myriad of factors. Previously, we have shown the involvement of Nodal in functional luteolysis in mares. Presently, we ask the extent of which Nodal mediation of luteolysis is done through regulation of angioregression. We demonstrated the interaction between Nodal and hypoxia-inducible factor 1 α (HIF1α) and thrombospondin 1/thrombospondin receptor (TSP1/CD36) systems, could mediate angioregression during luteolysis. First, we demonstrated the inhibitory effect of Nodal on the vascular marker platelet/endothelial cell adhesion molecule 1 (CD31). Also, treatment of mid CL explants with vascular endothelial growth factor A (VEGFA) showed a trend on activin-like kinase 7 (Alk7) protein inhibition. Next, Nodal was also shown to activate HIF1α and in vitro culture of mid CL explants under decreased oxygen level promoted Nodal expression and SMAD family member 3 (Smad3) phosphorylation. In another experiment, the crosstalk between Nodal and TSP1/CD36 was investigated. Indeed, Nodal increased the expression of the anti-angiogenic TSP1 and its receptor CD36 in mid CL explants. Finally, the supportive effect of prostaglandin F2α (PGF2α) on TSP1/CD36 was blocked by SB431542 (SB), a pharmacological inhibitor of Nodal signaling. Thus, we evidenced for the first time the in vitro interaction between Nodal and both HIF1α and TSP1 systems, two conserved pathways previously shown to be involved in vascular regression during luteolysis. Considering the given increased expression of Nodal in mid CL and its role on functional luteolysis, the current results suggest the additional involvement of Nodal in angioregression during luteolysis in the mare, particularly in the activation of HIF1α and TSP1/CD36.
Collapse
Affiliation(s)
- Edyta Walewska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Karolina Wołodko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Dariusz Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Graça Ferreira-Dias
- The Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - António Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
- *Correspondence: António Galvão
| |
Collapse
|
30
|
Camaioni A, Klinger FG, Campagnolo L, Salustri A. The Influence of Pentraxin 3 on the Ovarian Function and Its Impact on Fertility. Front Immunol 2018; 9:2808. [PMID: 30555480 PMCID: PMC6283082 DOI: 10.3389/fimmu.2018.02808] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/14/2018] [Indexed: 12/26/2022] Open
Abstract
Follicular development is a highly coordinated process that in humans takes more than 6 months. Pituitary gonadotropins and a variety of locally produced growth factors and cytokines are involved in determining a precise sequence of changes in cell metabolism, proliferation, vascularization, and matrix remodeling in order to obtain a follicle with full ovulatory and steroidogenic capability. A low-grade inflammation can alter such processes leading to premature arrest of follicular growth and female reproductive failure. On the other hand, factors that are involved in inflammatory response as well as in innate immunity are physiologically upregulated in the follicle at the final stage of maturation and play an essential role in ovulation and fertilization. The generation of pentraxin 3 (PTX3) deficient mice provided the first evidence that this humoral pattern recognition molecule of the innate immunity has a non-redundant role in female fertility. The expression, localization, and molecular interactions of PTX3 in the periovulatory follicle have been extensively studied in the last 10 years. In this review, we summarize findings demonstrating that PTX3 is synthesized before ovulation by cells surrounding the oocyte and actively participates in the organization of the hyaluronan-rich provisional matrix required for successful fertilization. Data in humans tend to confirm these findings, indicating PTX3 as a biomarker of oocyte quality. Moreover, we discuss the emerging evidence that in humans altered PTX3 systemic levels, determined by genetic variations and/or low-grade chronic inflammation, can also impact the growth and development of the follicle and affect the incidence of ovarian disorders.
Collapse
Affiliation(s)
- Antonella Camaioni
- Histology and Embryology Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, Italy
| | - Francesca Gioia Klinger
- Histology and Embryology Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, Italy
| | - Luisa Campagnolo
- Histology and Embryology Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, Italy
| | - Antonietta Salustri
- Histology and Embryology Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata," Rome, Italy
| |
Collapse
|
31
|
Shrestha K, Meidan R. The cAMP-EPAC Pathway Mediates PGE2-Induced FGF2 in Bovine Granulosa Cells. Endocrinology 2018; 159:3482-3491. [PMID: 30085093 DOI: 10.1210/en.2018-00527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/26/2018] [Indexed: 01/10/2023]
Abstract
During the periovulatory period, the profile of fibroblast growth factor 2 (FGF2) coincides with elevated prostaglandin E2 (PGE2) levels. We investigated whether PGE2 can directly stimulate FGF2 production in bovine granulosa cells and, if so, which prostaglandin E2 receptor (PTGER) type and signaling cascades are involved. PGE2 temporally stimulated FGF2. Accordingly, endoperoxide-synthase2-silenced cells, exhibiting low endogenous PGE2 levels, had reduced FGF2. Furthermore, elevation of viable granulosa cell numbers by PGE2 was abolished with FGF2 receptor 1 inhibitor, suggesting that FGF2 mediates this action of PGE2. Epiregulin (EREG), a known PGE2-inducible gene, was studied alongside FGF2. PTGER2 agonist elevated cAMP as well as FGF2 and EREG levels. However, a marked difference between cAMP-induced downstream signaling was observed for FGF2 and EREG. Whereas FGF2 upregulated by PGE2, PTGER2 agonist, or forskolin was unaffected by the protein kinase A (PKA) inhibitor H89, EREG was significantly inhibited. FGF2 was dose-dependently stimulated by the exchange protein directly activated by cAMP (EPAC) activator; a similar induction was observed for EREG. However, forskolin-stimulated FGF2, but not EREG, was inhibited in EPAC1-silenced cells. These findings ascribe a novel autocrine role for PGE2, namely, elevating FGF2 production in granulosa cells. This study also reveals that cAMP-activated EPAC1, rather than PKA, mediates the effect of PGE2/PTGER2 on the expression of FGF2. Stimulation of EREG by PGE2 is also mediated by PTGER2 but, in contrast to FGF2, EREG was found to be PKA sensitive. PGE2-stimulated FGF2 can act to maintain granulosa cell survival; it can also act on ovarian endothelial cells to promote angiogenesis.
Collapse
Affiliation(s)
- Ketan Shrestha
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
32
|
Berisha B, Schams D, Rodler D, Sinowatz F, Pfaffl MW. Changes in the expression of prostaglandin family members in bovine corpus luteum during the estrous cycle and pregnancy. Mol Reprod Dev 2018; 85:622-634. [DOI: 10.1002/mrd.22999] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Bajram Berisha
- Department of Animal Biotechnology; Faculty of Agriculture and Veterinary, University of Prishtina; Pristina Kosovo
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich; Munich Germany
| | - Dieter Schams
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich; Munich Germany
| | - Daniela Rodler
- Department of Veterinary Sciences; Ludwig Maximilian University of Munich; Munich Germany
| | - Fred Sinowatz
- Department of Veterinary Sciences; Ludwig Maximilian University of Munich; Munich Germany
| | - Michael W. Pfaffl
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich; Munich Germany
| |
Collapse
|
33
|
Kfir S, Basavaraja R, Wigoda N, Ben-Dor S, Orr I, Meidan R. Genomic profiling of bovine corpus luteum maturation. PLoS One 2018; 13:e0194456. [PMID: 29590145 PMCID: PMC5874041 DOI: 10.1371/journal.pone.0194456] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 03/02/2018] [Indexed: 12/20/2022] Open
Abstract
To unveil novel global changes associated with corpus luteum (CL) maturation, we analyzed transcriptome data for the bovine CL on days 4 and 11, representing the developing vs. mature gland. Our analyses revealed 681 differentially expressed genes (363 and 318 on day 4 and 11, respectively), with ≥2 fold change and FDR of <5%. Different gene ontology (GO) categories were represented prominently in transcriptome data at these stages (e.g. days 4: cell cycle, chromosome, DNA metabolic process and replication and on day 11: immune response; lipid metabolic process and complement activation). Based on bioinformatic analyses, select genes expression in day 4 and 11 CL was validated with quantitative real-time PCR. Cell specific expression was also determined in enriched luteal endothelial and steroidogenic cells. Genes related to the angiogenic process such as NOS3, which maintains dilated vessels and MMP9, matrix degrading enzyme, were higher on day 4. Importantly, our data suggests day 11 CL acquire mechanisms to prevent blood vessel sprouting and promote their maturation by expressing NOTCH4 and JAG1, greatly enriched in luteal endothelial cells. Another endothelial specific gene, CD300LG, was identified here in the CL for the first time. CD300LG is an adhesion molecule enabling lymphocyte migration, its higher levels at mid cycle are expected to support the transmigration of immune cells into the CL at this stage. Together with steroidogenic genes, most of the genes regulating de-novo cholesterol biosynthetic pathway (e.g HMGCS, HMGCR) and cholesterol uptake from plasma (LDLR, APOD and APOE) were upregulated in the mature CL. These findings provide new insight of the processes involved in CL maturation including blood vessel growth and stabilization, leucocyte transmigration as well as progesterone synthesis as the CL matures.
Collapse
Affiliation(s)
- Sigal Kfir
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Raghavendra Basavaraja
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Noa Wigoda
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| | - Shifra Ben-Dor
- Bioinformatics unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Orr
- Bioinformatics unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
- * E-mail:
| |
Collapse
|
34
|
Galvão AM, Skarzynski D, Ferreira-Dias G. Luteolysis and the Auto-, Paracrine Role of Cytokines From Tumor Necrosis Factor α and Transforming Growth Factor β Superfamilies. VITAMINS AND HORMONES 2018; 107:287-315. [PMID: 29544635 DOI: 10.1016/bs.vh.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Successful pregnancy establishment demands optimal luteal function in mammals. Nonetheless, regression of the corpus luteum (CL) is absolutely necessary for normal female cyclicity. This dichotomy relies on intricate molecular signals and rapidly activated biological responses, such as angiogenesis, extracellular matrix (ECM) remodeling, or programmed cell death. The CL establishment and growth after ovulation depend not only on the luteinizing hormone-mediated endocrine signal but also on a number of auto-, paracrine interactions promoted by cytokines and growth factors like fibroblast growth factor 2, vascular endothelial growth factor A, and tumor necrosis factor α (TNF), which coordinate vascularigenesis and ECM reorganization as well as steroidogenesis. With the organ fully developed, the release of the uterine prostaglandin F2α activates luteolysis, an intricate process supported by intraluteal interactions that ensure the loss of steroidogenic function (functional luteolysis) and the involution of the organ (structural luteolysis). This chapter provides an overview of the local action of cytokines during luteal function, with particular emphasis on the role of TNF and transforming growth factor β superfamilies during luteolysis.
Collapse
Affiliation(s)
- António M Galvão
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland.
| | - Dariusz Skarzynski
- Institute of Animal Reproduction and Food Research of PAS, Olsztyn, Poland
| | - Graça Ferreira-Dias
- C.I.I.S.A., Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
35
|
Ochoa JC, Peñagaricano F, Baez GM, Melo LF, Motta JCL, Garcia-Guerra A, Meidan R, Pinheiro Ferreira JC, Sartori R, Wiltbank MC. Mechanisms for rescue of corpus luteum during pregnancy: gene expression in bovine corpus luteum following intrauterine pulses of prostaglandins E1 and F2α†. Biol Reprod 2017; 98:465-479. [DOI: 10.1093/biolre/iox183] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/25/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Julian C Ochoa
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Giovanni M Baez
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Agricultural and Animal Sciences, Universidad Francisco de Paula Santander, Cucuta, Colombia
| | - Leonardo F Melo
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Animal Science, Escola Superior de Agricultura “Luiz de Queiroz” University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Jessica C L Motta
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Animal Science, Escola Superior de Agricultura “Luiz de Queiroz” University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Alvaro Garcia-Guerra
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Rina Meidan
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - João C Pinheiro Ferreira
- Department of Animal Reproduction and Veterinary Radiology, School of Veterinary Medicine and Animal Science, São Paulo State University, Botucatu, São Paulo, Brazil
| | - Roberto Sartori
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Animal Science, Escola Superior de Agricultura “Luiz de Queiroz” University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Milo C Wiltbank
- Department of Dairy Science, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
36
|
Farberov S, Meidan R. Fibroblast growth factor-2 and transforming growth factor-beta1 oppositely regulate miR-221 that targets thrombospondin-1 in bovine luteal endothelial cells. Biol Reprod 2017; 98:366-375. [DOI: 10.1093/biolre/iox167] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022] Open
Affiliation(s)
- Svetlana Farberov
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
37
|
Waclawik A, Kaczmarek MM, Blitek A, Kaczynski P, Ziecik AJ. Embryo-maternal dialogue during pregnancy establishment and implantation in the pig. Mol Reprod Dev 2017. [DOI: 10.1002/mrd.22835] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Agnieszka Waclawik
- Institute of Animal Reproduction and Food Research; Polish Academy of Sciences; Olsztyn Poland
| | - Monika M. Kaczmarek
- Institute of Animal Reproduction and Food Research; Polish Academy of Sciences; Olsztyn Poland
| | - Agnieszka Blitek
- Institute of Animal Reproduction and Food Research; Polish Academy of Sciences; Olsztyn Poland
| | - Piotr Kaczynski
- Institute of Animal Reproduction and Food Research; Polish Academy of Sciences; Olsztyn Poland
| | - Adam J. Ziecik
- Institute of Animal Reproduction and Food Research; Polish Academy of Sciences; Olsztyn Poland
| |
Collapse
|
38
|
Berisha B, Schams D, Rodler D, Sinowatz F, Pfaffl MW. Expression and localization of members of the thrombospondin family during final follicle maturation and corpus luteum formation and function in the bovine ovary. J Reprod Dev 2016; 62:501-510. [PMID: 27396384 PMCID: PMC5081738 DOI: 10.1262/jrd.2016-056] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/04/2016] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to characterize the expression patterns and localization of the thrombospondin family members (THBS1, THBS2) and their receptors (CD36 and CD47) in bovine ovaries. First, the antral follicles were classified into 5 groups based on the follicle size and estradiol-17beta (E2) concentration in the follicular fluid (< 0.5, 0.5-5, 5-40, 40-180 and >180 E2 ng/ml). Second, the corpus luteum (CL) was assigned to the following stages: days 1-2, 3-4, 5-7, 8-12, 13-16 and >18 of the estrous cycle and of pregnancy (month 1-2, 3-4, 6-7 and > 8). Third, the corpora lutea were collected by transvaginal ovariectomy before and 0.5, 2, 4, 12, 24, 48 and 64 h after inducing luteolysis by injecting a prostaglandin F2alpha analog. The mRNA expression of examined factors was measured by RT-qPCR, steroid hormone concentration by EIA, and localization by immunohistochemistry. The mRNA expression of THBS1, THBS2, CD36, and CD47 in the granulosa cells and theca interna was high in the small follicles and reduced in the preovulatory follicles. The mRNA expression of THBS1, THBS2, and CD47 in the CL during the estrous cycle was high, but decreased significantly during pregnancy. After induced luteolysis, thrombospondins increased significantly to reach the maximum level at 12 h for THBS1, 24 h for THBS2, and 48 h for CD36. The temporal expression and localization pattern of the thrombospondins and their specific receptors in the antral follicles and corpora lutea during the different physiological phases of the estrous cycle and induced luteolysis appear to be compatible with their inhibitory role in the control of ovarian angiogenesis.
Collapse
Affiliation(s)
- Bajram Berisha
- Animal Physiology and Immunology Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | | | | | | | | |
Collapse
|
39
|
Woad KJ, Robinson RS. Luteal angiogenesis and its control. Theriogenology 2016; 86:221-8. [PMID: 27177965 DOI: 10.1016/j.theriogenology.2016.04.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/11/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
Abstract
Angiogenesis, the formation of new blood vessels from preexisting ones, is critical to luteal structure and function. In addition, it is a complex and tightly regulated process. Not only does rapid and extensive angiogenesis occur to provide the corpus luteum with an unusually high blood flow and support its high metabolic rate, but in the absence of pregnancy, the luteal vasculature must rapidly regress to enable the next cycle of ovarian activity. This review describes a number of key endogenous stimulatory and inhibitory factors, which act in a delicate balance to regulate luteal angiogenesis and ultimately luteal function. In vitro luteal angiogenesis cultures have demonstrated critical roles for fibroblast growth factor 2 (FGF2) in endothelial cell proliferation and sprouting, although other factors such as vascular endothelial growth factor A (VEGFA) and platelet-derived growth factor were important modulators in the control of luteal angiogenesis. Post-transcriptional regulation by small non-coding microRNAs is also likely to play a central role in the regulation of luteal angiogenesis. Appropriate luteal angiogenesis requires the coordinated activity of numerous factors expressed by several cell types at different times, and this review will also describe the role of perivascular pericytes and the importance of vascular maturation and stability. It is hoped that a better understanding of the critical processes underlying the transition from follicle to corpus luteum and subsequent luteal development will benefit the management of luteal function in the future.
Collapse
Affiliation(s)
- Kathryn J Woad
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK.
| | - Robert S Robinson
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| |
Collapse
|
40
|
Farberov S, Meidan R. Thrombospondin-1 Affects Bovine Luteal Function via Transforming Growth Factor-Beta1-Dependent and Independent Actions. Biol Reprod 2015; 94:25. [PMID: 26658711 DOI: 10.1095/biolreprod.115.135822] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/07/2015] [Indexed: 01/22/2023] Open
Abstract
Thrombospondin-1 (THBS1) and transforming growth factor-beta1 (TGFB1) are specifically up-regulated by prostaglandin F2alpha in mature corpus luteum (CL). This study examined the relationship between the expression of THBS1 and TGFB1 and the underlying mechanisms of their actions in luteal endothelial cells (ECs). TGFB1 stimulated SMAD2 phosphorylation and SERPINE1 levels in dose- and time-dependent manners in luteal EC. THBS1 also elevated SERPINE1; this effect was abolished by TGFB1 receptor-1 kinase inhibitor (SB431542). The findings here further imply that THBS1 activates TGFB1 in luteal ECs: THBS1 increased the effects of latent TGFB1 on phosphorylated SMAD (phospho-SMAD) 2 and SERPINE1. THBS1 silencing significantly decreased SERPINE1 and levels of phospho-SMAD2. Lastly, THBS1 actions on SERPINE1 were inhibited by LSKL peptide (TGFB1 activation inhibitor); LSKL also counteracted latent TGFB1-induced phospho-SMAD2. We found that TGFB1 up-regulated its own mRNA levels and those of THBS1. Both compounds generated apoptosis, but THBS1 was significantly more effective (2.5-fold). Notably, this effect of THBS1 was not mediated by TGFB1. THBS1 and TGFB1 also differed in their activation of p38 mitogen-activated protein kinase. Whereas TGFB1 rapidly induced phospho-p38, THBS1 had a delayed effect. Inhibition of p38 pathway by SB203580 did not modulate TGFB1 effect on cell viability, but it amplified THBS1 actions. THBS1-stimulated caspase-3 activation coincided with p38 phosphorylation, suggesting that caspase-induced DNA damage initiated p38 phosphorylation. The in vitro data suggest that a feed-forward loop exists between THBS1, TGFB1, and SERPINE1. Indeed all these three genes were similarly induced in the regressing CL. Their gene products can promote vascular instability, apoptosis, and matrix remodeling during luteolysis.
Collapse
Affiliation(s)
- Svetlana Farberov
- Department of Animal Sciences, the Robert H. Smith Faculty of Agriculture, Food, and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Rina Meidan
- Department of Animal Sciences, the Robert H. Smith Faculty of Agriculture, Food, and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
41
|
Wiltbank MC, Baez GM, Cochrane F, Barletta RV, Trayford CR, Joseph RT. Effect of a second treatment with prostaglandin F2α during the Ovsynch protocol on luteolysis and pregnancy in dairy cows. J Dairy Sci 2015; 98:8644-54. [DOI: 10.3168/jds.2015-9353] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 08/13/2015] [Indexed: 12/22/2022]
|
42
|
Gram A, Latter S, Boos A, Hoffmann B, Kowalewski MP. Expression and functional implications of luteal endothelins in pregnant and non-pregnant dogs. Reproduction 2015; 150:405-15. [DOI: 10.1530/rep-15-0256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/03/2015] [Indexed: 11/08/2022]
Abstract
Luteal development is regulated by many locally produced mediators, e.g., prostaglandins and angiogenic factors. However, the role and function of vasoactive factors in the canine corpus luteum (CL) remain largely unknown. Consequently, expression of the endothelin (ET) receptors-A and -B (ETA and ETB, revealing vasoconstriction and vasodilator properties respectively), the ET-converting enzyme (ECE1) and ET1, -2 and -3 were investigated in CL from non-pregnant dogs (days 5, 15, 25, 35, 45 and 65 post-ovulation), and at selected stages of pregnancy (pre-implantation, post-implantation, mid-gestation), and during normal and antigestagen-inducedprepartumluteolysis/abortion. The interrelationship between PGE2 and the ET system was investigated in PGE2-treated canine primary lutein cells from early CL.ET1did not change significantly over time;ET2,ECE1andETBwere elevated in early CL and were downregulated towards the mid/late-luteal phase. Theprepartumincrease ofET2was significant.ET3increased gradually, and was highest in late CL and/or atprepartumluteolysis.ETAremained constant until the late CL phase and increased only duringprepartumluteolysis. ET1 was localized to the luteal cells, andET2,ET3and ETA to vascular endothelium. ECE1 and ETB were detected at both locations. Except for upregulatedET1and lack of effect onET2,antigestagen applied to mid-pregnant dogs evoked similar changes to those observed during normal luteolysis. PGE2 upregulatedETBin treated cells;ETAandET1remained unaffected, andET2decreased. A modulatory role of the ETs in canine CL, possibly in association with other factors (e.g., PGE2 and progesterone receptor), is strongly indicated.
Collapse
|
43
|
Yu F, Chen MH, Kuo L, Talbott H, Davis JS. Confident difference criterion: a new Bayesian differentially expressed gene selection algorithm with applications. BMC Bioinformatics 2015; 16:245. [PMID: 26250443 PMCID: PMC4527130 DOI: 10.1186/s12859-015-0664-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 07/07/2015] [Indexed: 11/16/2022] Open
Abstract
Background Recently, the Bayesian method becomes more popular for analyzing high dimensional gene expression data as it allows us to borrow information across different genes and provides powerful estimators for evaluating gene expression levels. It is crucial to develop a simple but efficient gene selection algorithm for detecting differentially expressed (DE) genes based on the Bayesian estimators. Results In this paper, by extending the two-criterion idea of Chen et al. (Chen M-H, Ibrahim JG, Chi Y-Y. A new class of mixture models for differential gene expression in DNA microarray data. J Stat Plan Inference. 2008;138:387–404), we propose two new gene selection algorithms for general Bayesian models and name these new methods as the confident difference criterion methods. One is based on the standardized differences between two mean expression values among genes; the other adds the differences between two variances to it. The proposed confident difference criterion methods first evaluate the posterior probability of a gene having different gene expressions between competitive samples and then declare a gene to be DE if the posterior probability is large. The theoretical connection between the proposed first method based on the means and the Bayes factor approach proposed by Yu et al. (Yu F, Chen M-H, Kuo L. Detecting differentially expressed genes using alibrated Bayes factors. Statistica Sinica. 2008;18:783–802) is established under the normal-normal-model with equal variances between two samples. The empirical performance of the proposed methods is examined and compared to those of several existing methods via several simulations. The results from these simulation studies show that the proposed confident difference criterion methods outperform the existing methods when comparing gene expressions across different conditions for both microarray studies and sequence-based high-throughput studies. A real dataset is used to further demonstrate the proposed methodology. In the real data application, the confident difference criterion methods successfully identified more clinically important DE genes than the other methods. Conclusion The confident difference criterion method proposed in this paper provides a new efficient approach for both microarray studies and sequence-based high-throughput studies to identify differentially expressed genes. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0664-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, 68198-4350, NE, USA.
| | - Ming-Hui Chen
- Department of Statistics, University of Connecticut, Storrs, 06269-4120, CT, USA.
| | - Lynn Kuo
- Department of Statistics, University of Connecticut, Storrs, 06269-4120, CT, USA.
| | - Heather Talbott
- Department of Biochemistry and Molecular Biology and Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, 68198-5870, NE, USA.
| | - John S Davis
- VA Nebraska-Western Iowa Health Care System and Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, 68198-3255, NE, USA.
| |
Collapse
|
44
|
Yalu R, Oyesiji AE, Eisenberg I, Imbar T, Meidan R. HIF1A-dependent increase in endothelin 2 levels in granulosa cells: role of hypoxia, LH/cAMP, and reactive oxygen species. Reproduction 2015; 149:11-20. [PMID: 25433027 DOI: 10.1530/rep-14-0409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxia-inducible factor 1 alpha (HIF1A) and endothelin 2 (EDN2) are transiently expressed during the same time window in the developing corpus luteum (CL). In this study, we sought to investigate the involvement of LH/cAMP, reactive oxygen species (ROS), and a hypoxia-mimetic compound (CoCl2) on HIF1A expression and how it affected EDN2 levels, using transformed human granulosa cells (thGCs) and primary bovine granulosa cells (GCs). CoCl2 elevated HIF1A protein levels in thGCs in a dose-dependent manner. Forskolin alone had no significant effect; however, forskolin and CoCl2 together further induced HIF1A protein and EDN2 mRNA expression in thGCs. Similarly, in primary GCs, LH with CoCl2 synergistically augmented HIF1A protein levels, which resulted in higher expression of EDN2 and another well-known hypoxia-inducible gene, VEGF (VEGFA). Importantly, LH alone elevated HIF1A mRNA but not its protein. The successful knockdown of HIF1A in thGCs using siRNA abolished hypoxia-induced EDN2 and also the additive effect of forskolin and CoCl2. We then examined the roles of ROS in thGCs: hydrogen peroxide (20 and 50 μM) elevated HIF1A protein as well as the expression of EDN2, implying that induction of HIF1A protein levels is sufficient to stimulate the expression of EDN2 (and VEGF) in normoxia. A broad-range ROS scavenger, butylated hydroxyanisole, inhibited CoCl2-induced HIF1A protein with a concomitant reduction in the mRNA expression of EDN2 and VEGF in thGCs. The results obtained in this study suggest that HIF1A, induced by various stimuli, is an essential mediator of EDN2 mRNA expression. The results may also explain the rise in the levels of HIF1A-dependent genes (EDN2 and VEGF) in the developing CL.
Collapse
Affiliation(s)
- Ronit Yalu
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Herzl Street, Rehovot 76100, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Adepeju Esther Oyesiji
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Herzl Street, Rehovot 76100, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Iris Eisenberg
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Herzl Street, Rehovot 76100, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Tal Imbar
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Herzl Street, Rehovot 76100, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| | - Rina Meidan
- Department of Animal SciencesThe Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Herzl Street, Rehovot 76100, IsraelIVF UnitDepartment of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Mount Scopus, Jerusalem, Israel
| |
Collapse
|
45
|
Maalouf SW, Liu WS, Albert I, Pate JL. Regulating life or death: potential role of microRNA in rescue of the corpus luteum. Mol Cell Endocrinol 2014; 398:78-88. [PMID: 25458694 DOI: 10.1016/j.mce.2014.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 01/02/2023]
Abstract
The role of miRNA in tissue biology has added a new level of understanding of gene regulation and function. The corpus luteum (CL) is a transitory endocrine gland; the dynamic nature of the CL makes it a candidate for regulation by miRNA. Rescue of the CL from luteolysis is essential for the maintenance of pregnancy in all eutherian mammals. Using next generation sequencing, we profiled miRNA expression in the bovine CL during maternal recognition of pregnancy. We identified 590 luteal miRNA, of which 544 were known and 46 were novel miRNAs. Fifteen (including 3 novel) miRNAs were differentially expressed between CL of pregnant vs. cyclic animals. Target analysis of the differentially expressed miRNA resulted in genes involved in regulating apoptosis and immune response, providing evidence that miRNAs regulate the intracellular pathways that lead to either luteal regression or survival.
Collapse
Affiliation(s)
- Samar W Maalouf
- Department of Animal Sciences, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, PA 16802, United States
| | - Wan-Sheng Liu
- Department of Animal Sciences, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, PA 16802, United States
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Joy L Pate
- Department of Animal Sciences, Center for Reproductive Biology and Health, The Pennsylvania State University, University Park, PA 16802, United States.
| |
Collapse
|
46
|
Shah KB, Tripathy S, Suganthi H, Rudraiah M. Profiling of luteal transcriptome during prostaglandin F2-alpha treatment in buffalo cows: analysis of signaling pathways associated with luteolysis. PLoS One 2014; 9:e104127. [PMID: 25102061 PMCID: PMC4125180 DOI: 10.1371/journal.pone.0104127] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 07/09/2014] [Indexed: 11/18/2022] Open
Abstract
In several species including the buffalo cow, prostaglandin (PG) F2α is the key molecule responsible for regression of corpus luteum (CL). Experiments were carried out to characterize gene expression changes in the CL tissue at various time points after administration of luteolytic dose of PGF2α in buffalo cows. Circulating progesterone levels decreased within 1 h of PGF2α treatment and evidence of apoptosis was demonstrable at 18 h post treatment. Microarray analysis indicated expression changes in several of immediate early genes and transcription factors within 3 h of treatment. Also, changes in expression of genes associated with cell to cell signaling, cytokine signaling, steroidogenesis, PG synthesis and apoptosis were observed. Analysis of various components of LH/CGR signaling in CL tissues indicated decreased LH/CGR protein expression, pCREB levels and PKA activity post PGF2α treatment. The novel finding of this study is the down regulation of CYP19A1 gene expression accompanied by decrease in expression of E2 receptors and circulating and intra luteal E2 post PGF2α treatment. Mining of microarray data revealed several differentially expressed E2 responsive genes. Since CYP19A1 gene expression is low in the bovine CL, mining of microarray data of PGF2α-treated macaques, the species with high luteal CYP19A1 expression, showed good correlation between differentially expressed E2 responsive genes between both the species. Taken together, the results of this study suggest that PGF2α interferes with luteotrophic signaling, impairs intra-luteal E2 levels and regulates various signaling pathways before the effects on structural luteolysis are manifest.
Collapse
Affiliation(s)
- Kunal B Shah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Sudeshna Tripathy
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Hepziba Suganthi
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Medhamurthy Rudraiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
47
|
Farberov S, Meidan R. Functions and transcriptional regulation of thrombospondins and their interrelationship with fibroblast growth factor-2 in bovine luteal cells. Biol Reprod 2014; 91:58. [PMID: 25061096 DOI: 10.1095/biolreprod.114.121020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Previously, we showed luteal stage-specific regulation of angiogenesis-modulating factors by prostaglandin F2 alpha (PGF2alpha). Fibroblast growth factor 2 (FGF2) and thrombospondins (THBSs) exhibited the most divergent profile of induction by PGF2alpha. We therefore examined the transcriptional regulation and roles of THBSs in luteal cells and studied their interaction with FGF2. THBSs and their receptors exhibited cell-specific expression: THBS1 was the predominant form in luteal endothelial cells (LEC), whereas luteinized granulosa cells (LGC) expressed mostly THBS2. CD36 was confined to LGC, but CD47 did not exhibit preferential expression between LEC and LGC. THBS1 and THBS2 were both stimulated in vitro by PGF2a and its analog in LGC. In contrast, luteinizing signals (LH and insulin) decreased the expression of THBS1, THBS2, and CD36. Importantly, LH increased FGF2 expression, suggesting that THBSs and FGF2 are conversely regulated. We found that FGF2 inhibited THBS1 and vice versa, and that THBS1 treatment decreased FGF2 expression, suggesting reciprocal inhibition. In agreement, ablation of THBS1 by specific small interference RNAs elevated FGF2 levels. THBS1 reduced LEC numbers and promoted apoptosis by activation of caspase-3. In contrast, FGF2 reduced basal and THBS1-induced caspase-3 levels. Consistent with these findings, small interference RNA silencing of THBS1 in luteal cells reduced the levels of active caspase-3 and improved the survival of cells when challenged with staurosporine. Taken together, these studies suggest that THBSs are suppressed during luteinization but are induced by PGF2alpha in luteolysis. THBS1 has antiangiogenic, proapoptotic properties; these, together with its ability to inhibit FGF2 expression and activity, can promote luteolysis.
Collapse
Affiliation(s)
- Svetlana Farberov
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Rina Meidan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
48
|
Ever-changing cell interactions during the life span of the corpus luteum: Relevance to luteal regression. Reprod Biol 2014; 14:75-82. [DOI: 10.1016/j.repbio.2013.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 12/17/2013] [Indexed: 11/22/2022]
|
49
|
Bishop CV, Aazzerah RA, Quennoz LM, Hennebold JD, Stouffer RL. Effects of steroid ablation and progestin replacement on the transcriptome of the primate corpus luteum during simulated early pregnancy. Mol Hum Reprod 2013; 20:222-34. [PMID: 24219889 DOI: 10.1093/molehr/gat079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous microarray analyses indicated that a portion of the transcriptome in the macaque corpus luteum (CL) of the menstrual cycle was regulated indirectly by luteinizing hormone via the local actions of steroid hormones, notably progesterone (P). The current study was designed to investigate this concept in the CL of early pregnancy by analyzing chorionic gonadotrophin (CG)-regulated genes that are dependent versus independent of local steroid action. Exogenous human chorionic gonadotropin treatment simulating early pregnancy (SEP) began on Day 9 of the luteal phase in female rhesus monkeys with and without concurrent administration of the 3-β-hydroxysteroid dehydrogenase inhibitor trilostane (TRL) with or without the synthetic progestin R5020. Compared with SEP treatment alone, TRL altered 50 mRNA transcripts on Day 10, rising to 95 on Day 15 (P<0.05, ≥2-fold change in gene expression). Steroid-sensitive genes were validated; notably effects of steroid ablation and P replacement varied by day. Expression of some genes previously identified as P-regulated in the macaque CL during the menstrual cycle were not significantly altered by steroid ablation and P replacement during CG exposure in SEP. These data indicate that the majority of CG-regulated luteal transcripts are differentially expressed independently of local steroid actions. However, the steroid-regulated genes in the macaque CL may be essential during early pregnancy, based on previous reports that TRL treatment initiates premature structural regression of the CL during SEP. These data reinforce the concept that the structure, function and regulation of the rescued CL in early pregnancy differs from the CL of the menstrual cycle in primates.
Collapse
Affiliation(s)
- C V Bishop
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | | | | | | | | |
Collapse
|
50
|
Fátima LA, Evangelista MC, Silva RS, Cardoso APM, Baruselli PS, Papa PC. FSH up-regulates angiogenic factors in luteal cells of buffaloes. Domest Anim Endocrinol 2013; 45:224-37. [PMID: 24209507 DOI: 10.1016/j.domaniend.2013.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 02/05/2023]
Abstract
Follicle-stimulating hormone has been widely used to induce superovulation in buffaloes and cows and usually triggers functional and morphologic alterations in the corpus luteum (CL). Several studies have shown that FSH is involved in regulating vascular development and that adequate angiogenesis is essential for normal luteal development. Angiogenesis is regulated by many growth factors, of which vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) have an established central role. Therefore, we have used a combination of in vitro and in vivo studies to assess the effects of FSH on the expression of VEGF and FGF2 and their receptors in buffalo luteal cells. The in vivo model consisted of 12 buffalo cows, divided into control (n = 6) and superovulated (n = 6) groups, and CL samples were collected on day 6 after ovulation. In this model, we analyzed the gene and protein expression of FGF2 and its receptors and the protein expression of VEGFA systems with the use of real-time PCR, Western blot analysis, and immunohistochemistry. In the in vitro model, granulosa cells were collected from small follicles (diameter, 4-6 mm) of buffaloes and cultured for 4 d in serum-free medium with or without FSH (10 ng/mL). To induce in vitro luteinization, LH (250 ng/mL) and fetal bovine serum (10%) were added to the medium, and granulosa cells were maintained in culture for 4 d more. The progesterone concentration in the medium was measured at days 4, 5, and 8 after the beginning of cell culture. Cells were collected at day 8 and subjected to real-time PCR, Western blot analysis, and immunofluorescence for assessment of the expression of FGF2, VEGF, and their receptors. To address the percentage of steroidogenic and growth factor-expressing cells in the culture, flow cytometry was performed. We observed that in superovulated buffalo CL, the FGF2 system mRNA expression was decreased even as protein expression was increased and that the VEGF protein was increased (P < 0.05). In vitro experiments with granulosa cells showed an increase in the mRNA expression of VEGF and FGF2 and its receptors 1 and 2 and protein expression of VEGF, kinase insert domain receptor, FGF receptor 2, and FGF receptor 3 in cells treated with FSH (P < 0.05), in contrast to the in vivo experiments. Moreover, the progesterone production by FSH-treated cells was elevated compared with untreated cells (P < 0.05). Our findings indicate that VEGF, FGF2, and their receptors were differentially regulated by FSH in vitro and in vivo in buffalo luteal cells, which points toward a role of CL environment in modulating cellular answers to gonadotropins.
Collapse
MESH Headings
- Angiogenic Proteins/analysis
- Angiogenic Proteins/genetics
- Animals
- Buffaloes/metabolism
- Cells, Cultured
- Female
- Fibroblast Growth Factor 2/analysis
- Fibroblast Growth Factor 2/genetics
- Fluorescent Antibody Technique
- Follicle Stimulating Hormone/pharmacology
- Granulosa Cells/chemistry
- Granulosa Cells/drug effects
- Granulosa Cells/metabolism
- Luteal Cells/chemistry
- Luteal Cells/metabolism
- Luteinizing Hormone/pharmacology
- Male
- Progesterone/biosynthesis
- RNA, Messenger/analysis
- Real-Time Polymerase Chain Reaction/veterinary
- Receptor, Fibroblast Growth Factor, Type 2/analysis
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 3/analysis
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Superovulation/physiology
- Up-Regulation
- Vascular Endothelial Growth Factor A/analysis
- Vascular Endothelial Growth Factor A/genetics
Collapse
Affiliation(s)
- L A Fátima
- Department of Surgery, Sector of Anatomy, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, Av. Prof. Dr Orlando Marques Paiva, 87, São Paulo, SP, 05508-270, Brazil.
| | | | | | | | | | | |
Collapse
|