1
|
Wang FC, Zhang XN, Wu SX, He Z, Zhang LY, Yang QE. Loss of PBX1 function in Leydig cells causes testicular dysgenesis and male sterility. Cell Mol Life Sci 2024; 81:212. [PMID: 38724675 PMCID: PMC11082031 DOI: 10.1007/s00018-024-05249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Leydig cells are essential components of testicular interstitial tissue and serve as a primary source of androgen in males. A functional deficiency in Leydig cells often causes severe reproductive disorders; however, the transcriptional programs underlying the fate decisions and steroidogenesis of these cells have not been fully defined. In this study, we report that the homeodomain transcription factor PBX1 is a master regulator of Leydig cell differentiation and testosterone production in mice. PBX1 was highly expressed in Leydig cells and peritubular myoid cells in the adult testis. Conditional deletion of Pbx1 in Leydig cells caused spermatogenic defects and complete sterility. Histological examinations revealed that Pbx1 deletion impaired testicular structure and led to disorganization of the seminiferous tubules. Single-cell RNA-seq analysis revealed that loss of Pbx1 function affected the fate decisions of progenitor Leydig cells and altered the transcription of genes associated with testosterone synthesis in the adult testis. Pbx1 directly regulates the transcription of genes that play important roles in steroidogenesis (Prlr, Nr2f2 and Nedd4). Further analysis demonstrated that deletion of Pbx1 leads to a significant decrease in testosterone levels, accompanied by increases in pregnenolone, androstenedione and luteinizing hormone. Collectively, our data revealed that PBX1 is indispensable for maintaining Leydig cell function. These findings provide insights into testicular dysgenesis and the regulation of hormone secretion in Leydig cells.
Collapse
Affiliation(s)
- Fei-Chen Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Na Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Xin Wu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen He
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu-Yao Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China
| | - Qi-En Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810001, Qinghai, China.
| |
Collapse
|
2
|
Shen L, Yu J, Ge Y, Li H, Li Y, Cao Z, Luan P, Xiao F, Gao H, Zhang H. Associations of Transcription Factor 21 Gene Polymorphisms with the Growth and Body Composition Traits in Broilers. Animals (Basel) 2022; 12:ani12030393. [PMID: 35158719 PMCID: PMC8833368 DOI: 10.3390/ani12030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary The functional SNPs discovered in this work will give helpful information on the crucial molecular markers that may be employed in breeding efforts to improve the heart development of broiler chickens. Abstract This study aims to identify molecular marker loci that could be applied in broiler breeding programs. In this study, we used public databases to locate the Transcription factor 21 (TCF21) gene that affected the economically important traits in broilers. Ten single nucleotide polymorphisms were detected in the TCF21 gene by monoclonal sequencing. The polymorphisms of these 10 SNPs in the TCF21 gene were significantly associated (p < 0.05) with multiple growth and body composition traits. Furthermore, the TT genotype of g.-911T>G was identified to significantly increase the heart weight trait without affecting the negative traits, such as abdominal fat and reproduction by multiple methods. Thus, it was speculated that the g.-911T>G identified in the TCF21 gene might be used in marker-assisted selection in the broiler breeding program.
Collapse
Affiliation(s)
- Linyong Shen
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
| | - Jiaqiang Yu
- Forest Investigating and Planning Institute of Daxinganling, Yakshi 022150, China;
| | - Yaowen Ge
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
| | - Zhiping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
| | - Peng Luan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
| | - Fan Xiao
- Fujian Sunnzer Biotechnology Development Co., Ltd., Nanping 354100, China; (F.X.); (H.G.)
| | - Haihe Gao
- Fujian Sunnzer Biotechnology Development Co., Ltd., Nanping 354100, China; (F.X.); (H.G.)
| | - Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (L.S.); (Y.G.); (H.L.); (Y.L.); (Z.C.); (P.L.)
- Correspondence: ; Tel.: +86-451-55191486
| |
Collapse
|
3
|
Zhang X, Cheng B, Ma Y, Liu Y, Wang N, Zhang H, Li Y, Wang Y, Luan P, Cao Z, Li H. Genome-wide survey and functional analysis reveal TCF21 promotes chicken preadipocyte differentiation by directly upregulating HTR2A. Biochem Biophys Res Commun 2022; 587:131-138. [PMID: 34872001 DOI: 10.1016/j.bbrc.2021.11.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND/AIM Previously, we showed that transcription factor 21 (TCF21) promotes chicken preadipocyte differentiation. However, the genome-wide TCF21 binding sites and its downstream target genes in chicken adipogenesis were unknown. METHODS ChIP-Seq and RNA-Seq were used to screen candidate targets of TCF21. qPCR and luciferase reporter assay were applied to verify the sequencing results. Western blotting, oil red-O staining and pharmacological treatments were performed to investigate the function of 5-hydroxytryptamine receptor 2A (HTR2A), one of the bonafide direct downstream binding targets of TCF21. RESULTS A total of 94 candidate target genes of TCF21 were identified. ChIP-qPCR, RT-qPCR, and luciferase reporter assay demonstrated that HTR2A is one of the bonafide direct downstream binding targets of TCF21. HTR2A expression in adipose tissue was upregulated in fat line broilers. Also, the abundance of HTR2A gradually increased during the adipogenesis process. Interestingly, pharmacological enhancement or inhibition of HTR2A promoted or attenuated the differentiation of preadipocytes, respectively. Furthermore, HTR2A inhibition impaired the TCF21 promoted adipogenesis. CONCLUSIONS We profiled the genome-wide TCF21 binding sites in chicken differentiated preadipocytes revealing HTR2A as the direct downstream target of TCF21 in adipogenesis.
Collapse
Affiliation(s)
- Xinyang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Bohan Cheng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yanyan Ma
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yumeng Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yuxiang Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Peng Luan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhiping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, Heilongjiang, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, Heilongjiang, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
4
|
TCF21: a critical transcription factor in health and cancer. J Mol Med (Berl) 2020; 98:1055-1068. [DOI: 10.1007/s00109-020-01934-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/07/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
|
5
|
Stévant I, Kühne F, Greenfield A, Chaboissier MC, Dermitzakis ET, Nef S. Dissecting Cell Lineage Specification and Sex Fate Determination in Gonadal Somatic Cells Using Single-Cell Transcriptomics. Cell Rep 2020; 26:3272-3283.e3. [PMID: 30893600 DOI: 10.1016/j.celrep.2019.02.069] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/07/2019] [Accepted: 02/19/2019] [Indexed: 01/02/2023] Open
Abstract
Sex determination is a unique process that allows the study of multipotent progenitors and their acquisition of sex-specific fates during differentiation of the gonad into a testis or an ovary. Using time series single-cell RNA sequencing (scRNA-seq) on ovarian Nr5a1-GFP+ somatic cells during sex determination, we identified a single population of early progenitors giving rise to both pre-granulosa cells and potential steroidogenic precursor cells. By comparing time series single-cell RNA sequencing of XX and XY somatic cells, we provide evidence that gonadal supporting cells are specified from these early progenitors by a non-sex-specific transcriptomic program before pre-granulosa and Sertoli cells acquire their sex-specific identity. In XX and XY steroidogenic precursors, similar transcriptomic profiles underlie the acquisition of cell fate but with XX cells exhibiting a relative delay. Our data provide an important resource, at single-cell resolution, for further interrogation of the molecular and cellular basis of mammalian sex determination.
Collapse
Affiliation(s)
- Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland; SIB, Swiss Institute of Bioinformatics, University of Geneva, 1211 Geneva, Switzerland
| | - Françoise Kühne
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | - Andy Greenfield
- Mammalian Genetics Unit, Medical Research Council, Harwell Institute, Oxfordshire OX11 0RD, UK
| | | | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland; SIB, Swiss Institute of Bioinformatics, University of Geneva, 1211 Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
6
|
Abstract
Cardiac fibroblasts and fibrosis contribute to the pathogenesis of heart failure, a prevalent cause of mortality. Therefore, a majority of the existing information regarding cardiac fibroblasts is focused on their function and behavior after heart injury. Less is understood about the signaling and transcriptional networks required for the development and homeostatic roles of these cells. This review is devoted to describing our current understanding of cardiac fibroblast development. I detail cardiac fibroblast formation during embryogenesis including the discovery of a second embryonic origin for cardiac fibroblasts. Additional information is provided regarding the roles of the genes essential for cardiac fibroblast development. It should be noted that many questions remain regarding the cell-fate specification of these fibroblast progenitors, and it is hoped that this review will provide a basis for future studies regarding this topic.
Collapse
|
7
|
Gao Y, Li S, Lai Z, Zhou Z, Wu F, Huang Y, Lan X, Lei C, Chen H, Dang R. Analysis of Long Non-Coding RNA and mRNA Expression Profiling in Immature and Mature Bovine ( Bos taurus) Testes. Front Genet 2019; 10:646. [PMID: 31333723 PMCID: PMC6624472 DOI: 10.3389/fgene.2019.00646] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 01/08/2023] Open
Abstract
Testis development and spermatogenesis are strictly regulated by numbers of genes and non-coding genes. However, long non-coding RNAs (lncRNAs) as key regulators in multitudinous biological processes have not been systematically identified in bovine testes during sexual maturation. In this study, we comprehensively analyzed lncRNA and mRNA expression profiling of six bovine testes at 3 days after birth and 13 months by RNA sequencing. 23,735 lncRNAs and 22,118 mRNAs were identified, in which 540 lncRNAs (P-value < 0.05) and 3,525 mRNAs (P-adjust < 0.05) were significantly differentially expressed (DE) between two stages. Correspondingly, the results of RT-qPCR analysis showed well correlation with the transcriptome data. Moreover, GO and KEGG enrichment analyses showed that DE genes and target genes of DE lncRNAs were enriched in spermatogenesis. Furthermore, we constructed lncRNA–gene interaction networks; consequently, 15 DE lncRNAs and 12 cis-target genes were involved. The target genes (SPATA16, TCF21, ZPBP, PACRG, ATP8B3, COMP, ACE, and OSBP2) were found associated with bovine sexual maturation. In addition, the expression of lncRNAs and cis-target genes was detected in bovine Leydig cells, Sertoli cells, and spermatogonia. Our study identified and analyzed lncRNAs and mRNAs in testis tissues, suggesting that lncRNAs may regulate testis development and spermatogenesis. Our findings provided new insights for further investigation of biological function in bovine lncRNA.
Collapse
Affiliation(s)
- Yuan Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shipeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhenyu Lai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zihui Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Deciphering Cell Lineage Specification during Male Sex Determination with Single-Cell RNA Sequencing. Cell Rep 2019; 22:1589-1599. [PMID: 29425512 DOI: 10.1016/j.celrep.2018.01.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/21/2017] [Accepted: 01/12/2018] [Indexed: 11/20/2022] Open
Abstract
The gonad is a unique biological system for studying cell-fate decisions. However, major questions remain regarding the identity of somatic progenitor cells and the transcriptional events driving cell differentiation. Using time-series single-cell RNA sequencing on XY mouse gonads during sex determination, we identified a single population of somatic progenitor cells prior to sex determination. A subset of these progenitors differentiates into Sertoli cells, a process characterized by a highly dynamic genetic program consisting of sequential waves of gene expression. Another subset of multipotent cells maintains their progenitor state but undergoes significant transcriptional changes restricting their competence toward a steroidogenic fate required for the differentiation of fetal Leydig cells. Our findings confirm the presence of a unique multipotent progenitor population in the gonadal primordium that gives rise to both supporting and interstitial lineages. These also provide the most granular analysis of the transcriptional events occurring during testicular cell-fate commitment.
Collapse
|
9
|
Zhang X, Cheng B, Liu C, Du Z, Zhang H, Wang N, Wu M, Li Y, Cao Z, Li H. A Novel Regulator of Preadipocyte Differentiation, Transcription Factor TCF21, Functions Partially Through Promoting LPL Expression. Front Physiol 2019; 10:458. [PMID: 31065241 PMCID: PMC6489524 DOI: 10.3389/fphys.2019.00458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/02/2019] [Indexed: 11/13/2022] Open
Abstract
The transcription factor TCF21 has been previously shown to be specifically expressed in white preadipocytes in mice. However, the exact biological function of TCF21 in the context of adipogenesis remains unknown. In the current study, we used chicken lines selected based on their abdominal fat content, and observed a significant decrease in TCF21 mRNA and protein levels in the abdominal fat of lean broilers relative to fat broilers. Moreover, TCF21 expression increased throughout preadipocyte differentiation in vitro. We also found that TCF21 knockdown and over-expression attenuated and promoted preadipocyte differentiation, respectively, as evidenced by appropriate changes in lipid droplet accumulation and altered expressions of C/EBPa, LPL, and A-FABP. Additional chromatin immunoprecipitation analyses and luciferase assays demonstrated that TCF21 promotes the transcription of LPL by directly binding to the E-box motif in the LPL promoter. Together, these results show that TCF21 is a novel regulator of preadipocyte differentiation, in part by directly promoting LPL expression.
Collapse
Affiliation(s)
- Xinyang Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Bohan Cheng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Chang Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhiqiang Du
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Mengqi Wu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yumao Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhiping Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
10
|
Gomes NL, Lerário AM, Machado AZ, Moraes DRD, Silva TED, Arnhold IJP, Batista RL, Faria Júnior JAD, Costa EF, Nishi MY, Inacio M, Domenice S, Mendonca BB. Long-term outcomes and molecular analysis of a large cohort of patients with 46,XY disorder of sex development due to partial gonadal dysgenesis. Clin Endocrinol (Oxf) 2018; 89:164-177. [PMID: 29668062 DOI: 10.1111/cen.13717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Follow-up data on patients with 46,XY partial gonadal dysgenesis (PGD) until adulthood are scarce, making information on prognosis difficult. OBJECTIVE To analyse the long-term outcomes of patients with 46,XY PGD regarding testosterone production, germ cell tumour risk, genotype and psychosexual adaptation. METHODS A retrospective longitudinal study of 33 patients (20 assigned male and 13 patients assigned female at birth). Molecular diagnosis was performed by Sanger sequencing or by targeted massively parallel sequencing of 63 genes related to disorders of sex development (DSDs). RESULTS Age at first and last visit ranged from 0.1 to 43 and from 17 to 53 years, respectively. Spontaneous puberty was observed in 57% of the patients. During follow-up, six of them had a gonadectomy (four due to female gender, and two because of a gonadal tumour). At last evaluation, five of six patients had adult male testosterone levels (median 16.7 nmol/L, range 15.3-21.7 nmol/L) and elevated LH and FSH levels. Germ cell tumours were found in two postpubertal patients (one with an abdominal gonad and one patient with Frasier syndrome). Molecular diagnosis was possible in 11 patients (33%). NR5A1 variants were the most prevalent molecular defects (n = 6), and four of five patients harbouring them developed spontaneous puberty. Gender change was observed in four patients, two from each sex assignment group; all patients reported satisfaction with their gender at final evaluation. Sexual intercourse was reported by 81% of both gender and 82% of them reported satisfaction with their sexual lives. CONCLUSION Spontaneous puberty was observed in 57% of the patients with 46,XY PGD, being NR5A1 defects the most prevalent ones among all the patients and in those with spontaneous puberty. Gender change due to gender dysphoria was reported by 12% of the patients. All the patients reported satisfaction with their final gender, and most of them with their sexual life.
Collapse
Affiliation(s)
- Nathalia L Gomes
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Antônio Marcondes Lerário
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Aline Zamboni Machado
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Daniela Rodrigues de Moraes
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Thatiana Evilen da Silva
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ivo J P Arnhold
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Loch Batista
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - José Antônio Diniz Faria Júnior
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Elaine F Costa
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Mirian Y Nishi
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marlene Inacio
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sorahia Domenice
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Ao X, Li S, Xu Z, Yang Y, Chen M, Jiang X, Wu H. Sumoylation of TCF21 downregulates the transcriptional activity of estrogen receptor-alpha. Oncotarget 2018; 7:26220-34. [PMID: 27028856 PMCID: PMC5041976 DOI: 10.18632/oncotarget.8354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/06/2016] [Indexed: 12/18/2022] Open
Abstract
Aberrant estrogen receptor-α (ERα) signaling is recognized as a major contributor to the development of breast cancer. However, the molecular mechanism underlying the regulation of ERα in breast cancer is still inconclusive. In this study, we showed that the transcription factor 21 (TCF21) interacted with ERα, and repressed its transcriptional activity in a HDACs-dependent manner. We also showed that TCF21 could be sumoylated by the small ubiquitin-like modifier SUMO1, and this modification could be reversed by SENP1. Sumoylation of TCF21 occurred at lysine residue 24 (K24). Substitution of K24 with arginine resulted in complete abolishment of sumoylation. Sumoylation stabilized TCF21, but did not affect its subcellular localization. Sumoylation of TCF21 also enhanced its interaction with HDAC1/2 without affecting its interaction with ERα. Moreover, sumoylation of TCF21 promoted its repression of ERα transcriptional activity, and increased the recruitment of HDAC1/2 to the pS2 promoter. Consistent with these observations, sumoylation of TCF21 could inhibit the growth of ERα-positive breast cancer cells and decreased the proportion of S-phase cells in the cell cycle. These findings suggested that TCF21 might act as a negative regulator of ERα, and its sumoylation inhibited the transcriptional activity of ERα through promoting the recruitment of HDAC1/2.
Collapse
Affiliation(s)
- Xiang Ao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Shujing Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Zhaowei Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Yangyang Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Min Chen
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Xiao Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China
| | - Huijian Wu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, People's Republic of China.,School of Life Science and Medicine, Dalian University of Technology, Panjin 114221, Liaoning, People's Republic of China
| |
Collapse
|
12
|
Scleraxis: a force-responsive cell phenotype regulator. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2017.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Molecular characterization of Pod1 during sex development in Chinese tongue sole (Cynoglossus semilaevis). Biochem Biophys Res Commun 2017; 494:714-718. [PMID: 29106955 DOI: 10.1016/j.bbrc.2017.10.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
Pod1 encodes a Class II bHLH transcription factor involved in the development of a number of tissues such as gonad, spleen, lungs and heart. However, to date, little is known about its function in teleosts. In this study, we cloned and characterized Pod1 gene from Cynoglossus semilaevis. This gene contains three exons and two introns, with the full-length cDNA of 918 nucleotides that encodes a 183 amino acid protein with a conserved bHLH domain. Realtime quantitative PCR revealed that Pod1 was predominantly expressed in the testes of C. semilaevis. In different stages of testes development, Pod1 expression was undetectable up to 120 days after hatching (dah), and then increased at 210 dah and 1 year after hatching (yah). Furthermore, in situ hybridization (ISH) analysis revealed that Pod1 was mainly localized in the germ cells of testes, but was not detected in ovarian cells; which suggested its possible functions in spermatogenesis of C. semilaevis. The methylation profile analysis of Pod1 genomic sequence in the gonads showed that the differences in their putative promoter regions of Pod1 among ovary, male and pseudo-male testes were not obvious. Thus, further research might be needed to evaluate whether Pod1 expression is regulated by epigenetic level.
Collapse
|
14
|
Bagchi RA, Roche P, Aroutiounova N, Espira L, Abrenica B, Schweitzer R, Czubryt MP. The transcription factor scleraxis is a critical regulator of cardiac fibroblast phenotype. BMC Biol 2016; 14:21. [PMID: 26988708 PMCID: PMC4794909 DOI: 10.1186/s12915-016-0243-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/01/2016] [Indexed: 12/30/2022] Open
Abstract
Background Resident fibroblasts synthesize the cardiac extracellular matrix, and can undergo phenotype conversion to myofibroblasts to augment matrix production, impairing function and contributing to organ failure. A significant gap in our understanding of the transcriptional regulation of these processes exists. Given the key role of this phenotype conversion in fibrotic disease, the identification of such novel transcriptional regulators may yield new targets for therapies for fibrosis. Results Using explanted primary cardiac fibroblasts in gain- and loss-of-function studies, we found that scleraxis critically controls cardiac fibroblast/myofibroblast phenotype by direct transcriptional regulation of myriad genes that effectively define these cells, including extracellular matrix components and α-smooth muscle actin. Scleraxis furthermore potentiated the TGFβ/Smad3 signaling pathway, a key regulator of myofibroblast conversion, by facilitating transcription complex formation. While scleraxis promoted fibroblast to myofibroblast conversion, loss of scleraxis attenuated myofibroblast function and gene expression. These results were confirmed in scleraxis knockout mice, which were cardiac matrix-deficient and lost ~50 % of their complement of cardiac fibroblasts, with evidence of impaired epithelial-to-mesenchymal transition (EMT). Scleraxis directly transactivated several EMT marker genes, and was sufficient to induce mesenchymal/fibroblast phenotype conversion of A549 epithelial cells. Conversely, loss of scleraxis attenuated TGFβ-induced EMT marker expression. Conclusions Our results demonstrate that scleraxis is a novel and potent regulator of cellular progression along the continuum culminating in the cardiac myofibroblast phenotype. Scleraxis was both sufficient to drive conversion, and required for full conversion to occur. Scleraxis fulfills this role by direct transcriptional regulation of key target genes, and by facilitating TGFβ/Smad signaling. Given the key role of fibroblast to myofibroblast conversion in fibrotic diseases in the heart and other tissue types, scleraxis may be an important target for therapeutic development. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0243-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rushita A Bagchi
- Institute of Cardiovascular Sciences, Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, R4008 St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Patricia Roche
- Institute of Cardiovascular Sciences, Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, R4008 St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Nina Aroutiounova
- Institute of Cardiovascular Sciences, Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, R4008 St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Leon Espira
- Institute of Cardiovascular Sciences, Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, R4008 St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Bernard Abrenica
- Institute of Cardiovascular Sciences, Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, R4008 St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada
| | - Ronen Schweitzer
- Shriners Hospital for Children, Research Division and Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, R4008 St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada.
| |
Collapse
|
15
|
Skinner MK, Bhandari RK, Haque MM, Nilsson EE. Environmentally Induced Epigenetic Transgenerational Inheritance of Altered SRY Genomic Binding During Gonadal Sex Determination. ENVIRONMENTAL EPIGENETICS 2015; 1:dvv004. [PMID: 27175298 PMCID: PMC4862609 DOI: 10.1093/eep/dvv004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/14/2015] [Accepted: 07/16/2015] [Indexed: 06/05/2023]
Abstract
A critical transcription factor required for mammalian male sex determination is SRY (sex determining region on the Y chromosome). The expression of SRY in precursor Sertoli cells is one of the initial events in testis development. The current study was designed to determine the impact of environmentally induced epigenetic transgenerational inheritance on SRY binding during gonadal sex determination in the male. The agricultural fungicide vinclozolin and vehicle control (DMSO) exposed gestating females (F0 generation) during gonadal sex determination promoted the transgenerational inheritance of differential DNA methylation in sperm of the F3 generation (great grand-offspring). The fetal gonads in F3 generation males were used to identify potential alterations in SRY binding sites in the developing Sertoli cells. Chromatin immunoprecipitation with an SRY antibody followed by genome-wide promoter tiling array (ChIP-Chip) was used to identify alterations in SRY binding. A total of 81 adjacent oligonucleotide sites and 173 single oligo SRY binding sites were identified to be altered transgenerationally in the Sertoli cell vinclozolin lineage F3 generation males. Observations demonstrate the majority of the previously identified normal SRY binding sites were not altered and the altered SRY binding sites were novel and new additional sites. The chromosomal locations, gene associations and potentially modified cellular pathways were investigated. In summary, environmentally induced epigenetic transgenerational inheritance of germline epimutations appears to alter the cellular differentiation and development of the precursor Sertoli cell SRY binding during gonadal sex determination that influence the developmental origins of adult onset testis disease.
Collapse
Affiliation(s)
- Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Ramji K. Bhandari
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - M. Muksitul Haque
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Eric E. Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| |
Collapse
|
16
|
Haque MM, Holder LB, Skinner MK. Genome-Wide Locations of Potential Epimutations Associated with Environmentally Induced Epigenetic Transgenerational Inheritance of Disease Using a Sequential Machine Learning Prediction Approach. PLoS One 2015; 10:e0142274. [PMID: 26571271 PMCID: PMC4646459 DOI: 10.1371/journal.pone.0142274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/20/2015] [Indexed: 11/18/2022] Open
Abstract
Environmentally induced epigenetic transgenerational inheritance of disease and phenotypic variation involves germline transmitted epimutations. The primary epimutations identified involve altered differential DNA methylation regions (DMRs). Different environmental toxicants have been shown to promote exposure (i.e., toxicant) specific signatures of germline epimutations. Analysis of genomic features associated with these epimutations identified low-density CpG regions (<3 CpG / 100bp) termed CpG deserts and a number of unique DNA sequence motifs. The rat genome was annotated for these and additional relevant features. The objective of the current study was to use a machine learning computational approach to predict all potential epimutations in the genome. A number of previously identified sperm epimutations were used as training sets. A novel machine learning approach using a sequential combination of Active Learning and Imbalance Class Learner analysis was developed. The transgenerational sperm epimutation analysis identified approximately 50K individual sites with a 1 kb mean size and 3,233 regions that had a minimum of three adjacent sites with a mean size of 3.5 kb. A select number of the most relevant genomic features were identified with the low density CpG deserts being a critical genomic feature of the features selected. A similar independent analysis with transgenerational somatic cell epimutation training sets identified a smaller number of 1,503 regions of genome-wide predicted sites and differences in genomic feature contributions. The predicted genome-wide germline (sperm) epimutations were found to be distinct from the predicted somatic cell epimutations. Validation of the genome-wide germline predicted sites used two recently identified transgenerational sperm epimutation signature sets from the pesticides dichlorodiphenyltrichloroethane (DDT) and methoxychlor (MXC) exposure lineage F3 generation. Analysis of this positive validation data set showed a 100% prediction accuracy for all the DDT-MXC sperm epimutations. Observations further elucidate the genomic features associated with transgenerational germline epimutations and identify a genome-wide set of potential epimutations that can be used to facilitate identification of epigenetic diagnostics for ancestral environmental exposures and disease susceptibility.
Collapse
Affiliation(s)
- M. Muksitul Haque
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, 99164–4236, United States of America
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, 99164, United States of America
| | - Lawrence B. Holder
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, 99164, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, 99164–4236, United States of America
- * E-mail:
| |
Collapse
|
17
|
Haque MM, Skinner MK, Holder LB. Imbalanced class learning in epigenetics. J Comput Biol 2014; 21:492-507. [PMID: 24798423 DOI: 10.1089/cmb.2014.0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In machine learning, one of the important criteria for higher classification accuracy is a balanced dataset. Datasets with a large ratio between minority and majority classes face hindrance in learning using any classifier. Datasets having a magnitude difference in number of instances between the target concept result in an imbalanced class distribution. Such datasets can range from biological data, sensor data, medical diagnostics, or any other domain where labeling any instances of the minority class can be time-consuming or costly or the data may not be easily available. The current study investigates a number of imbalanced class algorithms for solving the imbalanced class distribution present in epigenetic datasets. Epigenetic (DNA methylation) datasets inherently come with few differentially DNA methylated regions (DMR) and with a higher number of non-DMR sites. For this class imbalance problem, a number of algorithms are compared, including the TAN+AdaBoost algorithm. Experiments performed on four epigenetic datasets and several known datasets show that an imbalanced dataset can have similar accuracy as a regular learner on a balanced dataset.
Collapse
Affiliation(s)
- M Muksitul Haque
- 1 Center for Reproductive Biology, School of Biological Sciences, Washington State University , Pullman, Washington
| | | | | |
Collapse
|
18
|
Guerrero-Bosagna C, Skinner MK. Environmental epigenetics and effects on male fertility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 791:67-81. [PMID: 23955673 PMCID: PMC8248443 DOI: 10.1007/978-1-4614-7783-9_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Environmental exposures to factors such as toxicants or nutrition can have impacts on testis biology and male fertility. The ability of these factors to influence epigenetic mechanisms in early life exposures or from ancestral exposures will be reviewed. A growing number of examples suggest environmental epigenetics will be a critical factor to consider in male reproduction.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | | |
Collapse
|
19
|
The roles of HLH transcription factors in epithelial mesenchymal transition and multiple molecular mechanisms. Clin Exp Metastasis 2013; 31:367-77. [PMID: 24158354 DOI: 10.1007/s10585-013-9621-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/10/2013] [Indexed: 02/06/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is presently recognized as an important event and the initiating stage for tumor invasion and metastasis. Several EMT inducers have been identified, among which the big family of helix-loop-helix (HLH) transcription factors are rising as a novel and promising family of proteins in EMT mediation, such as Twist1, Twist2, E47, and HIFs, etc. Due to the variety and complexities of HLH members, the pathways and mechanisms they employ to promote EMT are also complex and characteristic. In this review, we will discuss the roles of various HLH proteins in the regulation and sustenance of the EMT and multiple cellular mechanisms, attempting to provide a novel and broadened view towards the link between HLH proteins and EMT.
Collapse
|
20
|
Llera-Herrera R, García-Gasca A, Abreu-Goodger C, Huvet A, Ibarra AM. Identification of male gametogenesis expressed genes from the scallop Nodipecten subnodosus by suppressive subtraction hybridization and pyrosequencing. PLoS One 2013; 8:e73176. [PMID: 24066034 PMCID: PMC3774672 DOI: 10.1371/journal.pone.0073176] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/17/2013] [Indexed: 01/01/2023] Open
Abstract
Despite the great advances in sequencing technologies, genomic and transcriptomic information for marine non-model species with ecological, evolutionary, and economical interest is still scarce. In this work we aimed to identify genes expressed during spermatogenesis in the functional hermaphrodite scallop Nodipecten subnodosus (Mollusca: Bivalvia: Pectinidae), with the purpose of obtaining a panel of genes that would allow for the study of differentially transcribed genes between diploid and triploid scallops in the context of meiotic arrest and reproductive sterility. Because our aim was to isolate genes involved in meiosis and other testis maturation-related processes, we generated suppressive subtractive hybridization libraries of testis vs. inactive gonad. We obtained 352 and 177 ESTs by clone sequencing, and using pyrosequencing (454-Roche) we maximized the identified ESTs to 34,276 reads. A total of 1,153 genes from the testis library had a blastx hit and GO annotation, including genes specific for meiosis, spermatogenesis, sex-differentiation, and transposable elements. Some of the identified meiosis genes function in chromosome pairing (scp2, scp3), recombination and DNA repair (dmc1, rad51, ccnb1ip1/hei10), and meiotic checkpoints (rad1, hormad1, dtl/cdt2). Gene expression analyses in different gametogenic stages in both sexual regions of the gonad of meiosis genes confirmed that the expression was specific or increased towards the maturing testis. Spermatogenesis genes included known testis-specific ones (kelch-10, shippo1, adad1), with some of these known to be associated to sterility. Sex differentiation genes included one of the most conserved genes at the bottom of the sex-determination cascade (dmrt1). Transcript from transposable elements, reverse transcriptase, and transposases in this library evidenced that transposition is an active process during spermatogenesis in N. subnodosus. In relation to the inactive library, we identified 833 transcripts with functional annotation related to activation of the transcription and translation machinery, as well as to germline control and maintenance.
Collapse
Affiliation(s)
- Raúl Llera-Herrera
- Aquaculture Genetics and Breeding Laboratory, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, Mexico
| | | | - Cei Abreu-Goodger
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, Mexico
| | - Arnaud Huvet
- Laboratoire des Sciences de l'Environnement Marin, Institut Français de Recherche pour l'Exploitation de la Mer, (IFREMER), Centre de Bretagne, Plouzané, France
| | - Ana M. Ibarra
- Aquaculture Genetics and Breeding Laboratory, Centro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, Mexico
- * E-mail:
| |
Collapse
|