1
|
de Figueiredo JR, da Silva AFB, de Lima LF. Approaches to improve in vitro survival, growth, and maturation of caprine oocytes: main results from LAMOFOPA-Brazil. Anim Reprod 2024; 21:e20240059. [PMID: 39372258 PMCID: PMC11452086 DOI: 10.1590/1984-3143-ar2024-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/26/2024] [Indexed: 10/08/2024] Open
Abstract
This brief review delves into the topic of in vitro follicle culture for in vitro embryo production, with a particular emphasis on goat models. Specifically, we examine the main findings from LAMOFOPA-Brazil over the last 20 years, highlighting the challenges posed by oxidative stress and epigenetic changes. Our focus is on strategies to improve follicular development and oocyte maturation. Furthermore, we underscore the valuable role of the antioxidant anethole in optimizing the efficacy of in vitro follicle culture and improving outcomes in in vitro embryo production.
Collapse
Affiliation(s)
- José Ricardo de Figueiredo
- Laboratório de Manipulação de Oócitos e Folículos Pré-antrais, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Ana Flávia Bezerra da Silva
- Laboratório de Manipulação de Oócitos e Folículos Pré-antrais, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - Laritza Ferreira de Lima
- Laboratório de Manipulação de Oócitos e Folículos Pré-antrais, Faculdade de Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
2
|
Le BAM, Nguyen LBL, Lam DTP, Lam CT, Nguyen NT, Nguyen VT, Bui HT. Agarose-based 3D culture improved the developmental competence of oocyte-granulosa complex isolated from porcine preantral follicle. Theriogenology 2024; 223:11-21. [PMID: 38657435 DOI: 10.1016/j.theriogenology.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/19/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Various models have been established to culture whole follicles of the Preantral stage; however, the process remains inefficient and is an ongoing challenge formation. It is reported that oocyte-cumulus-granulosa complexes (OCGCs) isolated from Early Antral follicles (EAFs) undergo in vitro growth (IVG) and acquire meiotic competence in some animals. However, IVG for the oocyte-granulosa complexes (OGCs) from Preantral Follicles (PAFs) has not been firmly established. The present study indicated that the use of a modified medium with Ascorbic Acid (50 μM) facilitated granulosa cell proliferation, promoted cumulus cell differentiations, and increased antrum formation for the OGCs isolated from PAFs (0.3-0.4 mm). However, the two-dimensional 96-well plate system (2D) experienced smaller size follicles and could not prolong more than 10 days of IVG. Another method is to use an Agarose matrix 3D system to provide a soft, non-adhesive base that supports the IVG of OGCs isolated from PAFs and promotes cell proliferation, antrum formation, and maintenance for 14 days. OGCs that were grown using this method retained their spherical morphology, which in turn helped to attain healthy granulosa cells and maintain their connection with oocytes, in addition, these oocytes significantly increased diameter and lipid content, indicating developmental competence. Our result indicated that the OGCs from PAFs after IVG undergo a change in chromatin morphology and expression of acetylation of histone H3 at lysine 9 (Ac-H3-K9) and methylation of histone H3 at lysine 4 (Me-H3-K4), similar to the in vivo oocytes isolated from the ovary. Likewise, IVG oocytes cultured for maturation showed full cumulus expansion and reached mature oocytes. Furthermore, after in vitro maturation, IVG oocytes underwent the first cleavage following parthenogenetic activation. In conclusion, while most studies used whole follicles from the Preantral stage for IVG, our research finding was the first to reveal that oocytes isolated from the final stage of PAFs can migrate out of the follicle and undergo IVG under suitable conditions.
Collapse
Affiliation(s)
- Ba Anh My Le
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Lien Boi Linh Nguyen
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Do Truc Phuong Lam
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Chi Thien Lam
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Nhat-Thinh Nguyen
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam; School of Medicine-VNU, Ho Chi Minh City, Viet Nam
| | - Van Thuan Nguyen
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam.
| | - Hong-Thuy Bui
- Cellular Reprogramming Lab, School of Biotechnology, International University, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
3
|
In vitro- and in vivo-derived early antral follicles have comparable in vitro follicular growth and oocyte maturation rates in goats. Theriogenology 2022; 188:135-144. [DOI: 10.1016/j.theriogenology.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
|
4
|
Zhang Y, Gong S, Su Y, Yao M, Liu X, Gong Z, Sui H, Luo M. Follicular development in livestock: Influencing factors and underlying mechanisms. Anim Sci J 2021; 92:e13657. [PMID: 34796578 DOI: 10.1111/asj.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/23/2021] [Accepted: 10/26/2021] [Indexed: 12/01/2022]
Abstract
Livestock farming development has become increasingly important in recent years. It not only provides us with meat nutrition and pet feeding but also increases the economic value by providing numerous employment opportunities, which improves our life quality. The livestock farming development depends on successful animal reproduction. As a vital process in animal reproduction, folliculogenesis and its influencing factors as well as their underlying mechanisms need to be understood thoroughly. This review is aimed at summarizing the factors such as cellular processes, gene regulation, noncoding RNAs and other endocrine or paracrine regulatory factors that affect follicular development, and their underlying mechanisms of action in livestock in order to provide novel insights for future studies. The above factors were found as significant determinants influencing the follicular development in livestock through various signaling pathways.
Collapse
Affiliation(s)
- Yanjun Zhang
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, China.,Jiaxiang County Animal Husbandry and Veterinary Bureau, Jining, China
| | - Shuai Gong
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, China
| | - Yanping Su
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Minhua Yao
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Xiaocui Liu
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Zhaoqing Gong
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Hongshu Sui
- Department of Histology and Embryology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, China
| | - Mingjiu Luo
- College of Animal Science and Veterinary, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
5
|
Kusuhara A, Babayev E, Zhou LT, Singh VP, Gerton JL, Duncan FE. Immature Follicular Origins and Disrupted Oocyte Growth Pathways Contribute to Decreased Gamete Quality During Reproductive Juvenescence in Mice. Front Cell Dev Biol 2021; 9:693742. [PMID: 34222262 PMCID: PMC8244820 DOI: 10.3389/fcell.2021.693742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/24/2021] [Indexed: 12/26/2022] Open
Abstract
Egg quality dictates fertility outcomes, and although there is a well-documented decline with advanced reproductive age, how it changes during puberty is less understood. Such knowledge is critical, since advances in Assisted Reproductive Technologies are enabling pre- and peri-pubertal patients to preserve fertility in the medical setting. Therefore, we investigated egg quality parameters in a mouse model of the pubertal transition or juvenescence (postnatal day; PND 11-40). Animal weight, vaginal opening, serum inhibin B levels, oocyte yield, oocyte diameter, and zona pellucida thickness increased with age. After PND 15, there was an age-associated ability of oocytes to resume meiosis and reach metaphase of meiosis II (MII) following in vitro maturation (IVM). However, eggs from the younger cohort (PND 16-20) had significantly more chromosome configuration abnormalities relative to the older cohorts and many were at telophase I instead of MII, indicative of a cell cycle delay. Oocytes from the youngest mouse cohorts originated from the smallest antral follicles with the fewest cumulus layers per oocyte, suggesting a more developmentally immature state. RNA Seq analysis of oocytes from mice at distinct ages revealed that the genes involved in cellular growth signaling pathways (PI3K, mTOR, and Hippo) were consistently repressed with meiotic competence, whereas genes involved in cellular communication were upregulated in oocytes with age. Taken together, these data demonstrate that gametes harvested during the pubertal transition have low meiotic maturation potential and derive from immature follicular origins.
Collapse
Affiliation(s)
- Atsuko Kusuhara
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Luhan T. Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Vijay P. Singh
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | | | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
6
|
Folliculogenesis-related genes are differently expressed in secondary and tertiary ovarian follicles. ZYGOTE 2021; 29:503-506. [PMID: 33883049 DOI: 10.1017/s0967199421000265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The relative mRNA abundance of 10 genes associated with folliculogenesis was compared between late preantral (secondary) and early antral (tertiary) ovarian follicles in goats. In total, 100 follicles in each category were mechanically isolated. The relative transcript abundance of the mRNAs were determined by qPCR. Data were analyzed using unpaired Student's t-test. Of the 10 tested genes, ABLIM mRNA was not detected in either follicle category, six genes (SLIT3, TYMS, GTPBP1, AKR1C4, PIK3R6, and MAOB) were upregulated in secondary follicles compared with tertiary follicles, and three genes (ARHGEF12, CLEC6A, and CYTL1) showed similar mRNA abundances in both secondary and tertiary follicles. In conclusion, SLIT3, GTPBP1, AKR1C4, and PIK3R6 mRNA abundance was upregulated in secondary follicles (preantral phase) compared with in tertiary follicles (antral phase) in goats.
Collapse
|
7
|
de Sá NAR, Ferreira ACA, Sousa FGC, Duarte ABG, Paes VM, Cadenas J, Anjos JC, Fernandes CCL, Rosseto R, Cibin FWS, Alves BG, Rodrigues APR, Rondina D, Gastal EL, Figueiredo JR. First pregnancy after in vitro culture of early antral follicles in goats: Positive effects of anethole on follicle development and steroidogenesis. Mol Reprod Dev 2020; 87:966-977. [PMID: 32761832 DOI: 10.1002/mrd.23410] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 06/30/2020] [Accepted: 07/19/2020] [Indexed: 11/05/2022]
Abstract
This study aimed to evaluate the role of anethole during the in vitro culture of caprine early antral follicles. Early antral follicles were isolated from caprine ovaries and cultured for 18 days without (control) or with anethole (300 µg/ml). After culture, the cumulus-oocyte complexes were subjected to in vitro maturation, followed by parthenogenetic activation or in vitro fertilization (IVF) and embryo culture. Follicular walls were used for the quantification of messenger RNA (mRNA) of CYP19A1, CYP17, MMP-9, TIMP-2, Bax, and Bcl-2 genes, and culture medium was used for evaluation of ferric reducing antioxidant power (FRAP) and estradiol levels. After in vitro follicle culture (IVFC), anethole induced higher total antioxidant capacity, that is, it produced higher FRAP levels, reduced the Bax/Bcl-2 ratio, and increased the levels of mRNA for CYP19A1 and CYP17, which was associated with a greater estradiol production (p < .05). Also, anethole improved the ability of oocytes to resume meiosis and reach metaphase II stage, as well as yielded higher (p < .05) embryo production (e.g., morulas and blastocysts) in both parthenogenetic activation and IVF techniques. One pregnancy (Day 30) was obtained from IVFC with anethole. In conclusion, anethole promoted in vitro growth and maturation of goat early antral follicles and oocytes and enabled embryo production. Furthermore, this study reports, for the first time in goats, a pregnancy after IVF using oocytes originated from early antral follicles grown in vitro.
Collapse
Affiliation(s)
- Naiza A R de Sá
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (Lamofopa), State University of Ceara, Fortaleza, Ceará, Brazil
| | - Anna C A Ferreira
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (Lamofopa), State University of Ceara, Fortaleza, Ceará, Brazil
| | - Francisca G C Sousa
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (Lamofopa), State University of Ceara, Fortaleza, Ceará, Brazil
| | - Ana B G Duarte
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (Lamofopa), State University of Ceara, Fortaleza, Ceará, Brazil
| | - Victor M Paes
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (Lamofopa), State University of Ceara, Fortaleza, Ceará, Brazil
| | - Jesús Cadenas
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (Lamofopa), State University of Ceara, Fortaleza, Ceará, Brazil
| | - Jefferson C Anjos
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (Lamofopa), State University of Ceara, Fortaleza, Ceará, Brazil
| | - César C L Fernandes
- Faculty of Veterinary Medicine, Laboratory of Ruminant Production and Nutrition (Lanuprumi), State University of Ceará, Fortaleza, Ceará, Brazil
| | - Rafael Rosseto
- Faculty of Veterinary Medicine, Laboratory of Ruminant Production and Nutrition (Lanuprumi), State University of Ceará, Fortaleza, Ceará, Brazil
| | - Francielli W S Cibin
- Faculty of Veterinary Medicine, Laboratory of Reproductive Biotechnology (Biotech), Federal University of Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Benner G Alves
- Institute of Biomedical Sciences, Laboratory of Reproductive Biology, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil
| | - Ana P R Rodrigues
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (Lamofopa), State University of Ceara, Fortaleza, Ceará, Brazil
| | - David Rondina
- Faculty of Veterinary Medicine, Laboratory of Ruminant Production and Nutrition (Lanuprumi), State University of Ceará, Fortaleza, Ceará, Brazil
| | - Eduardo L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois
| | - José R Figueiredo
- Faculty of Veterinary Medicine, Laboratory of Manipulation of Oocytes and Preantral Follicles (Lamofopa), State University of Ceara, Fortaleza, Ceará, Brazil
| |
Collapse
|
8
|
Ferreira ACA, Sá NAR, Cadenas J, Correia HHV, Guerreiro DD, Alves BG, Lima LF, Celestino JJH, Rodrigues APPR, Gastal EL, Figueiredo JR. Pituitary porcine FSH, and recombinant bovine and human FSH differentially affect growth and relative abundances of mRNA transcripts of preantral and early developing antral follicles in goats. Anim Reprod Sci 2020; 219:106461. [PMID: 32828391 DOI: 10.1016/j.anireprosci.2020.106461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/09/2023]
Abstract
Three different sources of FSH (porcine pituitary, pFSH; recombinant bovine, rbFSH; and recombinant human, rhFSH) were compared during in vitro culture of preantral and early antral follicles of goats for 18 days. Treatments were: base medium supplemented with no FSH (control), 10, 50, or 100 mIU/mL pFSH (pFSH10, pFSH50, and pFSH100, respectively), 100 ng/mL rbFSH (rbFSH), and 50 mIU/mL rhFSH (rhFSH). There were evaluations of follicle morphology, antrum formation, growth rate, estradiol production, oocyte viability and chromatin configuration, and follicle wall relative abundance of mRNA transcript for MMP-9, TIMP-2, CYP17, CYP19A1, FSHR, Insulin-R, and BAX/BCL-2 ratio. Follicle degeneration rates were similar among all treatment groups at the end of culturing. When there were treatments with pFSH, however, there was a lesser (P < 0.05) percentage of intact follicles and estradiol production, and greater (P < 0.05) extrusion rates. Furthermore, with only pFSH10 (antral follicles) and pFSH100 (preantral and antral follicles) treatments, there was a lesser (P < 0.05) follicle growth. For preantral follicles, when there was addition of pFSH10, pFSH100, and rhFSH there was lesser (P < 0.05) oocyte meiotic resumption compared to control and rbFSH treatments. For antral follicles, when there were treatments with rhFSH and pFSH10 there was greater (P = 0.08 - P < 0.05) oocyte maturation. In conclusion, the source of FSH differentially affected gene expression, as indicated by mRNA abundances, and follicular dynamics of preantral and antral follicles in vitro. Addition of FSH during the in vitro culture improved the developmental outcomes only for antral follicles.
Collapse
Affiliation(s)
- Anna Clara A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Naiza A R Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Jesús Cadenas
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Hudson H V Correia
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Denise D Guerreiro
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Benner G Alves
- Postgraduate Program in Animal Bioscience, Federal University of Goiás, Jataí, GO, Brazil
| | - Laritza F Lima
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Juliana J H Celestino
- Institute of Health Sciences, University of International Integration of Afro-Brazilian Lusophony, Acarape, CE, Brazil
| | - Ana Paula P R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Eduardo L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, United States
| | - Jose R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
9
|
Bezerra FTG, Lima FEO, Paulino LRFM, Silva BR, Silva AWB, Souza ALP, van den Hurk R, Silva JRV. In vitro culture of secondary follicles and prematuration of cumulus-oocyte complexes from antral follicles increase the levels of maturation-related transcripts in bovine oocytes. Mol Reprod Dev 2019; 86:1874-1886. [PMID: 31621988 DOI: 10.1002/mrd.23284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/02/2019] [Indexed: 11/11/2022]
Abstract
This study evaluates the levels of messenger RNA (mRNA) for eIF4E, PARN, H1FOO, cMOS, GDF9, and CCNB1 in oocytes from secondary and antral follicles at different stages of development. The effects of in vitro culture, in vitro prematuration, and in vitro maturation on the expression of these genes on oocytes were also analyzed. The results showed that mRNA levels for H1FOO, GDF9, and PARN were higher in oocytes from small, medium, and large antral follicles, respectively, than those seen in secondary follicles. Oocytes from small, medium, and large antral follicles had higher levels of CCNB1 than oocytes from secondary follicles. Oocytes from cultured secondary follicles had higher levels of GDF9, CMOS, PARN, eIF4E, CCNB1, and H1FOO than before culture. Prematured oocytes from small antral follicles had higher levels of mRNA for GDF9, PARN, and eIF4E than before culture. In addition, higher levels of cMOS and H1FOO were identified in prematured oocytes from medium antral follicles. In conclusion, follicular growth is associated with an increase in the expression of H1FOO, GDF9, CCNB1, and PARN. The culture of secondary follicles, prematuration, and maturation of oocytes from antral follicles increase the expression of eIF4E, PARN, H1FOO, cMOS, GDF9, and CCNB1.
Collapse
Affiliation(s)
- Francisco Taiã G Bezerra
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Francisco Edilcarlos O Lima
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Laís Rayani F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Anderson W B Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Ana Liza P Souza
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Robert van den Hurk
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - José Roberto V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| |
Collapse
|
10
|
Quan Q, Zheng Q, Ling Y, Fang F, Chu M, Zhang X, Liu Y, Li W. Comparative analysis of differentially expressed genes between the ovaries from pregnant and nonpregnant goats using RNA-Seq. ACTA ACUST UNITED AC 2019; 26:3. [PMID: 31080783 PMCID: PMC6503366 DOI: 10.1186/s40709-019-0095-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
Abstract
Background A multitude of genes tightly regulate ovarian follicular development and hormone secretion. These complex and coordinated biological processes are altered during pregnancy. In order to further understand the regulatory role of these genes during pregnancy, it is important to screen the differentially expressed genes (DEGs) in the ovaries of pregnant and nonpregnant mammals. To detect the genes associated with the development of pregnancy in goats, DEGs from the ovaries from pregnant and nonpregnant Anhui white goats (pAWGs and nAWGs, respectively) were analyzed using RNA sequencing technology (RNA-Seq). Results In this study, 13,676,394 and 13,549,560 clean reads were generated from pAWGs and nAWGs, respectively, and 1724 DEGs were identified between the two libraries. Compared with nAWGs, 1033 genes were upregulated and 691 genes were downregulated in pAWGs, including PGR, PRLR, STAR and CYP19A1, which play important roles in goat reproduction. Gene Ontology analysis showed that the DEGs were enriched for 49 functional GO terms. Kyoto Encyclopedia of Genes and Genomes analysis revealed that 397 DEGs were significantly enriched in 13 pathways, including “cell cycle”, “cytokine–cytokine receptor interaction” and “steroid biosynthesis”, suggesting that the genes may be associated with cell cycle regulation, follicular development and hormone secretion to regulate the reproduction process. Additionally, quantitative real-time PCR was used to verify the reliability of the RNA-Seq data. Conclusions The data obtained in this work enrich the genetic resources of goat and provide a further understanding of the complex molecular regulatory mechanisms occurring during the development of pregnancy and reproduction in goats. The DEGs screened in this study may play an important role in follicular development and hormone secretion and they would provide scientific basis for related research in the future. Electronic supplementary material The online version of this article (10.1186/s40709-019-0095-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qing Quan
- 1College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 Anhui China.,3College of Economy and Technology, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Qi Zheng
- 1College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 Anhui China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, 230036 Anhui China
| | - Yinghui Ling
- 1College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 Anhui China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, 230036 Anhui China
| | - Fugui Fang
- 1College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 Anhui China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, 230036 Anhui China
| | - Mingxing Chu
- 4Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, CAAS, Beijing, 100193 China
| | - Xiaorong Zhang
- 1College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036 Anhui China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, 230036 Anhui China
| | - Yong Liu
- 5Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037 China
| | - Wenyong Li
- 5Key Laboratory of Embryo Development and Reproductive Regulation of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037 China
| |
Collapse
|
11
|
Supplementation of in vitro culture medium with FSH to grow follicles and mature oocytes can be replaced by extracts of Justicia insularis. PLoS One 2018; 13:e0208760. [PMID: 30532263 PMCID: PMC6286020 DOI: 10.1371/journal.pone.0208760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/20/2018] [Indexed: 12/04/2022] Open
Abstract
The present study evaluated the effect of supplementing in vitro culture medium with J. insularis compared to FSH on isolated secondary follicles and in vitro maturation of oocytes from those follicles. Secondary follicles were isolated from sheep ovaries and individually cultured for 18 days in α-MEM+ (Control), α-MEM+ supplemented with 100 ng/mL recombinant bovine follicle stimulating hormone (FSH) or with 0.3, 1.25, or 2.5 mg/mL of J. insularis extract (JI0.3, JI1.25, and JI2.5, respectively). Culture medium collected every 2 days was used to measure ROS levels. At the end of the culture period, cumulus oocytes complex (COCs) were collected and matured in vitro. Follicular walls were used for mRNA quantitation. JI0.3 led to a higher (P < 0.05) percentages of intact follicles than other groups after 18 days of culture. While follicular diameter remained unchanged from Day 6 onwards with JI0.3 and FSH, percentages of antral cavity formation were higher (P < 0.05) with JI0.3 at Day 6 than in all other treatments. No differences were observed between controls and treatment groups regarding ROS levels and mRNA expression of genes. Viability of resulting oocytes was higher (P < 0.05) in JI0.3 compared to FSH. Interestingly, in control experiment, supplementation of maturation medium with JI0.3 led to higher (P < 0.05) percentages of metaphase II compared to controls. Although more validations will be needed, it seems that this natural extract could be used as a cheap and easily available alternative to commercial FSH.
Collapse
|
12
|
Goat in vitro follicular response to insulin concentration is affected by base medium and follicular stage. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Ferreira ACA, Cadenas J, Sá NAR, Correia HHV, Guerreiro DD, Lobo CH, Alves BG, Maside C, Gastal EL, Rodrigues APR, Figueiredo JR. In vitro culture of isolated preantral and antral follicles of goats using human recombinant FSH: Concentration-dependent and stage-specific effect. Anim Reprod Sci 2018; 196:120-129. [PMID: 30049427 DOI: 10.1016/j.anireprosci.2018.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/28/2018] [Accepted: 07/16/2018] [Indexed: 01/05/2023]
Abstract
The present study aimed to investigate a concentration-response curve of human recombinant FSH (hrFSH) for in vitro culture of isolated preantral and early antral follicles of goats. Isolated follicles were cultured for 18 days using the following treatments: basic culture medium (control); or control medium supplemented with 10, 50, and 100 mIU/mL of hrFSH. At the end of the culture, cumulus-oocyte complexes were recovered and subjected to in vitro maturation. The following endpoints were evaluated: follicle morphology, growth rate and antrum formation, oocyte viability and meiotic stage, and estradiol production, as well as relative expression of FSH receptor (FSHR), and steroidogenic enzyme (3β-HSD, CYP17, and CYP19A1) genes. In antral follicles, the FSH addition at 50 mIU/mL increased follicular diameter and growth rate, percentage of fully developed oocytes, and oocyte diameter (P < 0.05), and tended to increase the percentage of MII oocytes when compared to the control (P = 0.07). With preantral follicles, FSH addition at 100 mIU/mL increased relative abundance of mRNA for CYP19A1 when compared to the control (P < 0.05). At the same FSH concentrations of 100 and 50 mIU/mL, there was a greater relatively abundance of mRNA for 3β-HSD and CYP17 in preantral than in antral follicles (P < 0.05). For preantral and antral follicle comparisons when the same treatments were imposed, there were greater concentrations of estradiol for antral follicles (P < 0.05). In conclusion, hrFSH enhanced in a concentration-dependent manner the in vitro development of caprine antral follicles; however, there was no positive effect in the culture of preantral follicles.
Collapse
Affiliation(s)
- Anna Clara A Ferreira
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Jesús Cadenas
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Naiza A R Sá
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Hudson H V Correia
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Denise D Guerreiro
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - Carlos H Lobo
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Benner G Alves
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Carolina Maside
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - Eduardo L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, IL, United States
| | - Ana Paula R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil
| | - José Ricardo Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
14
|
Sá NAR, Bruno JB, Guerreiro DD, Cadenas J, Alves BG, Cibin FWS, Leal-Cardoso JH, Gastal EL, Figueiredo JR. Anethole reduces oxidative stress and improves in vitro survival and activation of primordial follicles. ACTA ACUST UNITED AC 2018; 51:e7129. [PMID: 29846431 PMCID: PMC5999067 DOI: 10.1590/1414-431x20187129] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 04/13/2018] [Indexed: 01/16/2023]
Abstract
Primordial follicles, the main source of oocytes in the ovary, are essential for
the maintenance of fertility throughout the reproductive lifespan. To the best
of our knowledge, there are no reports describing the effect of anethole on this
important ovarian follicle population. The aim of the study was to investigate
the effect of different anethole concentrations on the in vitro
culture of caprine preantral follicles enclosed in ovarian tissue. Randomized
ovarian fragments were fixed immediately (non-cultured treatment) or distributed
into five treatments: α-MEM+ (cultured control), α-MEM+
supplemented with ascorbic acid at 50 μg/mL (AA), and anethole at 30 (AN30), 300
(AN300), or 2000 µg/mL (AN2000), for 1 or 7 days. After 7 days of culture, a
significantly higher percentage of morphologically normal follicles was observed
when anethole at 2000 μg/mL was used. For both culture times, a greater
percentage of growing follicles was observed with the AN30 treatment compared to
AA and AN2000 treatments. Anethole at 30 and 2000 µg/mL concentrations at days 1
and 7 of culture resulted in significantly larger follicular diameter than in
the cultured control treatment. Anethole at 30 µg/mL concentration at day 7
showed significantly greater oocyte diameter than the other treatments, except
when compared to the AN2000 treatment. At day 7 of culture, levels of reactive
oxygen species (ROS) were significantly lower in the AN30 treatment than the
other treatments. In conclusion, supplementation of culture medium with anethole
improves survival and early follicle development at different concentrations in
the caprine species.
Collapse
Affiliation(s)
- N A R Sá
- Laboratório de Manipulação de Oócitos e Folículos Pré-antrais (LAMOFOPA), Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - J B Bruno
- Laboratório de Manipulação de Oócitos e Folículos Pré-antrais (LAMOFOPA), Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - D D Guerreiro
- Laboratório de Manipulação de Oócitos e Folículos Pré-antrais (LAMOFOPA), Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - J Cadenas
- Laboratório de Manipulação de Oócitos e Folículos Pré-antrais (LAMOFOPA), Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - B G Alves
- Laboratório de Biologia da Reprodução, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | - F W S Cibin
- Laboratório de Biotecnologia da Reprodução (Biotech), Campus Uruguaiana, Universidade Federal do Pampa, Uruguaiana, RS, Brasil
| | - J H Leal-Cardoso
- Laboratório de Eletrofisiologia (LEF), Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| | - E L Gastal
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, Illinois, USA
| | - J R Figueiredo
- Laboratório de Manipulação de Oócitos e Folículos Pré-antrais (LAMOFOPA), Faculdade de Medicina Veterinária, Universidade Estadual do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
15
|
Zhu B, Pardeshi L, Chen Y, Ge W. Transcriptomic Analysis for Differentially Expressed Genes in Ovarian Follicle Activation in the Zebrafish. Front Endocrinol (Lausanne) 2018; 9:593. [PMID: 30364302 PMCID: PMC6193065 DOI: 10.3389/fendo.2018.00593] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/18/2018] [Indexed: 12/30/2022] Open
Abstract
In teleosts, the onset of puberty in females is marked by the appearance of the first wave of pre-vitellogenic (PV) follicles from the pool of primary growth (PG) follicles (follicle activation) in the ovary during sexual maturation. To understand the mechanisms underlying follicle activation and therefore puberty onset, we undertook this transcriptomic study to investigate gene expression profiles in the event. Our analysis revealed a total of 2,027 up-regulated and 859 down-regulated genes during the PG-PV transition. Gene Ontology (GO) analysis showed that in addition to basic cellular functions such as gene transcription, cell differentiation, and cell migration, other biological processes such as steroidogenesis, cell signaling and angiogenesis were also enriched in up-regulated genes; by comparison, some processes were down-regulated including piRNA metabolism, gene silencing and proteolysis. Further Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis identified a variety of signaling pathways that might play pivotal roles in PG-PV transition, including MAPK, TGF-β, Hedgehog, FoxO, VEGF, Jak-STAT, and phosphatidylinositol signaling pathways. Other pathways of particular interest included endocytosis and glycosaminoglycan biosynthesis. We also analyzed expression changes of genes expressed in different compartments viz. oocytes and follicle cells. Interestingly, most oocyte-specific genes remained unchanged in expression during follicle activation whereas a great number of genes specifically expressed in the follicle cells showed significant changes in expression. Overall, this study reported a comprehensive analysis for genes, biological processes and pathways involved in follicle activation, which also marks female puberty onset in the zebrafish when occurring for the first time in sexual maturation.
Collapse
Affiliation(s)
- Bo Zhu
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Lakhansing Pardeshi
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Yingying Chen
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, China
- *Correspondence: Wei Ge ;
| |
Collapse
|
16
|
Correia H, Vieira L, Maside C, Paes V, Silva R, Alves B, Santos F, Apgar G, Rodrigues A, Figueiredo J. Ovarian transport temperature (4 vs 33 °C) impacts differently the in vitro development of isolated goat preantral and antral follicles. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Lima LF, Rocha RMP, Duarte ABG, Brito IR, Silva GM, Rodrigues GQ, Nunes-Pinheiro DCS, Sales AD, Moura AA, Wheeler MB, Rodrigues APR, Campello CC, Figueiredo JR. Unexpected effect of the vehicle (grain ethanol) of homeopathic FSH on the in vitro survival and development of isolated ovine preantral follicles. Microsc Res Tech 2017; 80:406-418. [PMID: 27921341 DOI: 10.1002/jemt.22810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/20/2016] [Accepted: 11/08/2016] [Indexed: 12/25/2022]
Abstract
The aims of this study were to investigate the effects of medium replacement system (experiment I) and of FSH presentations (homeopathic - FSH 6cH and allopathic FSH - rFSH; experiment II) on the in vitro development, hormone production and gene expression of isolated ovine preantral follicles cultured for 6 days. In experiment I, secondary follicles were cultured in the α-MEM+ supplemented with FSH 6cH (0.05 fg/ml) or recombinant bovine FSH (100 ng/ml) without/with daily medium addition. The homeopathic FSH treatments with/without medium addition improved (p < .05) follicular development compared to rFSH100 treatment without addition. FSH 6cH with addition showed the highest (p < .05) estradiol production. To verify whether the effects of homeopathic FSH were not due to its vehicle, experiment II was performed. The α-MEM+ was supplemented or not with alcohol (0.2% grain ethanol, v/v), FSH 6cH or rFSH100 with daily medium addition. Surprisingly, we found that all treatments improved follicular development compared to the α-MEM+ (p < .05). Moreover, homeopathic FSH was similar to the other treatments including its vehicle. In conclusion, its vehicle (ethanol) causes the effect of homeopathic FSH on in vitro development of isolated ovine preantral follicles.
Collapse
Affiliation(s)
- Lartiza F Lima
- Laboratory of Manipulation of Oocytes and Preantral Follicles Department of Faculty of Veterinary, State University of Ceara, Itaperi Campus, Fortaleza, CE, 60740-903, Brazil
| | - Rebeca M P Rocha
- Laboratory of Manipulation of Oocytes and Preantral Follicles Department of Faculty of Veterinary, State University of Ceara, Itaperi Campus, Fortaleza, CE, 60740-903, Brazil
| | - Ana Beatriz G Duarte
- Laboratory of Manipulation of Oocytes and Preantral Follicles Department of Faculty of Veterinary, State University of Ceara, Itaperi Campus, Fortaleza, CE, 60740-903, Brazil
| | - Ivina R Brito
- Laboratory of Manipulation of Oocytes and Preantral Follicles Department of Faculty of Veterinary, State University of Ceara, Itaperi Campus, Fortaleza, CE, 60740-903, Brazil
| | - Gerlane M Silva
- Laboratory of Manipulation of Oocytes and Preantral Follicles Department of Faculty of Veterinary, State University of Ceara, Itaperi Campus, Fortaleza, CE, 60740-903, Brazil
| | - Giovanna Q Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles Department of Faculty of Veterinary, State University of Ceara, Itaperi Campus, Fortaleza, CE, 60740-903, Brazil
| | - Diana C S Nunes-Pinheiro
- Laboratory of Manipulation of Oocytes and Preantral Follicles Department of Faculty of Veterinary, State University of Ceara, Itaperi Campus, Fortaleza, CE, 60740-903, Brazil
| | - Antônia D Sales
- Laboratory of Manipulation of Oocytes and Preantral Follicles Department of Faculty of Veterinary, State University of Ceara, Itaperi Campus, Fortaleza, CE, 60740-903, Brazil
| | - Arlindo A Moura
- Group of Research in Biology of Reproduction - Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Matthew B Wheeler
- Department of Animal Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Ana Paula R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles Department of Faculty of Veterinary, State University of Ceara, Itaperi Campus, Fortaleza, CE, 60740-903, Brazil
| | - Cláudio C Campello
- Laboratory of Manipulation of Oocytes and Preantral Follicles Department of Faculty of Veterinary, State University of Ceara, Itaperi Campus, Fortaleza, CE, 60740-903, Brazil
| | - José Ricardo Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles Department of Faculty of Veterinary, State University of Ceara, Itaperi Campus, Fortaleza, CE, 60740-903, Brazil
| |
Collapse
|
18
|
Transcriptome-Wide Analysis Reveals the Role of PPAR γ Controlling the Lipid Metabolism in Goat Mammary Epithelial Cells. PPAR Res 2016; 2016:9195680. [PMID: 27818678 PMCID: PMC5081438 DOI: 10.1155/2016/9195680] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/13/2016] [Accepted: 07/25/2016] [Indexed: 11/17/2022] Open
Abstract
To explore the large-scale effect of peroxisome proliferator-activated receptor γ (PPARG) in goat mammary epithelial cells (GMEC), an oligonucleotide microarray platform was used for transcriptome profiling in cells overexpressing PPARG and incubated with or without rosiglitazone (ROSI, a PPARγ agonist). A total of 1143 differentially expressed genes (DEG) due to treatment were detected. The Dynamic Impact Approach (DIA) analysis uncovered the most impacted and induced pathways “fatty acid elongation in mitochondria,” “glycosaminoglycan biosynthesis-keratan sulfate,” and “pentose phosphate pathway.” The data highlights the central role of PPARG in milk fatty acid metabolism via controlling fatty acid elongation, biosynthesis of unsaturated fatty acid, lipid formation, and lipid secretion; furthermore, its role related to carbohydrate metabolism promotes the production of intermediates required for milk fat synthesis. Analysis of upstream regulators indicated that PPARG participates in multiple physiological processes via controlling or cross talking with other key transcription factors such as PPARD and NR1H3 (also known as liver-X-receptor-α). This transcriptome-wide analysis represents the first attempt to better understand the biological relevance of PPARG expression in ruminant mammary cells. Overall, the data underscored the importance of PPARG in mammary lipid metabolism and transcription factor control.
Collapse
|
19
|
Cadenas J, Leiva-Revilla J, Vieira LA, Apolloni LB, Aguiar FLN, Alves BG, Lobo CH, Rodrigues APR, Apgar GA, Smitz J, Figueiredo JR, Maside C. Caprine ovarian follicle requirements differ between preantral and early antral stages after IVC in medium supplemented with GH and VEGF alone or in combination. Theriogenology 2016; 87:321-332. [PMID: 27729112 DOI: 10.1016/j.theriogenology.2016.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/23/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to evaluate the effect of growth hormone (GH) and vascular endothelial growth factor (VEGF) added alone, sequentially or in combination, in the presence of insulin at physiological concentration (10 ng/mL) on the IVC of two different follicular categories: preantral (experiment 1; Exp.1) and early antral (experiment 2; Exp.2). Isolated follicles were individually cultured for 24 (Exp.1) and 18 days (Exp.2) in the following treatments: αMEM+ (Control), or Control medium supplemented with 50 ng/mL GH (GH), 100 ng/mL VEGF (VEGF), the combination of both (GH + VEGF), GH during the first 12 days and VEGF from Day 12 until the end of the culture (GH/VEGF) and vice versa (VEGF/GH). At the end of the culture, cumulus-oocyte complexes from in vitro-grown follicles were recovered and subjected to IVM. The following end points were evaluated: Follicle morphology, growth rates and antrum formation, production of estradiol, progesterone and testosterone, oocyte viability and meiotic stage, as well as relative expression of LHR, Amh, HAS2, PTGS2, CYP17, CYP19A1, and 3βHSD. A considerable amount of viable fully grown oocytes were recovered after the IVC of early antral follicles in all treatments. Nevertheless, the GH treatment presented the highest percentage of fully grown oocytes (60%), mean oocyte diameter (117.74 ± 2.61 μm), and meiotic resumption (50%). Furthermore, GH treatment produced higher (P < 0.05) rates of metaphase II oocytes than all the other treatments, and similar LHR, Amh, and PTGS2 transcript levels to in vivo. Contrary to early antral follicles, preantral follicles were not affected by medium supplementation. In conclusion, the addition of GH to a culture medium containing physiological concentrations of insulin improves oocyte growth and maturation after the IVC of goat early antral follicles.
Collapse
Affiliation(s)
- J Cadenas
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - J Leiva-Revilla
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - L A Vieira
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - L B Apolloni
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - F L N Aguiar
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - B G Alves
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - C H Lobo
- Laboratory of Animal Physiology, Department of Animal Science, Federal University of Ceará, Fortaleza, CE, Brazil
| | - A P R Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| | - G A Apgar
- Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale, USA
| | - J Smitz
- Follicle Biology Laboratory, Center for Reproductive Medicine, UZ Brussel, Brussels, Belgium
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil.
| | - C Maside
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
20
|
Silva JRV, van den Hurk R, Figueiredo JR. Ovarian follicle development in vitro and oocyte competence: advances and challenges for farm animals. Domest Anim Endocrinol 2016; 55:123-35. [PMID: 26836404 DOI: 10.1016/j.domaniend.2015.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/14/2015] [Accepted: 12/31/2015] [Indexed: 10/22/2022]
Abstract
During the last 2 decades, research on in vitro preantral follicle growth and oocyte maturation has delivered fascinating advances concerning the knowledge of processes regulating follicle growth and the developmental competence of oocytes. These advances include (1) information about the role of several hormones and growth factors on in vitro activation of primordial follicles; (2) increased understanding of the intracellular pathway involved in the initiation of primordial follicle growth; (3) the growth of primary and secondary follicles up to antral stages; and (4) production of embryos from oocytes from in vitro grown preantral follicles. This review article describes these advances, especially in regard farm animals, and discusses the reasons that limit embryo production from oocytes derived from preantral follicles cultured in vitro.
Collapse
Affiliation(s)
- J R V Silva
- Biotechnology Nucleus of Sobral, Federal University of Ceara, Sobral, CE 62042-280, Brazil.
| | - R van den Hurk
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht 80151, The Netherlands
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Preantral Follicles, Faculty of Veterinary, State University of Ceara, Fortaleza, CE 62700-000, Brazil
| |
Collapse
|
21
|
Bonnet A, Servin B, Mulsant P, Mandon-Pepin B. Spatio-Temporal Gene Expression Profiling during In Vivo Early Ovarian Folliculogenesis: Integrated Transcriptomic Study and Molecular Signature of Early Follicular Growth. PLoS One 2015; 10:e0141482. [PMID: 26540452 PMCID: PMC4634757 DOI: 10.1371/journal.pone.0141482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 10/08/2015] [Indexed: 11/19/2022] Open
Abstract
Background The successful achievement of early ovarian folliculogenesis is important for fertility and reproductive life span. This complex biological process requires the appropriate expression of numerous genes at each developmental stage, in each follicular compartment. Relatively little is known at present about the molecular mechanisms that drive this process, and most gene expression studies have been performed in rodents and without considering the different follicular compartments. Results We used RNA-seq technology to explore the sheep transcriptome during early ovarian follicular development in the two main compartments: oocytes and granulosa cells. We documented the differential expression of 3,015 genes during this phase and described the gene expression dynamic specific to these compartments. We showed that important steps occurred during primary/secondary transition in sheep. We also described the in vivo molecular course of a number of pathways. In oocytes, these pathways documented the chronology of the acquisition of meiotic competence, migration and cellular organization, while in granulosa cells they concerned adhesion, the formation of cytoplasmic projections and steroid synthesis. This study proposes the involvement in this process of several members of the integrin and BMP families. The expression of genes such as Kruppel-like factor 9 (KLF9) and BMP binding endothelial regulator (BMPER) was highlighted for the first time during early follicular development, and their proteins were also predicted to be involved in gene regulation. Finally, we selected a data set of 24 biomarkers that enabled the discrimination of early follicular stages and thus offer a molecular signature of early follicular growth. This set of biomarkers includes known genes such as SPO11 meiotic protein covalently bound to DSB (SPO11), bone morphogenetic protein 15 (BMP15) and WEE1 homolog 2 (S. pombe)(WEE2) which play critical roles in follicular development but other biomarkers are also likely to play significant roles in this process. Conclusions To our knowledge, this is the first in vivo spatio-temporal exploration of transcriptomes derived from early follicles in sheep.
Collapse
Affiliation(s)
- Agnes Bonnet
- INRA, UMR 1388 GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31076 Toulouse, France
- * E-mail:
| | - Bertrand Servin
- INRA, UMR 1388 GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31076 Toulouse, France
| | - Philippe Mulsant
- INRA, UMR 1388 GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31326 Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, GenPhySE (Génétique, Physiologie et Systèmes d’Elevage), F-31076 Toulouse, France
| | - Beatrice Mandon-Pepin
- INRA, UMR1198 Biologie du Développement et de la Reproduction, F-78350 Jouy-en-Josas, France
| |
Collapse
|
22
|
Martins FS, Saraiva MVA, Magalhães-Padilha DM, Almeida AP, Celestino JJH, Padilha RT, Cunha RMS, Silva JRV, Campello CC, Figueiredo JR. Presence of growth hormone receptor (GH-R) mRNA and protein in goat ovarian follicles and improvement of in vitro preantral follicle survival and development with GH. Theriogenology 2014; 82:27-35. [PMID: 24725418 DOI: 10.1016/j.theriogenology.2014.02.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/19/2014] [Accepted: 02/19/2014] [Indexed: 11/25/2022]
Abstract
This study aimed to demonstrate the expression of growth hormone receptor (GH-R) mRNA and protein in goat ovarian follicles in order to investigate the effects of GH on the survival and development of preantral follicles. The ovaries were processed for the isolation of follicles to study GH-R mRNA expression or to localization of GH-R by immunohistochemical analysis. Pieces of ovarian cortex were cultured for 7 days in minimum essential medium(+) (MEM(+)) in the presence or absence of GH at different concentrations (1, 10, 50, 100, and 200 ng/mL). High expression levels of GH-R mRNA were observed in granulosa/theca cells from large antral follicles. However, preantral follicles do not express mRNA for GH-R. Immunohistochemistry demonstrated that the GH-R protein was expressed in the oocytes/granulosa cells of antral follicles, but any protein expression was observed in preantral follicles. The highest (P < 0.05) rate of normal follicles and intermediate follicles was observed after 7 days in MEM(+) plus 10 ng/mL GH (70%). In conclusion, GH-R mRNA and protein are expressed in caprine antral follicles, but not in preantral follicles. Moreover, GH maintains the survival of goat preantral follicles and promotes the development of primordial follicles.
Collapse
Affiliation(s)
- F S Martins
- Laboratory of Manipulation of Oocytes Enclosed in Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Fortaleza, Brazil
| | - M V A Saraiva
- Laboratory of Manipulation of Oocytes Enclosed in Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Fortaleza, Brazil
| | | | - A P Almeida
- Laboratory of Manipulation of Oocytes Enclosed in Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Fortaleza, Brazil
| | - J J H Celestino
- Laboratory of Manipulation of Oocytes Enclosed in Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Fortaleza, Brazil
| | - R T Padilha
- Potiguar University/Laureate International Universities, Natal, Brazil
| | - R M S Cunha
- Biotechnology Nucleus of Sobral (NUBIS)-Federal University of Ceará, Sobral, Brazil
| | - J R V Silva
- Biotechnology Nucleus of Sobral (NUBIS)-Federal University of Ceará, Sobral, Brazil
| | - C C Campello
- Laboratory of Manipulation of Oocytes Enclosed in Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Fortaleza, Brazil
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes Enclosed in Preantral Follicles (LAMOFOPA), Veterinary Faculty, State University of Ceará, Fortaleza, Brazil
| |
Collapse
|