1
|
Yamatoya K, Kurosawa M, Hirose M, Miura Y, Taka H, Nakano T, Hasegawa A, Kagami K, Yoshitake H, Goto K, Ueno T, Fujiwara H, Shinkai Y, Kan FWK, Ogura A, Araki Y. The fluid factor OVGP1 provides a significant oviductal microenvironment for the reproductive process in golden hamster†. Biol Reprod 2024; 110:465-475. [PMID: 37995271 PMCID: PMC10941085 DOI: 10.1093/biolre/ioad159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/23/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
The mammalian oviductal lumen is a specialized chamber that provides an environment that strictly regulates fertilization and early embryogenesis, but the regulatory mechanisms to gametes and zygotes are unclear. We evaluated the oviductal regulation of early embryonic development using Ovgp1 (encoding an oviductal humoral factor, OVGP1)-knockout golden hamsters. The experimental results revealed the following: (1) female Ovgp1-knockout hamsters failed to produce litters; (2) in the oviducts of Ovgp1-knockout animals, fertilized eggs were sometimes identified, but their morphology showed abnormal features; (3) the number of implantations in the Ovgp1-knockout females was low; (4) even if implantations occurred, the embryos developed abnormally and eventually died; and (5) Ovgp1-knockout female ovaries transferred to wild-type females resulted in the production of Ovgp1-knockout egg-derived OVGP1-null litters, but the reverse experiment did not. These results suggest that OVGP1-mediated physiological events are crucial for reproductive process in vivo, from fertilization to early embryonic development. This animal model shows that the fate of the zygote is determined not only genetically, but also by the surrounding oviductal microenvironment.
Collapse
Affiliation(s)
- Kenji Yamatoya
- Institute for Environmental & Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Masaru Kurosawa
- Institute for Environmental & Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Michiko Hirose
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics & Biomolecular Sciences, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hikari Taka
- Laboratory of Proteomics & Biomolecular Sciences, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoyuki Nakano
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata, Japan
| | - Akiko Hasegawa
- Department of Obstetrics & Gynecology, Hyogo Medical University, Hyogo, Japan
| | - Kyosuke Kagami
- Department of Obstetrics & Gynecology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Hiroshi Yoshitake
- Institute for Environmental & Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata, Japan
| | - Takashi Ueno
- Laboratory of Proteomics & Biomolecular Sciences, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics & Gynecology, Kanazawa University Graduate School of Medical Sciences, Ishikawa, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Saitama, Japan
| | - Frederick W K Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, ON, Canada
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Yoshihiko Araki
- Institute for Environmental & Gender-Specific Medicine, Juntendo University Graduate School of Medicine, Chiba, Japan
- Division of Microbiology and Immunology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
- Department of Obstetrics & Gynecology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
2
|
Zhao Y, Vanderkooi S, Kan FWK. The role of oviduct-specific glycoprotein (OVGP1) in modulating biological functions of gametes and embryos. Histochem Cell Biol 2022; 157:371-388. [PMID: 34993641 PMCID: PMC8979936 DOI: 10.1007/s00418-021-02065-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 01/13/2023]
Abstract
Diverse lines of evidence indicate that the mammalian oviduct makes important contributions to the complex process of reproduction other than being simply a conduit for the transport of gametes and embryos. The cumulative synthesis and transport of proteins secreted by oviductal secretory cells into the oviductal lumen create a microenvironment supporting important reproductive events, including sperm capacitation, fertilization, and early embryo development. Among the components that have been identified in the oviductal fluid is a family of glycosylated proteins known collectively as oviduct-specific glycoprotein (OVGP1) or oviductin. OVGP1 has been identified in several mammalian species, including humans. The present review summarizes the work carried out, in various mammalian species, by many research groups revealing the synthesis and secretion of OVGP1, its fate in the female reproductive tract upon secretion by the oviductal epithelium, and its role in modulating biological functions of gametes and embryos. The production and functions of recombinant human OVGP1 and recombinant OVGP1 of other mammalian species are also discussed. Some of the findings obtained with immunocytochemistry will be highlighted in the present review. It is hoped that the findings obtained from recent studies carried out with recombinant OVGP1 from various species will rekindle researchers’ interest in pursuing further the role of the oviductal microenvironment, of which OVGP1 is a major component, in contributing to the successful occurrence of early reproductive events, and the potential use of OVGP1 in improving the current assisted reproductive technology in alleviating infertility.
Collapse
Affiliation(s)
- Yuewen Zhao
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, K7L 3N, Canada
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Fertility Center, Yale University, Orange, CT, 06477, USA
| | - Sydney Vanderkooi
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, K7L 3N, Canada
| | - Frederick W K Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, ON, K7L 3N, Canada.
| |
Collapse
|
3
|
González-Brusi L, Algarra B, Moros-Nicolás C, Izquierdo-Rico MJ, Avilés M, Jiménez-Movilla M. A Comparative View on the Oviductal Environment during the Periconception Period. Biomolecules 2020; 10:E1690. [PMID: 33348856 PMCID: PMC7766821 DOI: 10.3390/biom10121690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
The oviduct plays important roles in reproductive events: sperm reservoir formation, final gamete maturation, fertilization and early embryo development. It is well known that the oviductal environment affects gametes and embryos and, ultimately, the health of offspring, so that in vivo embryos are better in terms of morphology, cryotolerance, pregnancy rates or epigenetic profile than those obtained in vitro. The deciphering of embryo-maternal interaction in the oviduct may provide a better understanding of the embryo needs during the periconception period to improve reproductive efficiency. Here, we perform a comparative analysis among species of oviductal gene expression related to embryonic development during its journey through the oviduct, as described to date. Cross-talk communication between the oviduct environment and embryo will be studied by analyses of the secreted or exosomal proteins of the oviduct and the presence of receptors in the membrane of the embryo blastomeres. Finally, we review the data that are available to date on the expression and characterization of the most abundant protein in the oviduct, oviductin (OVGP1), highlighting its fundamental role in fertilization and embryonic development.
Collapse
Affiliation(s)
| | | | | | | | - Manuel Avilés
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, 30100 Murcia, Spain; (L.G.-B.); (B.A.); (C.M.-N.); (M.J.I.-R.)
| | - Maria Jiménez-Movilla
- Department of Cell Biology and Histology, School of Medicine, University of Murcia, Campus Mare Nostrum and IMIB-Arrixaca, 30100 Murcia, Spain; (L.G.-B.); (B.A.); (C.M.-N.); (M.J.I.-R.)
| |
Collapse
|
4
|
Porcine oviductal extracellular vesicles interact with gametes and regulate sperm motility and survival. Theriogenology 2020; 155:240-255. [PMID: 32791377 DOI: 10.1016/j.theriogenology.2020.05.043] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/20/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022]
Abstract
Once in the female reproductive tract, spermatozoa undergo several modifications to acquire their complete fertilizing ability. Interactions between the oviductal fluid (OF) and gametes contribute to a successful fertilization. Recently, oviductal extracellular vesicles have been identified as an important part of the OF but their interactions with gametes are not fully understood. In the present study, we aim at determining the patterns of interactions between porcine oviductal extracellular vesicles (poEVs) and gametes (spermatozoa and oocytes). Moreover, we evaluate the effect of poEVs on sperm survival and motility to better understand the mechanisms by which poEVs modulate the processes leading to fertilization. Evaluation of poEVs uptake by spermatozoa showed that poEVs bind to spermatozoa in a time and dose dependent manner. Co-incubation of spermatozoa with poEVs (0.2 μg/μL) increased fresh and frozen sperm survival after 6 and 17 h, respectively. By contrast, poEVs supplementation reduced the total and progressive sperm motility after 2 h. Additionally, we demonstrated that poEVs interacted with the cumulus cells, zona pellucida (ZP) and oocyte, being able to cross the ZP. Besides, we showed that poEVs delivered their cargo into the oocyte, by the transfer of OVGP1 protein. In conclusion, our results demonstrated that poEVs are able to interact with both gametes. Besides, the findings from the present study showed that poEVs may participate in maintaining sperm viability and reducing motility, functions associated with the oviduct sperm reservoir. Although further investigations are needed, our results indicate that poEVs can be a potential tool to improve sperm life span during sperm handling and enhance IVF outcomes.
Collapse
|
5
|
Choudhary S, Janjanam J, Kumar S, Kaushik J, Mohanty A. Structural and functional characterization of buffalo oviduct-specific glycoprotein (OVGP1) expressed during estrous cycle. Biosci Rep 2019; 39:BSR20191501. [PMID: 31763672 PMCID: PMC6904773 DOI: 10.1042/bsr20191501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 01/10/2023] Open
Abstract
Oviduct-specific glycoprotein (OVGP1) is a high molecular weight chitinase-like protein belonging to GH18 family. It is secreted by non-ciliated epithelial cells of oviduct during estrous cycle providing an essential milieu for fertilization and embryo development. The present study reports the characterization of buffalo OVGP1 through structural modeling, carbohydrate-binding properties and evolutionary analysis. Structural model displayed the typical fold of GH18 family members till the boundary of chitinase-like domain further consisting of a large (β/α)8 TIM barrel sub-domain and a small (α+β) sub-domain. Two critical catalytic residues were found substituted in the catalytic centre (Asp to Phe118, Glu to Leu120) compared with the active chitinase. The carbohydrate-binding groove in TIM barrel was lined with various conserved aromatic residues. Molecular docking with different sugars revealed the involvement of various residues in hydrogen-bonding and non-bonded contacts. Most of the substrate-binding residues were conserved except for a few replacements (Ser13, Lys48, Asp49, Pro50, Asp167, Glu199, Gln272 and Phe275) in comparison with other GH18 members. The residues Trp10, Trp79, Asn80, Gln272, Phe275 and Trp334 were involved in recognition of all six ligands. The α+β sub-domain participated in sugar-binding through Thr270, Gln272, Tyr242 and Phe275. The binding assays revealed significant sugar-binding with purified native and recombinant OVGP1. Phylogenetic analysis revealed that OVGP1 was closely related to AMCases followed by other CLPs and evolution of OVGP1 occurred through several gene duplications. This is the first study describing the structural characteristics of OVGP1 that will further help to understand its interaction with gametes to perform crucial reproductive functions.
Collapse
Affiliation(s)
- Suman Choudhary
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Jagadeesh Janjanam
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, U.S.A
| | - Sudarshan Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Jai K. Kaushik
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Ashok K. Mohanty
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal 132001, Haryana, India
| |
Collapse
|
6
|
Laheri S, Modi D, Bhatt P. Extra-oviductal expression of oviductal glycoprotein 1 in mouse: Detection in testis, epididymis and ovary. J Biosci 2017; 42:69-80. [PMID: 28229966 DOI: 10.1007/s12038-016-9657-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oviductal glycoprotein 1 (OVGP1), also called oviductin, is an oviduct-specific protein and is suggested to play a role in fertilization. Traditionally, Ovgp1 has been shown to be exclusively expressed by the oviduct; however, recent studies have demonstrated its expression in some cancers. This observation led us to hypothesize that Ovgp1 might have some extra-oviductal expression. In the current study, we evaluated the mRNA and protein expression of Ovgp1 in normal reproductive tissues of male and female mice. For the first time, we demonstrate that beyond the oviduct, Ovgp1 mRNA is expressed in the testis, epididymis and ovary, but not in the uterus, cervix, vagina, breast, seminal vesicles and prostate gland. In the testis, Ovgp1 mRNA was localized in the cells at the base of seminiferous tubules (most likely, Sertoli cells), while the protein was detected in the round and elongating spermatids. In the epididymis, Ovgp1 transcripts were localized in epididymal epithelium of the caput but not the corpus and cauda; OVGP1 protein was, however, not detected in any of the segments but was present in the epididymal sperm. In the ovary, Ovgp1 transcripts and protein were detected in the surface epithelium, granulosa cells of the preantral and the antral follicles and corpus luteum. In both, the ovary and oviduct, the expression of Ovgp1 was found to be higher at estrus stage than at diestrus stage. To the best of our knowledge, this is the first study demonstrating the extra-oviductal expression of Ovgp1. Our data suggests that, beyond fertilization, Ovgp1 might have specific roles in gonadal physiology. [Laheri S, Modi D and Bhatt P 2017 Extra-oviductal expression of oviductal.
Collapse
Affiliation(s)
- Saniya Laheri
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University, Vile Parle (West), Mumbai 400 056, India
| | | | | |
Collapse
|
7
|
Huang EL, Piehowski PD, Orton DJ, Moore RJ, Qian WJ, Casey CP, Sun X, Dey SK, Burnum-Johnson KE, Smith RD. SNaPP: Simplified Nanoproteomics Platform for Reproducible Global Proteomic Analysis of Nanogram Protein Quantities. Endocrinology 2016; 157:1307-14. [PMID: 26745641 PMCID: PMC4769369 DOI: 10.1210/en.2015-1821] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Global proteomic analyses of complex protein samples in nanogram quantities require a fastidious approach to achieve in-depth protein coverage and quantitative reproducibility. Biological samples are often severely mass limited and can preclude the application of more robust bulk sample processing workflows. In this study, we present a system that minimizes sample handling by using online immobilized trypsin digestion and solid phase extraction to create a simple, sensitive, robust, and reproducible platform for the analysis of nanogram-size proteomic samples. To demonstrate the effectiveness of our simplified nanoproteomics platform, we used the system to analyze preimplantation blastocysts collected on day 4 of pregnancy by flushing the uterine horns with saline. For each of our three sample groups, blastocysts were pooled from three mice resulting in 22, 22, and 25 blastocysts, respectively. The resulting proteomic data provide novel insight into mouse blastocyst protein expression on day 4 of normal pregnancy because we characterized 348 proteins that were identified in at least two sample groups, including 59 enzymes and blastocyst specific proteins (eg, zona pellucida proteins). This technology represents an important advance in which future studies could perform global proteomic analyses of blastocysts obtained from an individual mouse, thereby enabling researchers to investigate interindividual variation as well as increase the statistical power without increasing animal numbers. This approach is also easily adaptable to other mass-limited sample types.
Collapse
Affiliation(s)
- Eric L Huang
- Pacific Northwest National Laboratory (E.L.H., P.D.P., D.J.O., R.J.M., W.-J.Q., C.P.C., K.E.B.-J., R.D.S.), Richland, Washington 99352; and Cincinnati Children's Hospital Medical Center (X.S., S.K.D.), Cincinnati, Ohio 45229
| | - Paul D Piehowski
- Pacific Northwest National Laboratory (E.L.H., P.D.P., D.J.O., R.J.M., W.-J.Q., C.P.C., K.E.B.-J., R.D.S.), Richland, Washington 99352; and Cincinnati Children's Hospital Medical Center (X.S., S.K.D.), Cincinnati, Ohio 45229
| | - Daniel J Orton
- Pacific Northwest National Laboratory (E.L.H., P.D.P., D.J.O., R.J.M., W.-J.Q., C.P.C., K.E.B.-J., R.D.S.), Richland, Washington 99352; and Cincinnati Children's Hospital Medical Center (X.S., S.K.D.), Cincinnati, Ohio 45229
| | - Ronald J Moore
- Pacific Northwest National Laboratory (E.L.H., P.D.P., D.J.O., R.J.M., W.-J.Q., C.P.C., K.E.B.-J., R.D.S.), Richland, Washington 99352; and Cincinnati Children's Hospital Medical Center (X.S., S.K.D.), Cincinnati, Ohio 45229
| | - Wei-Jun Qian
- Pacific Northwest National Laboratory (E.L.H., P.D.P., D.J.O., R.J.M., W.-J.Q., C.P.C., K.E.B.-J., R.D.S.), Richland, Washington 99352; and Cincinnati Children's Hospital Medical Center (X.S., S.K.D.), Cincinnati, Ohio 45229
| | - Cameron P Casey
- Pacific Northwest National Laboratory (E.L.H., P.D.P., D.J.O., R.J.M., W.-J.Q., C.P.C., K.E.B.-J., R.D.S.), Richland, Washington 99352; and Cincinnati Children's Hospital Medical Center (X.S., S.K.D.), Cincinnati, Ohio 45229
| | - Xiaofei Sun
- Pacific Northwest National Laboratory (E.L.H., P.D.P., D.J.O., R.J.M., W.-J.Q., C.P.C., K.E.B.-J., R.D.S.), Richland, Washington 99352; and Cincinnati Children's Hospital Medical Center (X.S., S.K.D.), Cincinnati, Ohio 45229
| | - Sudhansu K Dey
- Pacific Northwest National Laboratory (E.L.H., P.D.P., D.J.O., R.J.M., W.-J.Q., C.P.C., K.E.B.-J., R.D.S.), Richland, Washington 99352; and Cincinnati Children's Hospital Medical Center (X.S., S.K.D.), Cincinnati, Ohio 45229
| | - Kristin E Burnum-Johnson
- Pacific Northwest National Laboratory (E.L.H., P.D.P., D.J.O., R.J.M., W.-J.Q., C.P.C., K.E.B.-J., R.D.S.), Richland, Washington 99352; and Cincinnati Children's Hospital Medical Center (X.S., S.K.D.), Cincinnati, Ohio 45229
| | - Richard D Smith
- Pacific Northwest National Laboratory (E.L.H., P.D.P., D.J.O., R.J.M., W.-J.Q., C.P.C., K.E.B.-J., R.D.S.), Richland, Washington 99352; and Cincinnati Children's Hospital Medical Center (X.S., S.K.D.), Cincinnati, Ohio 45229
| |
Collapse
|
8
|
Bellessort B, Le Cardinal M, Bachelot A, Narboux-Nême N, Garagnani P, Pirazzini C, Barbieri O, Mastracci L, Jonchere V, Duvernois-Berthet E, Fontaine A, Alfama G, Levi G. Dlx5 and Dlx6 control uterine adenogenesis during post-natal maturation: possible consequences for endometriosis. Hum Mol Genet 2016; 25:97-108. [PMID: 26512061 DOI: 10.1093/hmg/ddv452] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/25/2015] [Indexed: 09/19/2023] Open
Abstract
Dlx5 and Dlx6 are two closely associated homeobox genes which code for transcription factors involved in the control of steroidogenesis and reproduction. Inactivation of Dlx5/6 in the mouse results in a Leydig cell defect in the male and in ovarian insufficiency in the female. DLX5/6 are also strongly expressed by the human endometrium but their function in the uterus is unknown. The involvement of DLX5/6 in human uterine pathology is suggested by their strong downregulation in endometriotic lesions and upregulation in endometrioïd adenocarcinomas. We first show that Dlx5/6 expression begins in Müllerian ducts epithelia and persists then in the uterine luminal and glandular epithelia throughout post-natal maturation and in the adult. We then use a new mouse model in which Dlx5 and Dlx6 can be simultaneously inactivated in the endometrium using a Pgr(cre/+) allele. Post-natal inactivation of Dlx5/6 in the uterus results in sterility without any obvious ovarian involvement. The uteri of Pgr(cre/+); Dlx5/6(flox/flox) mice present very few uterine glands and numerous abnormally large and branched invaginations of the uterine lumen. In Dlx5/6 mutant uteri, the expression of genes involved in gland formation (Foxa2) and in epithelial remodelling during implantation (Msx1) is significantly reduced. Furthermore, we show that DLX5 is highly expressed in human endometrial glandular epithelium and that its expression is affected in endometriosis. We conclude that Dlx5 and Dlx6 expression determines uterine architecture and adenogenesis and is needed for implantation. Given their importance for female reproduction, DLX5 and DLX6 must be regarded as interesting targets for future clinical research.
Collapse
Affiliation(s)
- Brice Bellessort
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum Nationale d'Histoire Naturelle, Paris 75005, France
| | - Marine Le Cardinal
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum Nationale d'Histoire Naturelle, Paris 75005, France
| | - Anne Bachelot
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum Nationale d'Histoire Naturelle, Paris 75005, France, AP-HP, Department of Endocrinology and Reproductive Medicine, Centre de Référence des Maladies Endocriniennes Rares de la Croissance, Pitié-Salpêtrière Hospital (Groupe Hospitalier Pitié-Salpêtrière), Université Pierre et Marie Curie, Site Pitié, 75013 Paris, France
| | - Nicolas Narboux-Nême
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum Nationale d'Histoire Naturelle, Paris 75005, France
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna 40138, Italy, Interdepartmental Center 'L. Galvani', University of Bologna, Bologna 40126, Italy
| | - Chiara Pirazzini
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum-University of Bologna, Bologna 40138, Italy, Interdepartmental Center 'L. Galvani', University of Bologna, Bologna 40126, Italy
| | - Ottavia Barbieri
- Department of Experimental Medicine (DIMES) and, IRCCS AOU San Martino-IST, National Institute for Cancer Research, Genova, Italy and
| | - Luca Mastracci
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, Division of Anatomic Pathology, Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genova, Italy
| | - Vincent Jonchere
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum Nationale d'Histoire Naturelle, Paris 75005, France
| | - Evelyne Duvernois-Berthet
- Department of Régulations, Développement et Diversité Moléculaire, Muséum National d'Histoire Naturelle, Paris 75005, France
| | - Anastasia Fontaine
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum Nationale d'Histoire Naturelle, Paris 75005, France
| | - Gladys Alfama
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum Nationale d'Histoire Naturelle, Paris 75005, France
| | - Giovanni Levi
- Évolution des Régulations Endocriniennes, CNRS UMR 7221, Muséum Nationale d'Histoire Naturelle, Paris 75005, France,
| |
Collapse
|
9
|
Ohno M, Bauer PO, Kida Y, Sakaguchi M, Sugahara Y, Oyama F. Quantitative Real-Time PCR Analysis of YKL-40 and Its Comparison with Mammalian Chitinase mRNAs in Normal Human Tissues Using a Single Standard DNA. Int J Mol Sci 2015; 16:9922-35. [PMID: 25941933 PMCID: PMC4463625 DOI: 10.3390/ijms16059922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/22/2015] [Accepted: 04/22/2015] [Indexed: 01/25/2023] Open
Abstract
YKL-40 (YKL for the first three N-terminal residues of a 40 kDa protein) belongs to a group of human chitinase-like proteins (CLPs), which are similar to chitinases but lack chitinolytic activity. YKL-40 mRNA and its protein levels have been reported elevated in multiple disorders including asthma, cystic fibrosis, rheumatoid arthritis and malignant tumors. Here, we quantified the YKL-40 mRNA levels and compared them with chitinases and housekeeping genes in normal human tissues. To establish the quantitative real-time PCR (qPCR) system for evaluation of relative YKL-40 mRNA levels, we constructed a human standard DNA molecule by ligating cDNAs of YKL-40, two mammalian chitinases and two housekeeping genes in a one-to-one ratio. We generated cDNAs from various normal human tissues and analyzed the YKL-40 mRNA expression levels using a qPCR system with the standard DNA. We found that YKL-40 mRNA is present widely in human tissues while its expression patterns exhibit clear tissue specificity. Highest YKL-40 mRNA levels were detected in the liver, followed by kidney, trachea and lung. The levels of YKL-40 mRNA in the kidney and liver were more than 100-times higher than those of chitotriosidase mRNA. Our study provides for the first time a comprehensive analysis of the relative expression levels of YKL-40 mRNA versus mammalian chitinases in normal human tissues.
Collapse
Affiliation(s)
- Misa Ohno
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
- Research Fellow of Japan Society for the Promotion of Science (DC2), Koujimachi, Chiyoda-ku, Tokyo 102-0083, Japan.
| | - Peter O Bauer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| | - Yuta Kida
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
| | - Yasusato Sugahara
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, Hachioji, Tokyo 192-0015, Japan.
| |
Collapse
|
10
|
Yang X, Zhao Y, Yang X, Kan FWK. Recombinant hamster oviductin is biologically active and exerts positive effects on sperm functions and sperm-oocyte binding. PLoS One 2015; 10:e0123003. [PMID: 25849110 PMCID: PMC4388664 DOI: 10.1371/journal.pone.0123003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/26/2015] [Indexed: 11/23/2022] Open
Abstract
Studies carried out in several mammalian species suggest that oviductin, also known as oviduct-specific glycoprotein or OVGP1, plays a key role in sperm capacitation, fertilization, and development of early embryos. In the present study, we used recombinant DNA technology to produce, for the first time, recombinant hamster OVGP1 (rHamOVGP1) in human embryonic kidney 293 (HEK293) cells. rHamOVGP1 secreted in the culture medium was purified by affinity chromatography. The resulting protein migrated as a poly-dispersed band of 160-350 kDa on SDS-PAGE corresponding to the molecular mass of the native HamOVGP1. Subsequent mass spectrometric analysis of the purified rHamOVGP1 confirmed its identity as HamOVGP1. Immunocytochemistry demonstrated binding of rHamOVGP1 to the mid-piece and head of hamster sperm and to the zona pellucida (ZP) of ovarian oocytes. In vitro functional experiments showed that addition of rHamOVGP1 in the capacitation medium further enhanced tyrosine phosphorylation of two sperm proteins of approximately 75 kDa and 83 kDa in a time-dependent manner. After 3 hours of incubation in the presence of rHamOVGP1, a significant increase in acrosome reaction was measured. Pretreatment of either sperm or oocyte with 20 μg/ml of rHamOVGP1 prior to sperm-egg binding assay significantly increased the number of sperm bound to the ZP. Addition of rHamOVGP1 in the medium during sperm-egg binding with either oocyte or sperm pretreated with rHamOVGP1 also saw an increase in the number of sperm bound to ZP. In all experimental conditions, the effect of rHamOVGP1 on sperm-oocyte binding was negated by the addition of monoclonal anti-HamOVGP1 antibody. The successful production and purification of a biologically active rHamOVGP1 will allow further exploration of the function of this glycoprotein in reproductive function.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Yuewen Zhao
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Frederick W. K. Kan
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
11
|
Abstract
Experimental evidence from the last 30 years supports the fact that the oviduct is involved in the modulation of the reproductive process in eutherian mammals. Oviductal secretion contains molecules that contribute to regulation of gamete function, gamete interaction, and the early stages of embryo development. The oviductal environment would act as a sperm reservoir, maintaining sperm viability, and modulating the subpopulation of spermatozoa that initiates the capacitation process. It could also contribute to prevent the premature acrosome reaction and to reduce polyspermy. Many studies have reported the beneficial effects of the oviductal environment on fertilization and on the first stages of embryo development. Some oviductal factors have been identified in different mammalian species. The effects of oviductal secretion on the reproductive process could be thought to result from the dynamic combined action (inhibitory or stimulatory) of multiple factors present in the oviductal lumen at different stages of the ovulatory cycle and in the presence of gametes or embryos. It could be hypothesized that the absence of a given molecule would not affect fertility as its action could be compensated by another factor with similar functions. However, any alteration in this balance could affect certain events of the reproductive process and could perhaps impair fertility. Thus, the complexity of the reproductive process warrants a continuous research effort to unveil the mechanisms and factors behind its regulation in the oviductal microenvironment.
Collapse
|
12
|
Saint-Dizier M, Marnier C, Tahir MZ, Grimard B, Thoumire S, Chastant-Maillard S, Reynaud K. OVGP1
is expressed in the canine oviduct at the time and place of oocyte maturation and fertilization. Mol Reprod Dev 2014; 81:972-82. [DOI: 10.1002/mrd.22417] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/25/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Marie Saint-Dizier
- INRA; UMR1198 Biologie du Développement et Reproduction; Jouy en Josas France
- ENVA; UMR1198 Biologie du Développement et Reproduction; Maisons-Alfort Cedex France
- AgroParisTech; UFR Génétique Elevage Reproduction; Paris France
| | - Céline Marnier
- INRA; UMR1198 Biologie du Développement et Reproduction; Jouy en Josas France
- ENVA; UMR1198 Biologie du Développement et Reproduction; Maisons-Alfort Cedex France
| | - Muhammad Zahid Tahir
- INRA; UMR1198 Biologie du Développement et Reproduction; Jouy en Josas France
- ENVA; UMR1198 Biologie du Développement et Reproduction; Maisons-Alfort Cedex France
| | - Bénédicte Grimard
- INRA; UMR1198 Biologie du Développement et Reproduction; Jouy en Josas France
- ENVA; UMR1198 Biologie du Développement et Reproduction; Maisons-Alfort Cedex France
| | - Sandra Thoumire
- INRA; UMR1198 Biologie du Développement et Reproduction; Jouy en Josas France
- ENVA; UMR1198 Biologie du Développement et Reproduction; Maisons-Alfort Cedex France
| | - Sylvie Chastant-Maillard
- INRA; UMR 1225; Host Pathogen-Interactions; Toulouse France
- Université de Toulouse; INP; ENVT; UMR 1225; IHAP; Toulouse France
| | - Karine Reynaud
- INRA; UMR1198 Biologie du Développement et Reproduction; Jouy en Josas France
- ENVA; UMR1198 Biologie du Développement et Reproduction; Maisons-Alfort Cedex France
| |
Collapse
|
13
|
Ohno M, Kida Y, Sakaguchi M, Sugahara Y, Oyama F. Establishment of a quantitative PCR system for discriminating chitinase-like proteins: catalytically inactive breast regression protein-39 and Ym1 are constitutive genes in mouse lung. BMC Mol Biol 2014; 15:23. [PMID: 25294623 PMCID: PMC4195342 DOI: 10.1186/1471-2199-15-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/29/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mice and humans produce chitinase-like proteins (CLPs), which are highly homologous to chitinases but lack chitinolytic activity. Mice express primarily three CLPs, including breast regression protein-39 (BRP-39) [chitinase 3-like-1 (Chi3l1) or 38-kDa glycoprotein (gp38k)], Ym1 (Chi3l3) and Ym2 (Chi3l4). Recently, CLPs have attracted considerable attention due to their increased expression in a number of pathological conditions, including asthma, allergies, rheumatoid arthritis and malignant tumors. Although the exact functions of CLPs are largely unknown, the significance of their increased expression levels during pathophysiological states needs to be determined. The quantification of BRP-39, Ym1 and Ym2 is an important step in gaining insight into the in vivo regulation of the CLPs. METHODS We constructed a standard DNA for quantitative real-time PCR (qPCR) by containing three CLPs target fragments and five reference genes cDNA in a one-to-one ratio. We evaluated this system by analyzing the eight target cDNA sequences. Tissue cDNAs obtained by reverse transcription from total RNA from four embryonic stages and eight adult tissues were analyzed using the qPCR system with the standard DNA. RESULTS We established a qPCR system detecting CLPs and comparing their expression levels with those of five reference genes using the same scale in mouse tissues. We found that BRP-39 and Ym1 were abundant in the mouse lung, whereas Ym2 mRNA was abundant in the stomach, followed by lung. The expression levels of BRP-39 and Ym1 in the mouse lung were higher than those of two active chitinases and were comparable to glyceraldehyde-3-phosphate dehydrogenase, a housekeeping gene which is constitutively expressed in all tissues. CONCLUSION Our results indicate that catalytically inactive BRP-39 and Ym1 are constitutive genes in normal mouse lung.
Collapse
Affiliation(s)
| | | | | | | | - Fumitaka Oyama
- Department of Applied Chemistry, Kogakuin University, Hachioji, Tokyo, Japan.
| |
Collapse
|
14
|
Ida-Eto M, Nomura M, Ohkawara T, Narita N, Narita M. Localization of manserin, a secretogranin II-derived neuropeptide, in the oviduct of female rats. Acta Histochem 2014; 116:522-6. [PMID: 24360019 DOI: 10.1016/j.acthis.2013.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 11/28/2022]
Abstract
Gynecological disorders related to menstrual cycle may be affected by stress and can cause infertility. Manserin is a stress-related neuropeptide that is present in the neuroendocrine system. In the present study, we determined the localization of manserin in the oviduct of adult Wistar rats using immunohistochemical techniques. Manserin was detected on the surface of the epithelium of the oviduct, but not in the ovary and uterus. Localization of manserin was specific to a large portion of the isthmus and to a small portion of the ampulla. These results suggest that manserin localizes to secretory cells in the oviduct and may be involved in stress-induced gynecological disorders.
Collapse
Affiliation(s)
- Michiru Ida-Eto
- Department of Anatomy II, Mie University, Graduate School of Medicine, Mie, Japan.
| | - Makiko Nomura
- Department of Anatomy II, Mie University, Graduate School of Medicine, Mie, Japan
| | - Takeshi Ohkawara
- Department of Anatomy II, Mie University, Graduate School of Medicine, Mie, Japan
| | - Naoko Narita
- Department of Education, Bunkyo University, Saitama, Japan
| | - Masaaki Narita
- Department of Anatomy II, Mie University, Graduate School of Medicine, Mie, Japan
| |
Collapse
|
15
|
Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties. Biochem J 2012; 446:149-57. [PMID: 22742450 DOI: 10.1042/bj20120377] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The chitinase-like proteins YKL-39 (chitinase 3-like-2) and YKL-40 (chitinase 3-like-1) are highly expressed in a number of human cells independent of their origin (mesenchymal, epithelial or haemapoietic). Elevated serum levels of YKL-40 have been associated with a negative outcome in a number of diseases ranging from cancer to inflammation and asthma. YKL-39 expression has been associated with osteoarthritis. However, despite the reported association with disease, the physiological or pathological role of these proteins is still very poorly understood. Although YKL-39 is homologous to the two family 18 chitinases in the human genome, it has been reported to lack any chitinase activity. In the present study, we show that human YKL-39 possesses a chitinase-like fold, but lacks key active-site residues required for catalysis. A glycan screen identified oligomers of N-acetylglucosamine as preferred binding partners. YKL-39 binds chitooligosaccharides and a newly synthesized derivative of the bisdionin chitinase-inhibitor class with micromolar affinity, through a number of conserved tryptophan residues. Strikingly, the chitinase activity of YKL-39 was recovered by reverting two non-conservative substitutions in the active site to those found in the active enzymes, suggesting that YKL-39 is a pseudo-chitinase with retention of chitinase-like ligand-binding properties.
Collapse
|
16
|
Molecular cloning, sequence characterization and heterologous expression of buffalo (Bubalus bubalis) oviduct-specific glycoprotein in E. coli. Mol Biol Rep 2012; 39:10031-43. [DOI: 10.1007/s11033-012-1872-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 06/21/2012] [Indexed: 11/26/2022]
|
17
|
Yang X, Tao S, Orlando R, Brockhausen I, Kan FWK. Structures and biosynthesis of the N- and O-glycans of recombinant human oviduct-specific glycoprotein expressed in human embryonic kidney cells. Carbohydr Res 2012; 358:47-55. [PMID: 22817996 DOI: 10.1016/j.carres.2012.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/29/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
Oviduct-specific glycoprotein (OVGP1) is a major mucin-like glycoprotein synthesized and secreted exclusively by non-ciliated secretory cells of mammalian oviduct. In vitro functional studies showed that OVGP1 plays important roles during fertilization and early embryo development. We have recently produced recombinant human oviduct-specific glycoprotein (rhOVGP1) in human embryonic kidney 293 (HEK293) cells. The present study was undertaken to characterize the structures and determine the biosynthetic pathways of the N- and O-glycans of rhOVGP1. Treatment of the stable rhOVGP1-expressing HEK293 cells with either GalNAcα-Bn to block O-glycan extension, tunicamycin to block N-glycosylation, or neuraminidase increased the electrophoretic mobility of rhOVGP1. A detailed analysis of O- and N-linked glycans of rhOVGP1 by mass spectrometry showed a broad range of many simple and complex glycan structures. In order to identify the enzymes involved in the glycosylation of rhOVGP1, we assayed glycosyltransferase activities involved in the assembly of O- and N-glycans in HEK293 cells, and compared these to those from the immortalized human oviductal cells (OE-E6/E7). Our results demonstrate that HEK293 and OE-E6/E7 cells exhibit a similar spectrum of glycosyltransferase activities that can synthesize elongated and sialylated O-glycans with core 1 and 2 structures, as well as complex multiantennary N-glycans. It is anticipated that the knowledge gained from the present study will facilitate future studies of the role of the glycans of human OVGP1 in fertilization and early embryo development.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
18
|
Sequence analysis of feline oviductin and its expression during the estrous cycle in the domestic cat (Felis catus). Theriogenology 2011; 77:539-49. [PMID: 22015153 DOI: 10.1016/j.theriogenology.2011.08.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 08/16/2011] [Accepted: 08/16/2011] [Indexed: 11/23/2022]
Abstract
Oviductins belong to a family of oviduct-specific glycoproteins believed to play an important role in fertilization and/or early embryonic development. Oviductin cDNA between species is highly conserved and shares 58% to 98% similarity in the deduced amino acid sequences. Our objective in this study was to sequence the full open reading frame of the feline oviductin and to examine its expression during the estrous cycle on both mRNA and protein level. The obtained cDNA containing the full open reading frame was determined to be 1677 nucleotides coding for a deduced protein of 558 amino acids. Identities between species range from 74% (mouse) to 80% (human, baboon, and rhesus) within the N-terminal protein region. Major differences were localized in the carboxy terminal region, which corresponds to exon 11 of the gene. Feline oviductin contained one putative N-linked glycosylation site, six O-linked glycosylation sites, a potential heparin binding site, and two cholesterol recognition and/or interaction amino acid consensus (CRAC) domains. Oviductin expression was analyzed by real time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry. Both approaches revealed an estrous cycle-dependent expression in the ampulla and isthmus. Quantitative PCR showed highest oviductin mRNA copy numbers in the early and late follicular stage and reduced mRNA expression during all other stages. With the exception of the early follicular stage, feline oviductin mRNA abundance was not significantly different in the oviductal segments ampulla and isthmus. A prominent immunolabeling was seen in the early and late follicular stage which disappeared after ovulation, indicating a function of the protein during sperm storage and fertilization.
Collapse
|
19
|
Pradeep MA, Jagadeesh J, De AK, Kaushik JK, Malakar D, Kumar S, Dang AK, Das SK, Mohanty AK. Purification, sequence characterization and effect of goat oviduct-specific glycoprotein on in vitro embryo development. Theriogenology 2010; 75:1005-15. [PMID: 21196036 DOI: 10.1016/j.theriogenology.2010.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/04/2010] [Accepted: 11/05/2010] [Indexed: 10/18/2022]
Abstract
Oviduct-specific glycoprotein (oviductin) plays an important role during fertilization and early embryonic development. The oviductin cDNA was successfully cloned and sequenced in goat, which possessed an open reading frame of 1620 nucleotides representing 539 amino acids. Predicted amino acid sequence showed very high identity with sheep (97%) followed by cow (94%), porcine (77%), hamster (69%), human (66%), rabbit (65%), mouse (64%) and baboon (62%). The bioinformatics analysis of the sequences revealed the presence of a signal sequence of 21 amino acids, one potential N-linked glycosylation site at position 402, 21 potential O-linked glycosylation sites and 36 potential phosphorylation sites. The native oviductin was purified from the oviductal tissue, which showed three distinct bands on SDS-PAGE and western blot (MW ~60-95 kDa). The predicted molecular weight of goat oviductin was 57.5 kDa, calculated from the amino acid sequences. The observed higher molecular weight has been attributed to the presence of large number of potential O-linked glycosylation sites. The lower concentration (10 μg/mL) of oviductin increased the cleavage rate, morula and blastocyst yield significantly (P < 0.05) as compared to higher concentration (100 μg/mL). Goat oviductin retarded the activity of pronase (0.1%) on zona solubility of oocytes significantly (P < 0.01).
Collapse
Affiliation(s)
- M A Pradeep
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mohri Y, Umezu T, Hidema S, Tomisawa H, Akamatsu A, Kato S, Nawa A, Nishimori K. Reduced fertility with impairment of early-stage embryos observed in mice lacking Lgr4 in epithelial tissues. Fertil Steril 2010; 94:2878-81. [PMID: 20638054 DOI: 10.1016/j.fertnstert.2010.05.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/18/2010] [Accepted: 05/26/2010] [Indexed: 11/27/2022]
Abstract
Lgr4 is one of the genes identified as novel G protein-coupled receptor genes designated Lgr4-Lgr8, with high homology with FSH receptor, LH receptor, and TSH receptor genes, but studies of Lgr4-mutant mice have suggested that Lgr4 has essential functions in development. This is the first report describing the relationship between the functions of Lgr4 and female reproductive systems.
Collapse
Affiliation(s)
- Yasuaki Mohri
- Laboratory of Molecular Biology, Graduate School of Agricultrual Science, Tohoku University, Aoba-ku, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Avilés M, Gutiérrez-Adán A, Coy P. Oviductal secretions: will they be key factors for the future ARTs? Mol Hum Reprod 2010; 16:896-906. [PMID: 20584881 DOI: 10.1093/molehr/gaq056] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A variety of evolutionary processes has led to the development of different organs to ensure that internal fertilization occur successfully. Fallopian tubes are a particularly interesting example of such organs. Some of the key events during fertilization and early embryo development occur in the oviduct. Knowledge of the different components described in the oviduct is extensive. Oviductal components include hormones, growth factors and their receptors that have important roles in the physiology of the oviduct and embryo development. Other oviductal factors protect the gamete and the embryos against oxidative stress and pathogens. Different proteins and enzymes are present in the oviductal fluid and have the ability to interact with the oocyte and the sperm before the fertilization occurs. Of special interest is the oviduct-specific glycoprotein (OVGP1), a glycoprotein that is conserved in different mammals, and its association with the zona pellucida (ZP). Interaction of the oocyte with oviductal secretions leads us to emphasize the concept of 'ZP maturation' within the oviduct. The ZP changes produced in the oviduct result in an increased efficiency of the in vitro fertilization technique in some animal models, contributing in particular to the control of polyspermy and suggesting that a similar role could be played by oviductal factors in human beings. Finally, attention should be given to the presence in the oviductal fluid of several embryotrophic factors and their importance in relation to the in vivo versus in vitro developmental ability of the embryos.
Collapse
Affiliation(s)
- Manuel Avilés
- Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain.
| | | | | |
Collapse
|
22
|
Yamanouchi H, Umezu T, Tomooka Y. Reconstruction of Oviduct and Demonstration of Epithelial Fate Determination in Mice1. Biol Reprod 2010; 82:528-33. [DOI: 10.1095/biolreprod.109.078329] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
23
|
Follistatin-like-1, a diffusible mesenchymal factor determines the fate of epithelium. Proc Natl Acad Sci U S A 2010; 107:4601-6. [PMID: 20176958 DOI: 10.1073/pnas.0909501107] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mesenchyme is generally believed to play critical roles in "secondary induction" during organogenesis. Because of the complexity of tissue interactions in secondary inductions, however, little is known about the precise mechanisms at the cellular and molecular levels. We have demonstrated that, in mouse oviductal development, the mesenchyme determines the fate of undetermined epithelial cells to become secretory or cilial cells. We have established a model for studying secondary induction by establishing clonal epithelial and mesenchymal cell lines from perinatal p53(-/-) mouse oviducts. The signal sequence trap method collected candidate molecules secreted from mesenchymal cell lines. Naive epithelial cells exposed to Follistatin-like-1 (Fstl1), one of the candidates, became irreversibly committed to expressing a cilial epithelial marker and differentiated into ciliated cells. We concluded that Fstl1 is one of the mesenchymal factors determining oviductal epithelial cell fate. This is a unique demonstration that the determination of epithelial cell fate is induced by a single diffusible factor.
Collapse
|
24
|
Lyng R, Shur BD. Mouse oviduct-specific glycoprotein is an egg-associated ZP3-independent sperm-adhesion ligand. J Cell Sci 2009; 122:3894-906. [PMID: 19808884 DOI: 10.1242/jcs.058776] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse sperm-egg binding requires a multiplicity of receptor-ligand interactions, including an oviduct-derived, high molecular weight, wheat germ agglutinin (WGA)-binding glycoprotein that associates with the egg coat at ovulation. Herein, we report the purification and identification of this sperm-binding ligand. WGA-binding, high molecular weight glycoproteins isolated from hormonally primed mouse oviduct lysates competitively inhibit sperm-egg binding in vitro. Within this heterogeneous glycoprotein preparation, a distinct 220 kDa protein selectively binds to sperm surfaces, and was identified by sequence analysis as oviduct-specific glycoprotein (OGP). The sperm-binding activity of OGP was confirmed by the loss of sperm-binding following immunodepletion of OGP from oviduct lysates, and by the ability of both immunoprecipitated OGP and natively purified OGP to competitively inhibit sperm-egg binding. As expected, OGP is expressed by the secretory cells of the fimbriae and infundibulum; however, in contrast to previous reports, OGP is also associated with both the zona pellucida and the perivitelline space of mouse oocytes. Western blot analysis and lectin affinity chromatography demonstrate that whereas the bulk of OGP remains soluble in the ampullar fluid, distinct glycoforms associate with the cumulus matrix, zona pellucida and perivitelline space. The sperm-binding activity of OGP is carbohydrate-dependent and restricted to a relatively minor peanut agglutinin (PNA)-binding glycoform that preferentially associates with the sperm surface, zona pellucida and perivitelline space, relative to other more abundant glycoforms. Finally, pretreatment of two-cell embryos, which do not normally bind sperm, with PNA-binding OGP stimulates sperm binding.
Collapse
Affiliation(s)
- Robert Lyng
- Department of Cell Biology, Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
25
|
Shur BD. Reassessing the role of protein-carbohydrate complementarity during sperm-egg interactions in the mouse. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2008; 52:703-15. [PMID: 18649283 DOI: 10.1387/ijdb.082571bs] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Despite years of intense study by many investigators, it may appear that we have made little progress towards a molecular understanding of mammalian sperm binding to the egg zona pellucida. An abundance of evidence derived from in vitro assays suggests that sperm-zona pellucida binding is dependent upon sperm recognition of specific glycan moieties on the zona pellucida glycoproteins. However, there is considerable disagreement regarding the identity of the zona pellucida sugars thought to mediate sperm binding, as well as disagreement over the identity of the sperm receptors themselves. Moreover, results from in vivo gene-targeting strategies fail to support a role for many, if not all, of the sperm receptors and their zona pellucida ligands implicated from in vitro assays. Nevertheless, a retrospective view of the literature suggests that some common principles are emerging regarding the molecular basis of mammalian sperm-zona binding, both with respect to the nature of the components that mediate binding, as well as the involvement of distinct receptor-ligand interactions, that involve both protein- and carbohydrate-dependent mechanisms of binding.
Collapse
Affiliation(s)
- Barry D Shur
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
26
|
Abstract
Recent year some members of mammalian chitinases and chitinase-like proteins have been discovered, but rat counterpart of human and mouse chitotriosidase has not been identified. Moreover, the physiological functions of mammalian chitinases are not very clear. To facilitate the studies we cloned the cDNA encodes the rat chitotriosidase. The results revealed that it is differ from mouse and human chitotriosidase genes, it exist alternative splicing transcripts in several tissues we detected due to different transcriptional initiation sites and different exon usage, although all the open reading frame of these cDNAs predict a protein of 464 amino acids with a typical chitinase structure, including a signal peptide, a highly conserved catalytical domain and a chitin-binding structure. The predicted amino acid sequence is highly homologous to that of mouse and human chitotriosidase. Recombinant expression of the cloned cDNA demonstrated that the encoded protein is secreted extracellularly and has chitinolytic activity.
Collapse
Affiliation(s)
- Xiao Hua Chen
- Department of Biological Science and Biotechnology, Tsinghua University, Beijing 100084, People's Republic of China.
| | | |
Collapse
|
27
|
Nagaraja AK, Andreu-Vieyra C, Franco HL, Ma L, Chen R, Han DY, Zhu H, Agno JE, Gunaratne PH, DeMayo FJ, Matzuk MM. Deletion of Dicer in somatic cells of the female reproductive tract causes sterility. Mol Endocrinol 2008; 22:2336-52. [PMID: 18687735 DOI: 10.1210/me.2008-0142] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dicer is an evolutionarily conserved ribonuclease III that is necessary for microRNA (miRNA) processing and the synthesis of small interfering RNAs from long double-stranded RNA. Although it has been shown that Dicer plays important roles in the mammalian germline and early embryogenesis, the functions of Dicer-dependent pathways in the somatic cells of the female reproductive tract are unknown. Using a transgenic line in which Cre recombinase is driven by the anti-Müllerian hormone receptor type 2 promoter, we conditionally inactivated Dicer1 in the mesenchyme of the developing Müllerian ducts and postnatally in ovarian granulosa cells and mesenchyme-derived cells of the oviducts and uterus. Deletion of Dicer in these cell types results in female sterility and multiple reproductive defects including decreased ovulation rates, compromised oocyte and embryo integrity, prominent bilateral paratubal (oviductal) cysts, and shorter uterine horns. The paratubal cysts act as a reservoir for spermatozoa and oocytes and prevent embryos from transiting the oviductal isthmus and passing the uterotubal junction to enter the uterus for implantation. Deep sequencing of small RNAs in oviduct revealed down-regulation of specific miRNAs in Dicer conditional knockout females compared with wild type. The majority of these differentially expressed miRNAs are predicted to regulate genes important for Müllerian duct differentiation and mesenchyme-derived structures, and several of these putative target genes were significantly up-regulated upon conditional deletion of Dicer1. Thus, our findings reveal diverse and critical roles for Dicer and its miRNA products in the development and function of the female reproductive tract.
Collapse
Affiliation(s)
- Ankur K Nagaraja
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shimozawa N, Sotomaru Y, Eguchi N, Suzuki S, Hioki K, Usui T, Kono T, Ito M. Phenotypic abnormalities observed in aged cloned mice from embryonic stem cells after long-term maintenance. Reproduction 2007; 132:435-41. [PMID: 16940284 DOI: 10.1530/rep.1.00745] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Somatic/embryonic stem cell cloning has made it possible to produce an individual genomically identical to another individual. However, the cloned animals have a variety of abnormalities caused by the aberrant gene modification, with insufficient reprogramming in cloning. We previously reported abnormalities in cloned mice at birth. In this study, we examined what abnormalities could be seen in cloned mice after long-term maintenance. The aged cloned mice showed multiple abnormalities: increase of body weight, some phenotypic abnormalities in the kidneys, testes and thymus, and lower urea nitrogen in their serum biochemical values. The kidneys of all cloned mice were hypertrophied, with a metamorphic or whitish appearance. The multiple lesions, including the enlarged renal pelvis and distension of the renal veins in histology, might be the result of urine accumulation by urinary tract obstruction. The testes of the cloned mice were atrophied, and showed no sperm formation in histology. In contrast, the thymus was rather hypertrophied, and a comparably increased number of lymphocytes were observed in the medulla, consisting mainly of T cells. By conducting a progeny test between the cloned mice, it was confirmed that these abnormalities in the aged cloned mice were not transmitted to their offspring, indicating that the incomplete reprogramming in clones might be in part responsible for the abnormalities detected in aged clones. These results indicate that the postnatal abnormalities observed in aged cloned mice are varied and can be restored through the germ line.
Collapse
Affiliation(s)
- Nobuhiro Shimozawa
- Central Institute for Experimental Animals, 1430 Nogawa, Miyamae, Kawasaki, Kanagawa 216-0001, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sengupta A, Baker T, Chakrabarti N, Whittaker JA, Sridaran R. Localization of immunoreactive gonadotropin-releasing hormone and relative expression of its mRNA in the oviduct during pregnancy in rats. J Histochem Cytochem 2007; 55:525-34. [PMID: 17283369 DOI: 10.1369/jhc.6a7135.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was designed to determine the cellular and ultrastructural distribution of the gonadotropin-releasing hormone (GnRH) and the relative expression of its mRNA in the oviduct of rats during different time points (days 7, 9, 16, and 20) of pregnancy. Immunofluorescent localization and confocal microscopic techniques were used to determine the cellular distribution of GnRH in the oviduct. Immunogold electron microscopy indicated its localization at the ultrastructural level, and real-time PCR was used to study the expression pattern of GnRH mRNA in the oviduct during pregnancy. In general, GnRH was localized within the epithelial cells lining the oviductal lumen at each selected time point. A strong correlation between the fluorescence intensity of GnRH-immunoreactive cells and the relative expression of GnRH mRNA was noted on days 7 and 16, followed by a plateau by day 20. At the ultrastructural level, uniform labeling of colloidal gold particles was observed in secretory vesicles and lamella of the luminal epithelium as well as the lumen of the oviduct. Collectively, these results demonstrate for the first time that the oviductal epithelium synthesizes and secretes the decapeptide GnRH during pregnancy in rats, which may have a possible role in postimplantation embryonic development and the maintenance of pregnancy.
Collapse
Affiliation(s)
- Anamika Sengupta
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA 30310-1495, USA
| | | | | | | | | |
Collapse
|
30
|
Mizoguchi E, Mizoguchi A. Is the sugar always sweet in intestinal inflammation? Immunol Res 2007; 37:47-60. [PMID: 17496346 DOI: 10.1007/bf02686089] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/12/2022]
Abstract
Immune responses are mediated mainly by protein/protein interactions. In addition, protein/carbohydrate (sugar) interactions through specific protein families termed lectin and chi-lectin are also involved in several immune and biological responses under not only the state of health but also inflammatory conditions. Interestingly, recent studies have identified unexpected roles of animal lectins (galectin-1 and galectin-4) and chi-lectin (chitinase 3-like-1) in intestinal inflammation. Galectin-1 contributes to the suppression of intestinal inflammation by the induction of effector T cell apoptosis. In contrast, galectin-4 is involved in the exacerbation of this inflammation by specifically stimulating intestinal CD4+ T cells to produce IL-6. CHI3L1 enhances the host/microbial interaction that leads to the exacerbation of intestinal inflammation. In this review, we discuss a novel aspect of lectin/carbohydrate interactions in intestinal inflammation.
Collapse
Affiliation(s)
- Emiko Mizoguchi
- Center for the Study of Inflammatory Bowel Disease, Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
31
|
HogenEsch H, Dunham A, Seymour R, Renninger M, Sundberg JP. Expression of chitinase-like proteins in the skin of chronic proliferative dermatitis (cpdm/cpdm) mice. Exp Dermatol 2006; 15:808-14. [PMID: 16984263 DOI: 10.1111/j.1600-0625.2006.00483.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mammalian chitinase-like proteins belong to a family of proteins structurally related to chitinases but devoid of enzymatic activity. They have a postulated role in remodeling of extracellular matrix and defense mechanisms against chitin-containing pathogens. The expression of these proteins is increased in parasitic infections and allergic airway disease, but their expression in dermatitis has not been examined. The mRNA expression of two chitinase 3-like (Chi3L) proteins, Chi3L3 (Ym1) and Chi3L4 (Ym2), was determined in the skin of normal mice, chronic proliferative dermatitis (cpdm/cpdm) mutant mice and mice with experimentally induced contact hypersensitivity reaction. The localization of Chi3L3 and Chi3L4 proteins in cells was determined by fluorescence microscopy of double-labeled frozen sections of skin, and confirmed in vitro by stimulation of macrophages and mast cells with cytokines. Quantitative RT-PCR demonstrated a 976-fold increase of Chi3l4 mRNA expression and a 24-fold increase of Chi3l3 mRNA expression in the skin of cpdm/cpdm mice. Their expression was also increased in the ears of mice with 2,4-dinitrofluorobenzene-induced contact hypersensitivity, but the increase was greater for Chi3l3 mRNA (51-fold) than Chi3l4 mRNA (32-fold). Western blot analysis with an antibody against Chi3L3 and Chi3L4 confirmed the increased amount of these proteins in the skin of cpdm/cpdm mice. Two-color immunofluorescence identified macrophages, dendritic cells and mast cells as cellular sources of Chi3L3 and Chi3L4 proteins. Eosinophils and neutrophils did not contain detectable concentrations of these proteins. Treatment of macrophages and mast cells in vitro with interleukin-4 induced expression of Chi3l3 and Chi3l4 mRNA.
Collapse
Affiliation(s)
- Harm HogenEsch
- Department of Veterinary Pathobiology, Purdue University, 725 Harrison Street, West Lafayette, IN 47907, USA.
| | | | | | | | | |
Collapse
|
32
|
Chen XH, Xie ZH, Sun SJ, Cai G. Cloning of a rat lung fibrogenic factor. Gene 2006; 384:9-17. [PMID: 16971062 DOI: 10.1016/j.gene.2006.06.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 06/25/2006] [Accepted: 06/28/2006] [Indexed: 11/25/2022]
Abstract
In a previous study a specific single polypeptide has been purified and characterized that it was capable of promoting human embryonic lung 2BS fibroblasts proliferation in vitro, whose N-terminal 15 amino acid have high sequence homology with members of the mammalian chitinase-like protein family. Here the cloning of the gene is reported. Its cDNA contains an open reading frame 1421 bp long and encodes a protein with a characteristic N-terminal 21 amino acid endoplasmic reticulum signal peptide and the putative protein is highly homologous to acidic mammalian chitinase (AMCase) precursor of mouse and human. Recombinant proteins demonstrate chitinolytic activity, therefore the gene is termed as rat AMCase. Sequence analysis indicates that the gene spanned a 46.2 kb region in rat chromosome 2. Its expression in several tissues other than alveolar macrophages suggests that it might play multiple biological roles in vivo. Our findings will facilitate studies on its roles in physiological and pathological processes.
Collapse
Affiliation(s)
- Xiao Hua Chen
- Department of Biological Science and Biotechnology, Tsinghua University, PR China.
| | | | | | | |
Collapse
|
33
|
Kan FWK, Esperanzate PWB. Surface mapping of binding of oviductin to the plasma membrane of golden hamster spermatozoa during in vitro capacitation and acrosome reaction. Mol Reprod Dev 2006; 73:756-66. [PMID: 16493683 DOI: 10.1002/mrd.20459] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oviductins are high-molecular-weight glycoproteins synthesized and secreted by nonciliated oviductal epithelial cells and have been shown to play a role in fertilization and early embryo development. The present study was carried out to examine the in vitro binding capacity of hamster oviductin to homologous sperm and to determine the sites of its localization in untreated, capacitated, and acrosome-reacted spermatozoa. Freshly prepared epididymal and capacitated sperm as well as acrosome-reacted sperm were incubated with oviductal fluid prepared from isolated hamster oviducts, fixed and then probed with a monoclonal antibody against hamster oviductin. Results obtained with pre-embedding immunolabeling experiments revealed binding of oviductin to the acrosomal cap and the apical aspect of the postacrosomal region. Immunolabeling of both regions appeared to be more intense in capacitated spermatozoa. Acrosome-reacted sperm showed an immunoreaction of moderate intensity over the postacrosomal region. The plasma membrane overlying the equatorial segment also exhibited a weak labeling. Quantitative analysis obtained with the surface replica technique indicated that oviductin had a higher binding affinity for the acrosomal cap than the postacrosomal region and that the binding of oviductin to the latter plasma membrane domain was enhanced during capacitation. Binding of oviductin to the postacrosomal region, however, was attenuated after acrosome reaction. Immunolabeling for oviductin was found to be the weakest over the equatorial segment regardless of the experimental conditions. The binding of hamster oviductin to specific membrane domains of the homologous sperm and the changes in its distribution during capacitation and acrosome reaction may be important for the function of hamster oviductin preceding and during fertilization.
Collapse
Affiliation(s)
- Frederick W K Kan
- Department of Anatomy and Cell Biology, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada.
| | | |
Collapse
|
34
|
Derbigny WA, Kerr MS, Johnson RM. Pattern recognition molecules activated by Chlamydia muridarum infection of cloned murine oviduct epithelial cell lines. THE JOURNAL OF IMMUNOLOGY 2005; 175:6065-75. [PMID: 16237102 DOI: 10.4049/jimmunol.175.9.6065] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chlamydia trachomatis is the most common bacterial sexually transmitted disease in the United States and a major cause of female infertility due to infection-induced Fallopian tube scarring. Epithelial cells are likely central to host defense and pathophysiology as they are the principal cell type productively infected by C. trachomatis. We generated cloned murine oviduct epithelial cell lines without viral or chemical transformation to investigate the role of the TLRs and cytosolic nucleotide binding site/leucine-rich repeat proteins Nod1 and Nod2 in epithelial responses to Chlamydia muridarum infection. RT-PCR assays detected mRNA for TLR2 (TLRs 1 and 6), TLR3, and TLR5. No mRNA was detected for TLRs 4, 7, 8, and 9. Messenger RNAs for Nod1 and Nod2 were present in the epithelial cell lines. Oviduct epithelial cell lines infected with C. muridarum or exposed to the TLR2 agonist peptidoglycan secreted representative acute phase cytokines IL-6 and GM-CSF in a MyD88-dependent fashion. Infected epithelial cell lines secreted the immunomodulatory cytokine IFN-beta, even though C. muridarum does not have a clear pathogen-associated molecular pattern (PAMP) for triggering IFN-beta transcription. The oviduct epithelial lines did not secrete IFN-beta in response to the TLR2 agonist peptidoglycan or to the TLR3 agonist poly(I:C). Our data identify TLR2 as the principal TLR responsible for secretion of acute phase cytokines by C. muridarum-infected oviduct epithelial cell lines. The pattern recognition molecule responsible for infection-induced IFN-beta secretion by oviduct epithelial cells remains to be determined.
Collapse
Affiliation(s)
- Wilbert A Derbigny
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
35
|
Sato M. Intraoviductal introduction of plasmid DNA and subsequent electroporation for efficient in vivo gene transfer to murine oviductal epithelium. Mol Reprod Dev 2005; 71:321-30. [PMID: 15803457 DOI: 10.1002/mrd.20295] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Various growth factors and proteins produced by oviductal cells have been demonstrated to interact with developing embryos. However, little is known concerning the function of mammalian oviducts at the molecular biological level. This may be partly due to lack of efficient gene transfer to oviductal cells. In this study, we developed an efficient method for transfection of oviductal epithelium using in vivo electroporation (EP) in mice. One microliter of solution containing enhanced green fluorescent protein (EGFP) expression plasmid (0.5 microg) and 0.05% trypan blue (TB) were directly introduced into the ampulla of the eCG-hCG-treated B6C3F1 females at embryonic day (E) 0.6 of pregnancy (corresponding to 14:00-15:00 of the day the plug was recognized). The entire oviduct was then electroporated using tweezer-type electrodes attached to a T820 electroporator (BTX Genetronics, Inc., San Diego, CA) with eight square-wave pulses, 50 V in strength and 50 msec in duration. On E 3.4, embryos at morula/early blastocyst stages were collected and their number, morphology, and EGFP-derived fluorescence recorded. Fluorescence in oviducts was also examined. In some cases, these fluorescent oviducts were subjected to cryostat sectioning. Strong fluorescence was observed in some of the oviductal epithelia, with a maximum level of 36%. Neither the number nor morphology of the collected embryos was affected by EP. Some embryos possessed fluorescence in the blastocoel, but not cytoplasm, suggesting incorporation of EGFP present in the oviductal luminal fluid. This system may enable development of new factors regulating development of preimplantation embryos and offers the prospect of a new approach to understanding oviductal function.
Collapse
Affiliation(s)
- Masahiro Sato
- The Institute of Medical Sciences, Tokai University, Bohseidai, Isehara, Kanagawa, Japan.
| |
Collapse
|
36
|
Staack A, Hayward SW, Baskin LS, Cunha GR. Molecular, cellular and developmental biology of urothelium as a basis of bladder regeneration. Differentiation 2005; 73:121-33. [PMID: 15901280 DOI: 10.1111/j.1432-0436.2005.00014.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Urinary bladder malfunction and disorders are caused by congenital diseases, trauma, inflammation, radiation, and nerve injuries. Loss of normal bladder function results in urinary tract infection, incontinence, renal failure, and end-stage renal dysfunction. In severe cases, bladder augmentation is required using segments of the gastrointestinal tract. However, use of gastrointestinal mucosa can result in complications such as electrolyte imbalance, stone formation, urinary tract infection, mucous production, and malignancy. Recent tissue engineering techniques use acellular grafts, cultured cells combined with biodegradable scaffolds, and cell sheets. These techniques are not all currently applicable for human bladder reconstruction. However, new avenues for bladder reconstruction maybe facilitated by a better understanding of urogenital development, the cellular and molecular biology of urothelium, and cell-cell interactions, which modulate tissue repair, homeostasis, and disease progression.
Collapse
Affiliation(s)
- Andrea Staack
- Department of Urology, University Medical Center Charité, Humboldt University, Schumannstrasse 20/21, 10117 Berlin, Germany.
| | | | | | | |
Collapse
|
37
|
Umezu T, Hanazono M, Aizawa S, Tomooka Y. Characterization of newly established clonal oviductal cell lines and differential hormonal regulation of gene expression. In Vitro Cell Dev Biol Anim 2004; 39:146-56. [PMID: 14505432 DOI: 10.1007/s11626-003-0009-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oviductal functions have been studied mainly in primary epithelial cell culture and organ culture. However, secretory cells and ciliated cells coexist in the epithelium, and the small size of the oviduct limits the sources of both epithelial and stromal cells. To circumvent the limits, we attempted to establish clonal cell lines from an oviduct of a p53-deficient mouse. An oviduct was enzymatically digested and cultured in medium containing 10% fetal calf serum supplemented with estradiol-17beta. Morphologically distinct clones (10 epithelial and 4 fibroblastic clones) were established, and all clones expressed estrogen receptor alpha and progesterone receptor. Expression of a mouse oviduct-specific glycoprotein gene as a marker of secretory cells was limited in one clone and was stimulated by estrogens and suppressed by progesterone. Expression of helix factor hepatocyte nuclear factor/forkhead homologue-4 gene as a marker of ciliated cells was limited in two clones and was suppressed by estrogens. The two genes were never coexpressed in any clones. The results strongly suggest that the oviductal epithelium consists of two functionally determined populations. To our knowledge, this is the first establishment of functional clonal cell lines of the oviduct and makes it possible to study independently two oviductal functions, secretion and ciliogenesis.
Collapse
Affiliation(s)
- Tomohiro Umezu
- Department of Biological Science and Technology, and Tissue Engineering Research Center, Tokyo University of Science, 2641 Yamazaki Noda, Chiba 278-8510, Japan
| | | | | | | |
Collapse
|
38
|
Umezu T, Tomooka Y. An evidence of stromal cell populations functionally linked with epithelial cell populations in the mouse oviduct. Zoolog Sci 2004; 21:319-26. [PMID: 15056927 DOI: 10.2108/zsj.21.319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The oviductal epithelium consists of two major cell populations, secretory cells and cilial cells. In a previous report, we established clonal cell lines from the epithelium and stroma of an oviduct which allowed us to analyze stromal contribution to epithelial functions. Three stromal cell lines were co-cultured in separated apparatus with 3 epithelial cell lines, respectively. Two stromal cell lines preferentially stimulated mogp-1 expression on secretory cells and the stimulation was additive with estrogen. The lines had no effect on cilial cells. One stromal cell line preferentially stimulated foxj1 expression on cilial cells and the stimulation relieved suppression by estrogen. The line had no effect on secretory cells. Experiments with conditioned media of the stromal cells confirmed the results of co-culture experiments, suggesting that the oviductal stroma contains multiple cell populations preferentially regulating or modulating specific cell populations of the epithelium via diffusible factors.
Collapse
Affiliation(s)
- Tomohiro Umezu
- Department of Biological Science and Technology, Research Institute for Biological Sciences, Tissue Engineering Research Center, Tokyo University of Science, Noda, Chiba, Japan
| | | |
Collapse
|
39
|
McCauley TC, Buhi WC, Wu GM, Mao J, Caamano JN, Didion BA, Day BN. Oviduct-specific glycoprotein modulates sperm-zona binding and improves efficiency of porcine fertilization in vitro. Biol Reprod 2003; 69:828-34. [PMID: 12748122 DOI: 10.1095/biolreprod.103.016444] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Oviduct-specific glycoprotein (OGP) displays estrus-associated regional and temporal differences in expression and localizes to the zona pellucida, perivitelline space, and plasma membrane of oviductal oocytes and embryos, suggesting that it may have a role in regulation of fertilization and/or early embryonic development. The aims of this study were to evaluate the effect of exogenous OGP on in vitro fertilization (IVF) and embryo development in the pig using a defined serum-free culture system. In vitro-matured porcine oocytes were incubated with homologous OGP (0, 1, 10, 20, and 40 microg/ml) for 3 h and then washed prior to IVF. Exposure of oocytes to 10 or 20 microg/ml porcine OGP (pOGP) significantly reduced the incidence of polyspermy compared with the control (P < 0.01) while maintaining high penetration rates. When oocytes, spermatozoa, or both were preincubated with 10 microg/ml pOGP prior to IVF, the incidence of polyspermy was similarly reduced (P < 0.01) by all three treatments without affecting penetration rates. The ability of spermatozoa to undergo calcium ionophore-induced acrosome reaction was similar with or without exposure to pOGP. However, significantly fewer spermatozoa (P < 0.01) bound to the zona pellucida when oocytes were preincubated with pOGP. To evaluate the effect of pOGP on embryo development, embryos were cultured in pOGP-supplemented medium for 48 h or 144 h. Both transient and continuous exposure to pOGP significantly enhanced cleavage and blastocyst formation rate compared with the control (P < 0.01). These data demonstrate that exposure of either in vitro-matured oocytes or spermatozoa to pOGP decreased polyspermy and spermatozoa binding while maintaining high penetration rates of pig oocytes fertilized in vitro. Furthermore, pOGP exerted an embryotrophic effect independent of effects demonstrated on spermatozoa and oocytes at fertilization.
Collapse
Affiliation(s)
- T C McCauley
- Department of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Araki Y, Nohara M, Yoshida-Komiya H, Kuramochi T, Ito M, Hoshi H, Shinkai Y, Sendai Y. Effect of a null mutation of the oviduct-specific glycoprotein gene on mouse fertilization. Biochem J 2003; 374:551-7. [PMID: 12814341 PMCID: PMC1223620 DOI: 10.1042/bj20030466] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2003] [Revised: 06/06/2003] [Accepted: 06/18/2003] [Indexed: 11/17/2022]
Abstract
The mammalian fertilization process takes place in a complex microenvironment within the female genital tract. A member of the chitinase protein family, oviduct-specific glycoprotein (OGP), has been identified in oviductal fluid from various mammalian species, including humans. Although OGP is widely believed to be involved in the process of mammalian fertilization, including spermatozoon function and gamete interactions, based on experimental results obtained in vitro, its physiological significance remains controversial. The present study established OGP gene-null ( ogp (-/-)) mice, and primarily characterized their reproductive properties to study the physiological function(s) of OGP. Results obtained from studies using an in vivo or in vitro system showed that the fertility of ogp (-/-) females was within normal limits. These results indicate that OGP is not essential for the process of in vivo fertilization, at least in mice.
Collapse
Affiliation(s)
- Yoshihiko Araki
- Department of Immunology and Parasitology, Yamagata University School of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
UMEZU TOMOHIRO, HANAZONO MAKOTO, AIZAWA SHINICHI, TOMOOKA YASUHIRO. CHARACTERIZATION OF NEWLY ESTABLISHED CLONAL OVIDUCTAL CELL LINES AND DIFFERENTIAL HORMONAL REGULATION OF GENE EXPRESSION. ACTA ACUST UNITED AC 2003. [DOI: 10.1290/1543-706x(2003)039<0146:coneco>2.0.co;2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Natraj U, Bhatt P, Vanage G, Moodbidri SB. Overexpression of monkey oviductal protein: purification and characterization of recombinant protein and its antibodies. Biol Reprod 2002; 67:1897-906. [PMID: 12444068 DOI: 10.1095/biolreprod67.6.1897] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The secretory cells lining the lumen of the mammalian oviduct synthesize and secrete high molecular weight glycoprotein (OGP). Molecular cDNA cloning of most of the mammalian OGP has been accomplished. The nucleotide and deduced amino acid sequences show a remarkable homology across species and also to chitinase protein. Even though OGP has been shown to interact with gametes and the early embryo, the protein's direct function has not yet been established. A prerequisite for such studies is the availability of well-characterized protein in bulk. We used recombinant DNA technology to obtain OGP (rOGP). An authentic partial cDNA clone encoding bonnet monkey (Macaca radiata) OGP (accession number AF132 215) was recloned into expression vector pET20b. Overexpression of the protein could be demonstrated after induction with isopropylthio-beta-galactopyranoside. Recombinant protein was purified by gel filtration of Escherichia coli lysate through Sephadex G75. The protein migrated with a molecular weight of approximately 14 kDa on SDS-PAGE. The molecular weight as assessed by matrix-assisted laser adsorption time-of-flight was 14 439 daltons. With Western blot procedures the protein could be immunostained with antibodies to human OGP, baboon OGP, and antipeptide antibodies generated against a well-conserved region of mammalian OGP. The monospecificity of rabbit antibodies generated against rOGP was established by its ability to immunostain human OGP (100-110 kDa) isolated from hydrosalpinx by Western blot analysis, and the antibody immunostained epithelial cells that secrete OGP in human fallopian tubes. OGP binding sites on the head and tail region of monkey sperm could be demonstrated by using antibody against rOGP.
Collapse
Affiliation(s)
- Usha Natraj
- Institute for Research in Reproduction, Indian Council of Medical Research, Parel, Mumbai 400012, India.
| | | | | | | |
Collapse
|
43
|
Miyoshi I, Takahashi K, Kon Y, Okamura T, Mototani Y, Araki Y, Kasai N. Mouse transgenic for murine oviduct-specific glycoprotein promoter-driven simian virus 40 large T-antigen: tumor formation and its hormonal regulation. Mol Reprod Dev 2002; 63:168-76. [PMID: 12203826 DOI: 10.1002/mrd.10175] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Transgenic mice were generated in which a 2.2-kb segment of the 5'-flanking sequence of the mouse oviduct-specific glycoprotein (OGP) gene was used to drive expression of the simian virus 40 large T antigen (Tag). These mice spontaneously developed tumors in the female reproductive tract. Analysis using reverse transcriptase-polymerase chain reaction showed that the 2.2-kb OGP 5'-flanking region drove Tag mRNA expression in the oviduct, uterus, vagina, and ovary, but not in other tissues. Histological and immunohistochemical analyses revealed that the tumor cells were distributed in the oviduct, endometrium, myometrium, and vagina; and had atypical features, abnormal mitosis, and Tag expression. Ovariectomy suppressed Tag expression, and thereby, blocked tumorigenesis in the transgenic mice. Estradiol administration to ovariectomized transgenic mice led to dramatic hyperplasia of the reproductive tract tissues in association with enhanced Tag expression, both in intensity and distribution. These results demonstrated that a 2.2-kb fragment of the 5'-flanking sequence of the mouse OGP gene was capable of directing the expression of Tag and inducing tumorigenesis in female reproductive tract tissues in an estrogen-dependent manner. Estrogen response elements present in the promoter region were functional in vivo. These transgenic mice represent a unique model, since they develop tumors in the oviducts as well as in other tissues derived from the Mullerian duct.
Collapse
Affiliation(s)
- Ichiro Miyoshi
- Institute for Animal Experimentation, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Kurita A, Takizawa T, Takayama T, Totsukawa K, Matsubara S, Shibahara H, Orgebin-Crist MC, Sendo F, Shinkai Y, Araki Y. Identification, cloning, and initial characterization of a novel mouse testicular germ cell-specific antigen. Biol Reprod 2001; 64:935-45. [PMID: 11207211 DOI: 10.1095/biolreprod64.3.935] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A monoclonal antibody, designated TES101, was raised by immunizing BALB/c mice with an allogenic mouse testicular homogenate followed by immunohistochemical selection as the initial screening method. By searching the expressed sequence tag (EST) database with the N-terminal amino acid sequence of TES101 reactive protein, we found that the predicted amino acid sequence encoded by a mouse testicular EST clone matched the TES101 protein sequence. Sequence analysis of the clone revealed no homologous molecule in the DNA/protein database. Based on data obtained from N-terminal amino acid analysis of the TES101 protein, the derived amino acid sequence contained a signal peptide region of 25 amino acids and a mature protein region of 225 amino acids, which translated into a protein with a molecular weight of 24 093. Northern blot analysis showed that mRNA of the TES101 protein was found in testis but not in any other mouse tissues examined. Western blot analysis revealed that TES101 reacted with a 38-kDa band on SDS-PAGE under nonreducing conditions, and this reactivity was abrogated under reducing conditions. Immunoelectron microscopic studies demonstrated that the molecule was predominantly located on the plasma membrane of spermatocytes and spermatids but not in Sertoli cells or interstitial cells, including Leydig cells. Thus, the TES101 protein is a novel molecule present primarily on the surface of developing male germ cells. TES101 protein may play a role in the processes underlying male germ cell formation.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/immunology
- Antigens/genetics
- Antigens/immunology
- Antigens, Surface/genetics
- Antigens, Surface/immunology
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Cloning, Molecular
- Electrophoresis, Polyacrylamide Gel
- Expressed Sequence Tags
- Female
- GPI-Linked Proteins
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred BALB C
- Microscopy, Fluorescence
- Microscopy, Immunoelectron
- Molecular Sequence Data
- Sequence Analysis, DNA
- Sequence Analysis, Protein
- Sertoli Cells/chemistry
- Spermatogenesis/immunology
- Testis/immunology
- Testis/metabolism
Collapse
Affiliation(s)
- A Kurita
- Department of Immunology & Parasitology, Yamagata University School of Medicine, Yamagata 990-9585, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lee KF, Kwok KL, Yeung WS. Suppression subtractive hybridization identifies genes expressed in oviduct during mouse preimplantation period. Biochem Biophys Res Commun 2000; 277:680-5. [PMID: 11062013 DOI: 10.1006/bbrc.2000.3736] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fertilization and development of mouse embryos occur in the ampullae of oviduct. Various growth factors and embryotrophic factors produced by the oviductal cells have been demonstrated to enhance embryo development in vitro. As a step towards understanding the genetic changes of mouse oviduct during mouse embryos preimplantation period, we adopted suppression subtractive hybridization (SSH) to establish four subtracted cDNA libraries to identify (1) oviduct-expressing genes, and (2) genes that may support embryo development in vivo. Using this method, we isolated 82, 88, 99, and 109 clones from four mouse libraries prepared from 0 (day 0), 24 (day 1), 48 (day 2), and 72 h (day 3) post-human chorionic gonadotropin (hCG) treated mice. Reverse dot-blot analysis confirmed that 25 (day 0), 24 (day 1), 40 (day 2), and 29 (day 3) clones were highly expressed in mouse oviduct when compared to other tissues. DNA sequence analysis identified genes encoding mouse oviduct-specific glycoprotein (MOGP), actin-binding protein 280, and several viral genes. Northern analysis confirmed that the genes were mainly expressed in oviduct, with some viral genes also expressed in uterus. About 9% of these oviduct expressing clones (11/118) were novel. We further demonstrated that one of the novel clones ODEG0-17 was expressed in the oviduct during early embryo preimplantation period and rarely in other tissues by RT-PCR. Our results show that SSH is a powerful method applicable to identifying tissue-specific transcripts on fertilization and development.
Collapse
Affiliation(s)
- K F Lee
- Department of Obstetrics and Gynaecology, University of Hong Kong, Hong Kong, People's Republic of China.
| | | | | |
Collapse
|
46
|
Kouba AJ, Abeydeera LR, Alvarez IM, Day BN, Buhi WC. Effects of the porcine oviduct-specific glycoprotein on fertilization, polyspermy, and embryonic development in vitro. Biol Reprod 2000; 63:242-50. [PMID: 10859265 DOI: 10.1095/biolreprod63.1.242] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
This study evaluated the effects of porcine oviduct-specific glycoprotein (pOSP) on in vitro fertilization (IVF), polyspermy, and development to blastocyst. Experiment 1 evaluated the effects of various concentrations (0-100 microgram/ml) of purified pOSP on fertilization parameters, including penetration, polyspermy, male pronuclear formation, and mean number of sperm penetrated per oocyte. Experiment 2 examined the ability of an anti-pOSP immunoglobulin G to inhibit the observed effects of pOSP on fertilization parameters. Experiments 3 and 4 examined various concentrations of pOSP (0-100 microgram/ml) on zona pellucida solubility and sperm binding, respectively. Lastly, experiment 5 assessed the effects of various concentrations of pOSP (0-100 microgram/ml) on the in vitro embryo cleavage rate and development to blastocyst. Pig oocytes matured and fertilized in vitro were used for all experiments. An effect of treatment (P < 0.05) was detected for pOSP on penetration, polyspermy, and mean number of sperm per oocyte. Concentrations for pOSP of 0-50 microgram/ml had no effect on sperm penetration rates; however, compared with the control, 100 microgram/ml significantly decreased the penetration rate (74% vs. 41%). Addition of 10-100 microgram/ml significantly reduced the polyspermy rate compared with the control (61% vs. 24-29%). The decrease in polyspermy achieved by addition of pOSP during preincubation and IVF was blocked with a specific antibody to pOSP. No effect of treatment was observed on zona digestion time relative to the control; however, the number of sperm bound to the zona pellucida was significantly decreased by treatment (P < 0.05). Compared with the control, all concentrations of pOSP examined reduced the number of sperm bound per oocyte (45 vs. 19-34). A treatment effect (P < 0.05) was observed for pOSP on embryo development to blastocyst but not on cleavage rates. Addition of pOSP during preincubation and fertilization significantly increased postcleavage development to blastocyst, but a synergistic stimulation on development was not detected when pOSP was included during in vitro culture. These results indicate that exposure to pOSP before and during fertilization reduces the incidence of polyspermy in pig oocytes, reduces the number of bound sperm, and increases postcleavage development to blastocyst.
Collapse
Affiliation(s)
- A J Kouba
- Department of Animal Science, University of Florida, Gainesville, Florida 32610-0294, USA
| | | | | | | | | |
Collapse
|
47
|
Takahashi K, Sendai Y, Matsuda Y, Hoshi H, Hiroi M, Araki Y. Mouse oviduct-specific glycoprotein gene: genomic organization and structure of the 5'-flanking regulatory region. Biol Reprod 2000; 62:217-26. [PMID: 10642556 DOI: 10.1095/biolreprod62.2.217] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A member of the chitinase protein family, oviduct-specific glycoprotein (OGP), can directly associate with gametes or with the early embryo in the oviduct. Although the glycoprotein is widely distributed among mammalian species and there is indirect evidence concerning the involvement of the molecule in the fertilization process, its physiological functions are far from completely understood. To understand the fundamental mechanisms that direct gene expression as well as to know the physiological significance of OGP, we have isolated and characterized a mouse OGP gene (mogp-1). The gene was found to span 13.4 kilobases (kb) including 11 exons and 10 introns. The genomic organization of mogp-1 is well conserved compared to the other members of the chitinase family. Two transcription initiation sites were found at positions 18 and 14 upstream from the first ATG codon. Fluorescence in situ hybridization analysis demonstrated that the mogp-1 was located on the R-positive F3 band of mouse chromosome 3. Although the putative promoter region of mogp-1 lacked typical TATA, CAAT, or GC box sequences, the region contained several motif sequences of transcription factor binding sites including 10 half-palindromic estrogen responsive elements (ERE) and an imperfect ERE. Transient transfection experiments demonstrated that promoter activity could be modulated by various sequences within the 2.2 kb of the 5'-flanking region, and that the mogp-1 promoter was transactivated in an estrogen receptor-positive cell line, MCF-7, by the addition of estradiol-17beta (E(2)). In addition, relevant promoter activity for E(2) responsiveness resides within the first 270 base pairs upstream of the mogp-1. These findings should facilitate our understanding of the regulation of OGP gene expression, and they may be helpful for designing experiments to unravel the role of OGP in the process of mammalian fertilization.
Collapse
Affiliation(s)
- K Takahashi
- Department of Immunology & Parasitology and Obstetrics & Gynecology, Yamagata University School of Medicine, Research Institute for the Functional Peptides, Yamagata-City 990-9585, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Saito A, Ozaki K, Fujiwara T, Nakamura Y, Tanigami A. Isolation and mapping of a human lung-specific gene, TSA1902, encoding a novel chitinase family member. Gene 1999; 239:325-31. [PMID: 10548734 DOI: 10.1016/s0378-1119(99)00394-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using differential display technique, we have isolated a novel human gene expressed specifically in the lung. Two forms of the gene, designated TSA1902, were transcribed by alternate mRNA splicing. The transcribed mRNAs, termed TSA1902-L and TSA1902-S, putatively encode proteins of 368 and 315 amino acids, respectively, which show high similarity to human chitotriosidase protein. The N-terminal region of TSA1902-L protein contains the conserved active site residues (DXXDXDXE) of the catalytic center of various chitinases which are essential for chitinase activity. The deduced protein sequence of TSA1902-S, however, does not possess this active site, with the N-terminal 54 amino acids present in TSA1902-L protein having been deleted. Both proteins lacked the secretory sequence of N-termini and, judging from the hydropathy profile, may be soluble proteins in the cytoplasm. Chromosomal mapping by radiation hybrid analysis localized this gene to the chromosome 1p13.1-p21.3.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Blotting, Northern
- Chitinases/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 1/genetics
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Female
- Gene Expression
- Humans
- Isoenzymes/genetics
- Lung/enzymology
- Male
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
Collapse
Affiliation(s)
- A Saito
- Otsuka GEN Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno Kawauchi-cho, Tokushima, Japan
| | | | | | | | | |
Collapse
|
49
|
Malinda KM, Ponce L, Kleinman HK, Shackelton LM, Millis AJ. Gp38k, a protein synthesized by vascular smooth muscle cells, stimulates directional migration of human umbilical vein endothelial cells. Exp Cell Res 1999; 250:168-73. [PMID: 10388530 DOI: 10.1006/excr.1999.4511] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gp38k is a 383-amino-acid secreted glycoprotein expressed by cultured vascular smooth muscle cells during the time of transition from a proliferating monolayer culture to a nonproliferating multilayered (differentiated) culture. Expression continues as the cell culture forms multicellular nodules. Because this transition period involves active cell migration, we evaluated the effects of exogenously added gp38k on vascular endothelial cell (HUVEC) migration and chemotaxis. Here we demonstrate that gp38k acts as a chemoattractant for HUVECs and stimulates cell migration in Boyden chambers at a level comparable to that achieved with the known endothelial cell chemoattractant bFGF. The migration effect is neutralized by the presence of a polyclonal anti-gp38k antibody. Because gp38k expression is also correlated with changes in culture morphology, we also assessed its ability to act as an agonist of HUVEC morphology using cultures growing on Matrigel. We report that gp38k stimulates endothelial cell tubulogenesis in this assay system. These results provide the first evidence that gp38k may function in angiogenesis by stimulating the migration and reorganization of vascular endothelial cells.
Collapse
Affiliation(s)
- K M Malinda
- Laboratory of Developmental Biology, National Institute of Dental Research, National Institutes of Health, Building 30, Room 407, 30 Convent Drive, Bethesda, Maryland, 20892-4370, USA
| | | | | | | | | |
Collapse
|
50
|
Abstract
Mammals express genes coding for proteins that show significant similarity to chitinases of family 18 glycosyl hydrolases. These chitinase-like proteins have no chitinase activity due to changes in critical residues in the putative active center. One of these is oviductin, a high molecular weight glycoprotein most likely involved in fertilization and protection of the tubal epithelium owing to its mucin character. Another is YKL-40 (HCgp39) produced in association with tissue remodeling. Such proteins could have a general function in morphogenesis.
Collapse
Affiliation(s)
- G Bleau
- Département d'Obstétrique-Gynécologie, Centre Hospitalier de l'Université de Montréal, Hôpital Saint-Luc, Québec, Canada
| | | | | | | |
Collapse
|