1
|
Wischral A, Pastorello M, Gastal MO, Beg MA, Gastal EL. Hemodynamic, endocrine, and gene expression mechanisms regulating equine ovarian follicular and cellular development. Mol Reprod Dev 2021; 89:23-38. [PMID: 34911155 DOI: 10.1002/mrd.23549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 11/09/2022]
Abstract
Ovulatory follicle development and associated oocyte maturation involve complex coordinated molecular and cellular mechanisms not yet fully understood. This study addresses the relationships among follicle diameter, follicle wall blood flow, follicular-fluid factors, and gene expression for follicle growth, steroidogenesis, angiogenesis, and apoptosis in granulosa/cumulus cells and oocytes during different stages from the beginning of largest/ovulatory follicle to impending ovulation in mares. The most remarkable findings were (i) a positive association between follicle development, follicle blood flow, intrafollicular follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol, progesterone, and messenger RNA (mRNA) expression for FSHR and LHCGR in granulosa cells of the largest/ovulatory follicle; (ii) a plateau or decrease in follicle diameter and blood flow and granulosa cell mRNA for FSHR, LHCGR, IGF1R, VEGFR2, CYP19A1, and CASP3 at the preovulatory stage; (iii) higher StAR and BCL2 and lower CASP3 mRNA in granulosa cells at the time of impending ovulation; (iv) greater IGF1R mRNA for granulosa cells at the predeviation stage; and (v) lower FSHR, LHCGR, IGF1R, and VEGFR2 mRNA in cumulus cells and greater LHCGR and IGF1R mRNA in oocytes at the ovulatory stage. This study is a critical advance in the understanding of molecular mechanisms of follicle development and oocyte maturation and is expected to be vital for future studies targeting potential markers.
Collapse
Affiliation(s)
- Aurea Wischral
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA.,Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Marilia Pastorello
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Melba O Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| | - Mohd A Beg
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eduardo L Gastal
- Animal Science, School of Agricultural Sciences, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
2
|
Ovarian Folliculogenesis and Uterine Endometrial Receptivity after Intermittent Vaginal Injection of Recombinant Human Follicle-Stimulating Hormone in Infertile Women Receiving In Vitro Fertilization and in Immature Female Rats. Int J Mol Sci 2021; 22:ijms221910769. [PMID: 34639109 PMCID: PMC8509306 DOI: 10.3390/ijms221910769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 12/26/2022] Open
Abstract
The uterine first-pass effect occurs when drugs are delivered vaginally. However, the effect of vaginally administered recombinant human follicle-stimulating hormone (rhFSH) on ovarian folliculogenesis and endometrial receptivity is not well established. We aimed to compare the efficacy of rhFSH administered vaginally and abdominally in clinical in vitro fertilization (IVF) treatment, pharmacokinetic study, and animal study. In IVF treatment, the number of oocytes retrieved, endometrial thickness and uterine artery blood perfusion were not different between women who received the rhFSH either vaginally or abdominally. For serum pharmacokinetic parameters, significantly lower Tmax, clearance, and higher AUC and T1/2_elimination of rhFSH were observed in women who received rhFSH vaginally, but urine parameters were not different. Immature female rats that received daily abdominal or vaginal injections (1 IU twice daily for 4 days) or intermittent vaginal injections (4 IU every other day for two doses) of rhFSH had more total follicles than the control group. In addition, the serum progesterone and progesterone receptors in the local endometrium were significantly higher in the groups treated with intermittent abdominal or vaginal injection of rhFSH, compared with those who recieved daily injection. In summary, vaginal administration of rhFSH may provide an alternative treatment regimen in women receiving IVF.
Collapse
|
3
|
Lima FS, Acosta DAV, Egan TR, Skenandore C, Sulzberger S, French DD, Cardoso FC. Steroidogenic, Metabolic, and Immunological Markers in Dairy Cows Diagnosed With Cystic Ovarian Follicles at Early and Mid-Late Lactation. Front Vet Sci 2019; 6:324. [PMID: 31616680 PMCID: PMC6775203 DOI: 10.3389/fvets.2019.00324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/10/2019] [Indexed: 01/14/2023] Open
Abstract
The etiology of cystic ovarian follicles (COF) remains a conundrum with steroidogenic, immunological, and metabolic dysfunctions linked to its development. Studies suggest that COF development may occur as a result of disruption of the insulin signaling pathway and the severity of a negative energy balance in dairy cows, but mid to late lactation cows diagnosed with COF are unlikely to have issues with energy metabolism. Herein, we characterized the mRNA expression of steroidogenic (LHCGR, StAR, CYP11A1, 3β-HSD, CYP19A), immunological (IL-1β, IL-6, IL-8, TLR-4, TNF), and metabolic markers (IGF-1, IRS1) in follicular fluid; and plasma and follicular fluid levels of E2, IL-1β, glucose, and NEFA in early and mid-late lactation COF cows. Lactating dairy cows were diagnosed as having COF (n = 11, follicle >20 mm persistent for 7 days, absence of corpus luteum, and flaccid uterus) while 11 herdmates cycling with a dominant follicle were classified as the control cows. Cows diagnosed with COF were classified as early lactation (COF-E, n = 5) cows, <35 days in milk (DIM); or mid-late lactation (COF-M/L, n = 6), ≥118 DIM cows. Results revealed that mRNA expression StAR was greater (P < 0.01) in COF-E cows than COF-M/L cows and the control cows. The mRNA expression CYP19A1 was lower (P < 0.01) in COF-E cows and COF-M/L cows than in the control cows. The mRNA expression IL-6 and IRS-1 tended to be greater and lower, respectively, in COF-M/L cows compared to the control cows. The mRNA expression IGF-1 was greater (P < 0.01) in COF-E and COF-M/L cows than in the control cows. The plasma and follicular fluid concentration of NEFA was greater (P < 0.05) in COF-E cows than in COF-M/L and the control cows. Cows with COF-E had disturbances in steroidogenic and metabolic markers, while cows with COF-M/L had steroidogenic, immunological, and metabolic dysregulations, suggesting that COF pathogenesis may vary between early and mid-late lactation dairy cows.
Collapse
Affiliation(s)
- Fabio S Lima
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, United States.,Department of Comparative Biosciences, University of Illinois, Urbana, IL, United States
| | - Diego A V Acosta
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States.,Corporación Colombiana de Investigación Agropecuaria - Agrosavia, Bogota, Colombia
| | - Tonja R Egan
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Cassandra Skenandore
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Saige Sulzberger
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Dennis D French
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL, United States
| | - Felipe C Cardoso
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
4
|
Effect of follicle size and atresia grade on mitochondrial membrane potential and steroidogenic acute regulatory protein expression in bovine granulosa cells. ZYGOTE 2018; 26:476-484. [PMID: 30561293 DOI: 10.1017/s0967199418000564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During follicular development, granulosa cells undergo functional and structural changes affecting their steroidogenic activity. Oestrogen synthesis mainly occurs in the endoplasmic reticulum and relies on aromatase activity to convert androgens that arise from theca cells. In the present study, indicators of mitochondria-related steroidogenic capacity, as steroidogenic acute regulatory (StAR) protein expression and mitochondrial membrane potential (MMP), have been evaluated in bovine granulosa cells (GCs) and related to follicle growth and atresia. Atresia was estimated by morphological examination of follicle walls and cumulus-oocyte complexes (COC) and assessed by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay for apoptosis detection. Bovine ovarian follicles were macroscopically classified according to their atresia grade and grouped into small, medium or large follicles. After follicle opening, the COCs were morphologically classified for follicle atresia and the GCs were collected. Granulosa cells were fixed for immunofluorescence (IF) and TUNEL assay, frozen for western blotting (WB) or freshly maintained for MMP analyses. StAR protein expression was assessed using both IF and WB analyses. The follicle atresia grade could be efficiently discriminated based on either follicle wall or COC morphological evaluations. Granulosa cells collected from small non-atretic follicles showed a higher (P <0.01) MMP and WB-based StAR protein expression than small atretic follicles. For IF analysis, StAR protein expression in large atretic follicles was higher (P <0.05) than that in large non-atretic follicles. These results suggest a role played by mitochondria in GC steroidogenic activity, which declines in healthy follicles along with their growth. In large follicles, steroidogenic activity increases with atresia and is possibly associated with progesterone production.
Collapse
|
5
|
Schuermann Y, Rovani MT, Gasperin B, Ferreira R, Ferst J, Madogwe E, Gonçalves PB, Bordignon V, Duggavathi R. ERK1/2-dependent gene expression in the bovine ovulating follicle. Sci Rep 2018; 8:16170. [PMID: 30385793 PMCID: PMC6212447 DOI: 10.1038/s41598-018-34015-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/30/2018] [Indexed: 02/06/2023] Open
Abstract
Ovulation is triggered by gonadotropin surge-induced signaling cascades. To study the role of extracellular signal-regulated kinase 1/2 (ERK1/2) in bovine ovulation, we administered the pharmacological inhibitor, PD0325901, into the preovulatory dominant follicle by intrafollicular injection. Four of five cows treated with 50 µM PD0325901 failed to ovulate. To uncover the molecular basis of anovulation in ERK1/2-inhibited cows, we collected granulosa and theca cells from Vehicle and PD0325901 treated follicles. Next-generation sequencing of granulosa cell RNA revealed 285 differentially expressed genes between Vehicle and PD0325901-treated granulosa cells at 6 h post-GnRH. Multiple inflammation-related pathways were enriched among the differentially expressed genes. The ERK1/2 dependent LH-induced genes in granulosa cells included EGR1, ADAMTS1, STAT3 and TNFAIP6. Surprisingly, PD0325901 treatment did not affect STAR expression in granulosa cells at 6 h post-GnRH. Granulosa cells had higher STAR protein and theca cells had higher levels of STAR mRNA in ERK1/2-inhibited follicles. Further, both granulosa and theca cells of ERK1/2-inhibited follicles had higher expression of SLC16A1, a monocarboxylate transporter, transporting substances including β-hydroxybutyrate across the plasma membrane. Taken together, ERK1/2 plays a significant role in mediating LH surge-induced gene expression in granulosa and theca cells of the ovulating follicle in cattle.
Collapse
Affiliation(s)
- Yasmin Schuermann
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Monique T Rovani
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Veterinary Hospital, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Bernardo Gasperin
- Laboratory of Animal Reproduction-ReproPEL, Federal University of Pelotas, 96010-610, Capão do Leão, Brazil
| | - Rogério Ferreira
- Department of Animal Science, Santa Catarina State University, Santa Catarina, 88040-900, Brazil
| | - Juliana Ferst
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Veterinary Hospital, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Ejimedo Madogwe
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Paulo B Gonçalves
- Laboratory of Biotechnology and Animal Reproduction, BioRep, Veterinary Hospital, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
6
|
Baddela VS, Koczan D, Viergutz T, Vernunft A, Vanselow J. Global gene expression analysis indicates that small luteal cells are involved in extracellular matrix modulation and immune cell recruitment in the bovine corpus luteum. Mol Cell Endocrinol 2018; 474:201-213. [PMID: 29596969 DOI: 10.1016/j.mce.2018.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/02/2018] [Accepted: 03/22/2018] [Indexed: 01/01/2023]
Abstract
Genome wide mRNA expression analysis of small and large luteal cells, isolated from the mature staged corpora lutea (CL), was not performed in any species. In the current study, we have isolated bovine small and large luteal cells from mid-cycle (day 10-11) animals and characterized their transcriptomes using "GeneChip™ Bovine Gene 1.0 ST Arrays". A total of 1276 genes were identified to be differentially expressed between small and large luteal cells. Data evaluation revealed that novel functions, extracellular matrix synthesis and immune cell recruitment, were enriched in small luteal cells. On contrary, functions regarding the regulation of folliculogenesis, luteal regression, fatty acid and branched chain amino acid metabolism were differentially enriched in large luteal cells. Overall, the current data offer a first and detailed insight into the functional roles of small and large luteal cells in the mature bovine corpus luteum.
Collapse
Affiliation(s)
- Vijay Simha Baddela
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Dirk Koczan
- Institute for Immunology, University of Rostock, 18055, Rostock, Germany
| | - Torsten Viergutz
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Vernunft
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Jens Vanselow
- Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| |
Collapse
|
7
|
Dietary Supplementation of Leucine in Premating Diet Improves the Within-Litter Birth Weight Uniformity, Antioxidative Capability, and Immune Function of Primiparous SD Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1523147. [PMID: 29850484 PMCID: PMC5932505 DOI: 10.1155/2018/1523147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/13/2018] [Indexed: 11/18/2022]
Abstract
The high within-litter birth weight variation has become a big issue in multiparous animals. The present study was conducted to investigate the effects of leucine supplementation in premating diet on the reproductive performance, maternal antioxidative capability, and immune function in primiparous rats. Six-week-old female SD rats were assigned to basal diet or 0.6% leucine supplemented diet for two weeks. After mating during the eighth week of age, the rats were fed with regular gestation diet. Maternal blood samples were collected on the day before mating (day −1) and day 7 and day 20 of pregnancy, while ovaries and uteruses were obtained on day −1 and on day 7, respectively. The results indicate that, compared with control group, within-litter birth weight variation was significantly decreased, while birth weights were significantly increased in the leucine group (P < 0.01). Also, leucine improved the embryo distribution uniformity and the number of implantation sites in uterine. The ovarian gene expressions of LHR, CYP19A1, and VEGFA were upregulated, while Mucin-1 was decreased significantly (P < 0.05). Leucine also increased the maternal antioxidant capacity and immune function. Conclusively, leucine supplementation in premating diet could improve the reproductive performance, which could be attributed to the improved oxidative and immune status.
Collapse
|
8
|
Stocco DM, Zhao AH, Tu LN, Morohaku K, Selvaraj V. A brief history of the search for the protein(s) involved in the acute regulation of steroidogenesis. Mol Cell Endocrinol 2017; 441:7-16. [PMID: 27484452 PMCID: PMC5929480 DOI: 10.1016/j.mce.2016.07.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 12/14/2022]
Abstract
The synthesis of steroid hormones occurs in specific cells and tissues in the body in response to trophic hormones and other signals. In order to synthesize steroids de novo, cholesterol, the precursor of all steroid hormones, must be mobilized from cellular stores to the inner mitochondrial membrane (IMM) to be converted into the first steroid formed, pregnenolone. This delivery of cholesterol to the IMM is the rate-limiting step in this process, and has long been known to require the rapid synthesis of a new protein(s) in response to stimulation. Although several possibilities for this protein have arisen over the past few decades, most of the recent attention to fill this role has centered on the candidacies of the proteins the Translocator Protein (TSPO) and the Steroidogenic Acute Regulatory Protein (StAR). In this review, the process of regulating steroidogenesis is briefly described, the characteristics of the candidate proteins and the data supporting their candidacies summarized, and some recent findings that propose a serious challenge for the role of TSPO in this process are discussed.
Collapse
Affiliation(s)
- Douglas M Stocco
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Amy H Zhao
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Lan N Tu
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Kanako Morohaku
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Fadhillah, Yoshioka S, Nishimura R, Yamamoto Y, Kimura K, Okuda K. Hypoxia-inducible factor 1 mediates hypoxia-enhanced synthesis of progesterone during luteinization of granulosa cells. J Reprod Dev 2016; 63:75-85. [PMID: 27840375 PMCID: PMC5320433 DOI: 10.1262/jrd.2016-068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hypoxia has been suggested to enhance progesterone (P4) synthesis in luteinizing granulosa cells (GCs), but the mechanism is unclear. The present study was designed to test the hypothesis that the hypoxia-induced increase in P4 synthesis during luteinization in bovine GCs is mediated by hypoxia-inducible factor 1 (HIF-1). GCs obtained from small antral follicles were cultured with 2 µg/ml insulin in combination with 10 µM forskolin for 24 h as a model of luteinizing GCs. To examine the influence of HIF-1 on P4 synthesis, we determined the effect of changes in protein expression of the α-subunit of HIF-1 (HIF1A) on P4 production and on the expression levels of StAR, P450scc, and 3β-HSD. CoCl2 (100 µM), a hypoxia-mimicking chemical, increased HIF-1α protein expression in luteinizing GCs. After the upregulation of HIF-1α, we observed an increase in P4 production and in the gene and protein expression levels of StAR in CoCl2-treated luteinizing GCs. In contrast, CoCl2 did not affect the expression of either P450scc or 3β-HSD. Echinomycin, a small-molecule inhibitor of HIF-1's DNA-binding activity, attenuated the effects of CoCl2 and of low oxygen tension (10% O2) on P4 production and StAR expression in luteinizing GCs. Overall, these findings suggest that HIF-1 is one of the factors that upregulate P4 in GCs during luteinization.
Collapse
Affiliation(s)
- Fadhillah
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Sciences, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Luo F, Jia R, Ying S, Wang Z, Wang F. Analysis of genes that influence sheep follicular development by different nutrition levels during the luteal phase using expression profiling. Anim Genet 2016; 47:354-64. [PMID: 26970339 DOI: 10.1111/age.12427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2016] [Indexed: 01/09/2023]
Abstract
Nutrition is an important factor that regulates reproductive performance of sheep and affects follicle development. However, the correlation between nutrition and follicle development is poorly understood at the molecular level. To study its possible molecular mechanisms, we performed expression profiling of granulosa cells isolated from sheep that were fed different levels of nutrition levels during the luteal phase. To do this, ewes received a maintenance diet (M), and their estrus was synchronized by intravaginal progestogen sponges for 12 days. Ewes were randomly divided into the short-term dietary-restricted group (R; 0.5 × M) and the nutrient-supplemented group (S; 1.5 × M). RNA samples were extracted from granulosa cells. Transcriptome libraries from each group were constructed by Illumina sequencing. Among 18 468 detected genes, 170 genes were significantly differentially expressed, of which 140 genes were upregulated and 30 genes were downregulated in group S relative to group R. These genes could be candidates regulating follicular development in sheep. Gene Ontology, KEGG and clustering analyses were performed. Genes related to oocyte meiosis, such as ADCY7, were upregulated. We identified two important groups of related genes that were upregulated with improved nutrition: one group comprising the genes PTGS2, UCP2 and steroidogenic acute regulatory protein and the other group comprising interleukin-1A and interleukin-1B. The genes within each group showed similar expression patterns. Additionally, all five genes are involved in the reproduction process. Quantitative real-time PCR was performed to validate the results of expression profiling. These data in our study are an abundant genomic resource to expand the understanding of the molecular and cellular events underlying follicle development.
Collapse
Affiliation(s)
- F Luo
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - R Jia
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - S Ying
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - Z Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China
| | - F Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.,Jiangsu Engineering Technology Research Center of Meat Sheep & Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
11
|
Fadhillah, Yoshioka S, Nishimura R, Okuda K. Hypoxia promotes progesterone synthesis during luteinization in bovine granulosa cells. J Reprod Dev 2014; 60:194-201. [PMID: 24583842 PMCID: PMC4085383 DOI: 10.1262/jrd.2014-014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine whether hypoxia has an effect on luteinization, we examined the influence of hypoxia on a model of bovine luteinizing and non-luteinizing granulosa cell culture. The granulosa cells were obtained from small antral follicles (≤ 6 mm in diameter). To induce luteinization, the cells were treated for 24 h with insulin (2 µg/ml), forskolin (10 µM) or insulin in combination with forskolin at 20% O2. After 24 h, progesterone (P4) production was higher in the treated cells, which we defined as luteinizing granulosa cells, than in non-treated cells, which we defined as non-luteinizing granulosa cells. P4 production by non-luteinizing granulosa cells was not affected by hypoxia (24 h at 10% and 5% O2), while P4 production by granulosa cells treated with insulin in combination with forskolin was significantly increased under hypoxia (24 h at 10% and 5% O2). Because hypoxia affected P4 production by the luteinizing granulosa cells but not by the non-luteinizing granulosa cells, hypoxia seems to promote P4 production during, rather than before, luteinization. In the cells treated with insulin in combination with forskolin, mRNA and protein expression of steroidogenic acute regulatory protein (StAR) and protein expression of 3β-hydroxysteroid dehydrogenase (3β-HSD) increased under 10% O2, while mRNA and protein expressions of key protein and enzymes in P4 biosynthesis did not increase under 5% O2. The overall results suggest that hypoxia plays a role in progressing and completing the luteinization by enhancing P4 production through StAR as well as 3β-HSD expressions in the early time of establishing the corpus luteum.
Collapse
Affiliation(s)
- Fadhillah
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | | | | | | |
Collapse
|
12
|
Walsh SW, Mehta JP, McGettigan PA, Browne JA, Forde N, Alibrahim RM, Mulligan FJ, Loftus B, Crowe MA, Matthews D, Diskin M, Mihm M, Evans ACO. Effect of the metabolic environment at key stages of follicle development in cattle: focus on steroid biosynthesis. Physiol Genomics 2012; 44:504-17. [PMID: 22414914 DOI: 10.1152/physiolgenomics.00178.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cellular mechanisms that contribute to low estradiol concentrations produced by the preovulatory ovarian follicle in cattle with a compromised metabolic status are largely unknown. To gain insight into the main metabolic mechanisms affecting preovulatory follicle function, two different animal models were used. Experiment 1 compared Holstein-Friesian nonlactating heifers (n = 17) and lactating cows (n = 16) at three stages of preovulatory follicle development: 1) newly selected dominant follicle in the luteal phase (Selection), 2) follicular phase before the LH surge (Differentiation), and 3) preovulatory phase after the LH surge (Luteinization). Experiment 2 compared newly selected dominant follicles in the luteal phase in beef heifers fed a diet of 1.2 times maintenance (M, n = 8) or 0.4 M (n = 11). Lactating cows and 0.4 M beef heifers had higher concentrations of β-hydroxybutyrate, and lower concentrations of glucose, insulin, and IGF-I compared with dairy heifers and 1.2 M beef heifers, respectively. In lactating cows this altered metabolic environment was associated with reduced dominant follicle estradiol and progesterone synthesis during Differentiation and Luteinization, respectively, and in 0.4 M beef heifers with reduced dominant follicle estradiol synthesis. Using a combination of RNA sequencing, Ingenuity Pathway Analysis, and qRT-PCR validation, we identified several important molecular markers involved in steroid biosynthesis, such as the expression of steroidogenic acute regulatory protein (STAR) within developing dominant follicles, to be downregulated by the catabolic state. Based on this, we propose that the adverse metabolic environment caused by lactation or nutritional restriction decreases preovulatory follicle function mainly by affecting cholesterol transport into the mitochondria to initiate steroidogenesis.
Collapse
Affiliation(s)
- S W Walsh
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Perry GA. Physiology and Endocrinology Symposium: Harnessing basic knowledge of factors controlling puberty to improve synchronization of estrus and fertility in heifers. J Anim Sci 2011; 90:1172-82. [PMID: 22003230 DOI: 10.2527/jas.2011-4572] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of replacement heifers is a major economic investment for all beef and dairy operations. The costs associated with heifer development cannot be recovered if heifers do not conceive and remain productive in the herd; therefore, heifers need to conceive early in the breeding season or risk being culled. Previous research has reported up to a 21% increase in fertility from pubertal estrus to the third estrus of a heifer. The use of reproductive tract scores to determine pubertal status has demonstrated that peripubertal and pubertal heifers have increased pregnancy success to estrous synchronization compared with heifers that were prepubertal. The development of RIA has allowed accurate measurement of peripheral blood hormone concentrations associated with the pubertal process and luteal formation. This basic knowledge has increased our understanding of the mechanisms that control puberty in heifers. In addition, understanding the hormonal changes that occur during the estrous cycle has allowed for the development of estrous synchronization protocols that result in increased control of follicular growth, regression of luteal tissue, and ovulation. Transrectal ultrasonography has increased our understanding of follicular waves; this understanding led to research investigating the endocrine regulation of follicular waves and development of methods to synchronize follicular waves for purposes of fixed-time AI. Current topics of research include the effect of antral follicle count on fertility and the effect of maternal nutrition (on the fetus in utero) on subsequent reproductive potential of a heifer (i.e., fetal programming). Advancements in genomic technologies will likely provide a powerful tool for selecting heifers at birth that will have a greater probability of being reproductively successful if managed correctly. Therefore, knowledge gained through basic research on factors that control puberty has improved and will continue to improve heifer development and fertility.
Collapse
Affiliation(s)
- G A Perry
- South Dakota State University, Department of Animal and Range Sciences, Brookings 57007, USA.
| |
Collapse
|
14
|
Perry GA, Perry BL. Effects of standing estrus and supplemental estradiol on changes in uterine pH during a fixed-time artificial insemination protocol1. J Anim Sci 2008; 86:2928-35. [DOI: 10.2527/jas.2008-1181] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Zheng X, Price CA, Tremblay Y, Lussier JG, Carrière PD. Role of transforming growth factor-β1 in gene expression and activity of estradiol and progesterone-generating enzymes in FSH-stimulated bovine granulosa cells. Reproduction 2008; 136:447-57. [DOI: 10.1530/rep-07-0316] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Survival and inhibitory factors regulate steroidogenesis and determine the fate of developing follicles. The objective of this study was to determine the role of transforming growth factor-β1 (TGFB1) in the regulation of estradiol-17β (E2) and progesterone (P4) secretion in FSH-stimulated bovine granulosa cells. Granulosa cells were obtained from 2 to 5 mm follicles and cultured in serum-free medium. FSH dose (1 and 10 ng/ml for 6 days) and time in culture (2, 4, and 6 days with 1 ng/ml FSH) increased E2secretion and mRNA expression of E2-related enzymes cytochrome P450 aromatase (CYP19A1) and 17β-hydroxysteroid dehydrogenase type 1 (HSD17B1), but notHSD17B7. TGFB1 in the presence of FSH (1 ng/ml) inhibited E2secretion, and decreased mRNA expression of FSH receptor(FSHR),CYP19A1, andHSD17B1, but notHSD17B7. FSH dose did not affect P4secretion and mRNA expression of 3β-hydroxysteroid dehydrogenase (HSD3B) and α-glutathioneS-transferase (GSTA), but inhibited the amount of steroidogenic acute regulatory protein(STAR)mRNA. Conversely, P4and mRNA expression ofSTAR, cytochrome P450 side-chain cleavage(CYP11A1),HSD3B, andGSTAincreased with time in culture. TGFB1 inhibited P4secretion and decreased mRNA expression ofSTAR,CYP11A1,HSD3B, andGSTA. TGFB1 modified the formation of granulosa cell clumps and reduced total cell protein. Finally, TGFB1 decreased conversion of androgens to E2, but did not decrease the conversion of estrone (E1) to E2and pregnenolone to P4. Overall, these results indicate that TGFB1 counteracts stimulation of E2and P4synthesis in granulosa cells by inhibiting key enzymes involved in the conversion of androgens to E2and cholesterol to P4without shutting down HSD17B reducing activity and HSD3B activity.
Collapse
|
16
|
Monniaux D, Clemente ND, Touzé JL, Belville C, Rico C, Bontoux M, Picard JY, Fabre S. Intrafollicular steroids and anti-mullerian hormone during normal and cystic ovarian follicular development in the cow. Biol Reprod 2008; 79:387-96. [PMID: 18448844 DOI: 10.1095/biolreprod.107.065847] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Development of follicular cysts is a frequent ovarian dysfunction in cattle. Functional changes that precede cyst formation are unknown, but a role for anti-Müllerian hormone (AMH) in the development of follicular cysts has been suggested in humans. This study aimed to characterize intrafollicular steroids and AMH during follicular growth in a strain of beef cows exhibiting a high incidence of occurrence of follicular cysts. Normal follicular growth and cyst development were assessed by ovarian ultrasonography scanning during the 8 days before slaughtering. Experimental regression of cysts was followed by rapid growth of follicles that reached the size of cysts within 3-5 days. These young cysts exhibited higher intrafollicular concentrations of testosterone, estradiol-17beta, and progesterone than large early dominant follicles did in normal ovaries, but they exhibited similar concentrations of AMH. Later-stage cysts were characterized by hypertrophy of theca interna cells, high intrafollicular progesterone concentration, and high steroidogenic acute regulatory protein mRNA expression in granulosa cells. Progesterone and AMH concentrations in the largest follicles (> or =10 mm) and cysts were negatively correlated (r = -0.45, P < 0.01). Smaller follicles (<10 mm) exhibited higher intrafollicular testosterone and estradiol-17beta concentrations in ovaries with cysts compared to normal ovaries. During follicular growth, AMH concentration dropped in follicles larger than 5 mm in diameter and in a similar way in ovaries with and without cysts. In conclusion, enhanced growth and steroidogenesis in antral follicles <10 mm preceded cyst formation in cow ovaries. Intrafollicular AMH was not a marker of cystic development in the cow, but low AMH concentrations in cysts were associated with luteinization.
Collapse
Affiliation(s)
- Danielle Monniaux
- Physiologie de la Reproduction et des Comportements, UMR 6175, INRA-CNRS-Université de Tours-Haras Nationaux, 37380 Nouzilly, France.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Watson ED, Bae SE, Al-Zi'abi MO, Hogg CO, Armstrong DG. Expression of mRNA encoding insulin-like growth factor binding protein-2 (IGFBP-2) during induced and natural regression of equine corpora lutea. Theriogenology 2005; 64:1371-80. [PMID: 16139613 DOI: 10.1016/j.theriogenology.2005.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Revised: 02/21/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
The insulin-like growth factors, IGF-I and -II, have been shown to play a key role in luteal function in some species. The IGF binding proteins, IGFBP-2 and -3, have been shown to inhibit binding of IGF-I and -II to bovine luteal cells and decrease progesterone production. We have recently shown that equine follicles have the genetic capacity to produce IGFBP-2, and that levels decrease in healthy preovulatory follicles. In the present study expression of mRNAs encoding IGFBP-2, as well as the rate-limiting steroidogenic enzyme, P450scc, were studied in equine corpora lutea to investigate whether IGFBP-2 might be involved in luteolysis. Corpora lutea were collected from mares in mid-luteal phase (day 10), at early regression (day 14), late regression (day 17), and 12 and 36 h after intramuscular administration of the PGF(2alpha) analogue, cloprostenol (0.5 microg/kg). During early natural regression, and 12 h after administration of cloprostenol on day 10, steady state levels of mRNAs encoding P450scc had decreased significantly compared with day 10 of dioestrus (P < 0.001). Levels of mRNA encoding IGFBP-2 increased significantly between mid-diestrus and early (P < 0.01) and late (P < 0.001) regression, and 36 h after cloprostenol administration (P < 0.001). We conclude that the genetic capacity for increased IGFBP-2 production in the early stages of natural luteolysis in the mare may act to sequester IGF-I in the CL, assisting in inhibition of progesterone production. However the delay in increase in mRNA encoding IGFBP-2 after cloprostenol administration, combined with the sharp fall in expression of P450scc mRNA, suggests that the luteolytic action of a pharmacological dose of cloprostenol may not be mediated via IGFBP-2 in the mare.
Collapse
Affiliation(s)
- E D Watson
- Royal (Dick) School of Veterinary Studies, Department of Veterinary Clinical Studies, Veterinary Field Station, University of Edinburgh, Easter Bush, Midlothian, Scotland EH25 9RG, UK.
| | | | | | | | | |
Collapse
|
18
|
Tajima K, Yoshii K, Fukuda S, Orisaka M, Miyamoto K, Amsterdam A, Kotsuji F. Luteinizing hormone-induced extracellular-signal regulated kinase activation differently modulates progesterone and androstenedione production in bovine theca cells. Endocrinology 2005; 146:2903-10. [PMID: 15817663 DOI: 10.1210/en.2005-0093] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been reported that gonadotropins promoted phosphorylation of ERK/MAPK in granulosa cells. However, little is known about the effects of gonadotropin on ERK activity in theca cells. This study explores how LH/forskolin controls ERK phosphorylation in cultured bovine theca cells. Effects of ERK on steroidogenesis were also investigated. Phosphorylation of ERK in bovine theca cells was augmented by LH and forskolin in 5 min; it decreased thereafter below basal levels in 20 min. Nevertheless, phosphorylation of the ERK kinase, MEK, was unaffected. Addition of H89 (a protein kinase A inhibitor) significantly reduced the effect of LH/forskolin on ERK phosphorylation. A potent MEK inhibitor PD98059 eliminated ERK phosphorylation and augmented progesterone production concomitantly with the elevation of intracellular steroidogenic acute regulatory protein mRNA in LH/forskolin-stimulated theca cells. In contrast to progesterone production, androgen production was diminished significantly by inhibition of ERK with decreased intracellular P450c17 mRNA levels. Taking these results together, we conclude that LH/cAMP leads to phosphorylation of ERK in a biphasic manner through MEK-independent pathway in bovine theca cells. Protein kinase A-induced phosphatase could possibly contribute to the phosphorylation process. Furthermore, modulation of ERK phosphorylation involves control of thecal steroidogenesis via modulation of the expression of steroidogenic acute regulatory protein and P450c17.
Collapse
Affiliation(s)
- Kimihisa Tajima
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, University of Fukui, Matsuoka, Fukui 910-1193, Japan.
| | | | | | | | | | | | | |
Collapse
|
19
|
Braw-Tal R, Roth Z. Gene expression for LH receptor, 17α-hydroxylase and StAR in the theca interna of preantral and early antral follicles in the bovine ovary. Reproduction 2005; 129:453-61. [PMID: 15798020 DOI: 10.1530/rep.1.00464] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The onset of gene expression for three proteins that play pivotal roles in theca interna function, namely the LH receptor (LH-R), cytochrome P450 17α-hydroxylase (17αOH) and the steroidogenic acute regulatory protein (StAR), was determined. Ovaries were obtained on day 9 of the oestrus cycle from mature synchronized dairy cows (n= 5) and gene expression in preantral and antral follicles up to 4 mm in diameter was evaluated byin situhybridization. LH-R and 17αOH mRNAs were observed first, in the theca interna of large preantral follicles (type 4), concurrent with its morphological differentiation. StAR mRNA appeared later during follicular growth, in follicles >1 mm in diameter (type 6). LH-R and 17αOH mRNAs were found exclusively in the thecal cells, whereas StAR mRNA appeared in thecal cells, granulosa cells of late atretic follicles and oocytes. In early atresia, thecal cells expressed all three mRNAs, and their expression decreased gradually as atresia progressed. Atresia in granulosa cells was characterized by massive apoptosis of periantral, but not peribasal cells, that differentiated into luteal-like cells expressing StAR.In summary, our study suggests that in spite of the presence of 17αOH, a key enzyme in steroidogenesis, the ability to produce steroids by bovine follicles smaller than 1 mm in diameter must be very limited due to the absence of StAR protein. During the early stages of atresia, thecal cells remain morphologically and functionally healthy, and continue to express all three studied mRNAs.
Collapse
Affiliation(s)
- R Braw-Tal
- Agricultural Research Organization, the Volcani Center, Institute of Animal Science, Bet Dagan 50250, Israel.
| | | |
Collapse
|
20
|
Sahmi M, Nicola ES, Silva JM, Price CA. Expression of 17beta- and 3beta-hydroxysteroid dehydrogenases and steroidogenic acute regulatory protein in non-luteinizing bovine granulosa cells in vitro. Mol Cell Endocrinol 2004; 223:43-54. [PMID: 15279910 DOI: 10.1016/j.mce.2004.05.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 05/21/2004] [Accepted: 05/24/2004] [Indexed: 11/27/2022]
Abstract
Granulosa cells of small follicles differentiate in vitro in serum-free medium, resulting in increased estradiol secretion and abundance of mRNA encoding cytochrome P450aromatase (P450arom). We tested the hypothesis that differentiation in vitro also involves increased expression of 3beta- and 17beta-hydroxysteroid dehydrogenases (HSD) in the absence of steroidogenic acute regulatory protein (StAR) expression, as has been observed in vivo. Granulosa cells from small (<6 mm diameter) follicles were cultured for up to 6 days, and mRNA levels quantified by Northern hybridization or RT-PCR. Estradiol and progesterone concentrations in medium increased with time in culture, as did mRNA encoding P450arom, 3beta- and 17beta-HSD but not P450scc. Both P450arom and 17beta-HSD were significantly correlated with estradiol accumulation in culture medium. Progesterone secretion was correlated with 3beta-HSD but not P450scc mRNA levels. StAR mRNA was detectable by RT-PCR, did not change with duration of culture and was not correlated with progesterone secretion. FSH significantly stimulated P450arom and 17beta-HSD mRNA levels. Cell origin (from the antral or the basal layer of the membrana granulosa) did not affect steroidogenesis. We conclude that under the present cell culture system granulosa cells do not luteinize, and show expression of key steroidogenic enzymes in patterns similar to those occurring in differentiating follicles in vivo. Further, the data suggest that 17beta-HSD may be as important as P450arom in regulating estradiol secretion, and that 3beta-HSD is more important than P450scc as a regulator of progesterone secretion in non-luteinizing granulosa cells.
Collapse
Affiliation(s)
- M Sahmi
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Que., Canada J2S 7C6
| | | | | | | |
Collapse
|
21
|
Watson ED, Bae SE, Steele M, Thomassen R, Pedersen HG, Bramley T, Hogg CO, Armstrong DG. Expression of messenger ribonucleic acid encoding for steroidogenic acute regulatory protein and enzymes, and luteinizing hormone receptor during the spring transitional season in equine follicles. Domest Anim Endocrinol 2004; 26:215-30. [PMID: 15036376 DOI: 10.1016/j.domaniend.2003.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2003] [Accepted: 10/29/2003] [Indexed: 11/17/2022]
Abstract
The period of spring transition, from the anovulatory to the ovulatory season, is characterized in many mares by cyclical growth and regression of large dominant follicles. These follicles produce only low concentrations of estradiol and it is thought that acquisition of steroidogenic competence by large follicles during spring transition is prerequisite in stimulating LH prior to first ovulation. In situ hybridization was used to localize and quantify expression of factors that play a key role in follicular steroidogenesis: StAR, P450scc (CYP11A1), P450c17 (CYP17), P450arom (CYP19), and LH receptor (LHr). One ovary was obtained from mares on the day after detection of an actively growing 30 mm transitional anovulatory follicle (defined as the transitional follicle), and the remaining ovary was removed at the third estrus of the breeding season on the day after the preovulatory follicle reached 30 mm in diameter (defined as the preovulatory follicle). Messenger RNAs encoding StAR, CYP11A1, and CYP17 were detected only in theca cells and CYP19 mRNA was confined to the granulosa layer. There was significantly lower expression of mRNAs for the steroidogenic enzymes, StAR (P<0.001) and LHr (P<0.05) in transitional follicles than in preovulatory follicles. In conclusion, large equine follicles during spring transition have low levels of mRNA encoding steroidogenic enzymes, StAR and LHr which will contribute to the steroidogenic incompetence of dominant follicles during spring transition and their subsequent regression.
Collapse
Affiliation(s)
- Elaine D Watson
- Department of Veterinary Clinical Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian EH25 9RG, UK.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
In cattle, sub-luteal circulating progesterone induces an increase in the frequency of LH pulses, prolonged growth of the dominant follicle, increased peripheral estradiol and reduced fertility. The objective of this study was to examine the earliest stages of development of prolonged dominant follicles, to gain insight into the etiology of this aberrant condition. Heifers were treated with an intravaginal progesterone-releasing device (CIDR) from Day 4-8 post-estrus and PGF2alpha was injected on Day 6 and again 12h later (early prolonged dominant group). Follicular phase (CIDR: Day 4-6, with PGF2alpha) and luteal phase (CIDR: Day 4-8, without PGF2alpha) groups served as controls. As expected, peripheral progesterone in heifers of the early prolonged dominant group was intermediate between luteal and follicular phase groups after luteal regression (P<0.05). On Day 7, the frequency of LH pulses was higher in heifers of the follicular phase and early prolonged dominant groups than the luteal phase group (P<0.05). Dominant follicles (n = 4 per group) were collected by ovariectomy on Day 8 and were similar in size among groups (P>0.05). Estradiol and androstenedione concentrations in the follicular fluid at ovariectomy were higher in the follicular phase and early prolonged dominant groups versus the luteal phase group (P<0.01), whereas progesterone did not differ among groups (P>0.05). Granulosa cells and theca interna isolated from dominant follicles were incubated for 3h with or without gonadotropins or frozen for later analysis of mRNA for steroidogenic enzymes. Luteinizing doses (128 ng/ml) of LH and FSH increased secretion of progesterone (P<0.05) but did not affect secretion of estradiol by granulosa cells in all groups. Low (2 or 4 ng/ml) and luteinizing doses of LH increased secretion of androstenedione by theca interna to a similar extent among groups. Expression of mRNA for P450 side chain cleavage (P450scc), 3beta-hydroxysteroid dehydrogenase (3beta-HSD), P450 aromatase (aromatase) and Steroidogenic Acute Regulatory (StAR) protein by granulosa cells did not differ among groups (P>0.05). Levels of mRNA for P450scc, 3beta-HSD, 17alpha-hydroxylase (17alpha-OH) and StAR protein in theca interna were similar in the follicular phase and early prolonged dominant groups (P>0.05), but lower in the luteal phase group (P<0.05-0.1). In summary, the premature follicular luteinization observed in previous studies after prolonged periods of sub-luteal progesterone was absent in early prolonged dominant follicles, exposed to sub-luteal progesterone for 36 h, and their characteristics resembled those of control follicles during the follicular phase.
Collapse
Affiliation(s)
- P J Bridges
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
23
|
Manikkam M, Bao B, Rosenfeld CS, Yuan X, Salfen BE, Calder MD, Youngquist RS, Keisler DH, Lubahn DB, Garverick HA. Expression of the bovine oestrogen receptor-beta (bERbeta) messenger ribonucleic acid (mRNA) during the first ovarian follicular wave and lack of change in the expression of bERbeta mRNA of second wave follicles after LH infusion into cows. Anim Reprod Sci 2001; 67:159-69. [PMID: 11530262 DOI: 10.1016/s0378-4320(01)00121-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In a previous study, the ERbeta cDNA protein-coding region was utilised to clone bovine ERbeta. The objectives in this study were to examine (1) ERbeta mRNA expression in ovarian follicles throughout the bovine first follicular wave, and (2) effect of LH infusion into cows on bERbeta mRNA expression during the second follicular wave. In experiment 1, heifers (4-5 per time point) were ovariectomized at 12, 24, 36, 48, 60, 72, 84, 96, 144, or 216 h after emergence of the first follicular wave after oestrus. In experiment 2, saline or LH was pulsed hourly (computer-controlled syringe pump) into cows (n = 31; 5-6 per treatment) at wave emergence for 2 or 4 days: wave 1-saline (W1S), wave 2-saline (W2S), or wave 2-LH (25 microg/h; W2LH). Ovaries were removed on day 2 or day 4 after wave emergence. Follicles, 2-19mm in size, were dissected, frozen, and stored at -80 degrees C for in situ hybridisation with two bERbeta cRNA probes. Expression of bERbeta mRNA was localised in granulosa cells of healthy follicles. In experiment 1, bERbeta mRNA expression did not change with time points of the wave showing no association of bERbeta mRNA expression with follicular selection and dominance. However, bERbeta mRNA expression decreased with increase in size of all follicles. Expression of bERbeta mRNA was greater in very small follicles (2-4 mm) than in large (> or = 9 mm) follicles. In experiment 2, expression of bERbeta mRNA in follicles did not differ either between W1S and W2S or between W2S and W2LH. In summary, bERbeta mRNA expression decreased with increasing follicular size. However, neither stage of the wave (selection or dominance), nor pulsatile infusion of LH influenced bERbeta mRNA expression.
Collapse
Affiliation(s)
- M Manikkam
- Department of Animal Sciences, University of Missouri, East Campus Dr., 163 Animal Science Research Center, Columbia, MO 65211-5300, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fortune JE, Rivera GM, Evans AC, Turzillo AM. Differentiation of dominant versus subordinate follicles in cattle. Biol Reprod 2001; 65:648-54. [PMID: 11514324 DOI: 10.1095/biolreprod65.3.648] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Selection of a dominant follicle, capable of ovulating, from among a cohort of similarly sized follicles is a critical transition in follicular development. The mechanisms that regulate the selection of a species-specific number of dominant follicles for ovulation are not well understood. Cattle provide a very useful animal model for studies on follicular selection and dominance. During the bovine estrous cycle, two or three sequential waves of follicular development occur, each producing a dominant follicle capable of ovulating if luteal regression occurs. Follicles are large enough to allow analysis of multiple endpoints within a single follicle, and follicular development and regression can be followed via ultrasonographic imaging. Characteristics of recruited and selected follicles, obtained at various times during the first follicular wave, have been determined in some studies, whereas dominant and subordinate follicles have been compared around the time of selection in others. As follicular recruitment proceeds, mRNA for P450 aromatase increases. By the time of morphological selection, the dominant follicle has much higher concentrations of estradiol in follicular fluid, and its granulosa cells produce more estradiol in vitro than cells from subordinate follicles. Shortly after selection, dominant follicles have higher levels of mRNAs for gonadotropin receptors and steroidogenic enzymes. It has been hypothesized that granulosa cells of the selected follicle acquire LH receptors (LHr) to allow them to increase aromatization in response to LH, as well as FSH. However, LH does not appear to stimulate estradiol production by bovine granulosa cells, and the role of LHr acquisition remains to be determined. Recent evidence suggests a key role for changes in the intrafollicular insulin-like growth factor (IGF) system in selection of the dominant follicle. When follicular fluid was sampled in vivo before morphological selection, the lowest concentration of IGF binding protein-4 (IGFBP-4) was more predictive of future dominance than size or estradiol concentration. Consistent with this finding, dominant follicles acquire an FSH-induced IGFBP-4 protease activity. Thus, a decrease in IGFBP-4, which would make more IGF available to interact with its receptors and synergize with FSH to promote follicular growth and aromatization, appears to be a critical determinant of follicular selection for dominance.
Collapse
Affiliation(s)
- J E Fortune
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
25
|
Abstract
Steroid hormone biosynthesis is acutely regulated by pituitary trophic hormones and other steroidogenic stimuli. This regulation requires the synthesis of a protein whose function is to translocate cholesterol from the outer to the inner mitochondrial membrane in steroidogenic cells, the rate-limiting step in steroid hormone formation. The steroidogenic acute regulatory (StAR) protein is an indispensable component in this process and is the best candidate to fill the role of the putative regulator. StAR is expressed in steroidogenic tissues in response to agents that stimulate steroid production, and mutations in the StAR gene result in the disease congenital lipoid adrenal hyperplasia, in which steroid hormone biosynthesis is severely compromised. The StAR null mouse has a phenotype that is essentially identical to the human disease. The positive and negative expression of StAR is sensitive to agents that increase and inhibit steroid biosynthesis respectively. The mechanism by which StAR mediates cholesterol transfer in the mitochondria has not been fully characterized. However, the tertiary structure of the START domain of a StAR homolog has been solved, and identification of a cholesterol-binding hydrophobic tunnel within this domain raises the possibility that StAR acts as a cholesterol-shuttling protein.
Collapse
Affiliation(s)
- D M Stocco
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA.
| |
Collapse
|
26
|
Abstract
Luteinization is essential to the success of early gestation. It is the process by which elements of the ovarian follicle, usually including both theca interna and granulosa cells, are provoked by the ovulatory stimulus to develop into the corpus luteum. Although there are significant species differences in luteinization, some elements pervade, including the morphological and functional differentiation to produce and secrete progesterone. There is evidence that luteinization results in granulosa cell exit from the cell cycle. The mechanisms that appear to control luteinization include intracellular signalling pathways, cell adhesion factors, intracellular cholesterol and oxysterols, and perhaps progesterone itself as a paracrine or intracrine regulator. Cell models of luteinization, along with some of the conflicting observations on the luteinization process, are discussed in this review.
Collapse
Affiliation(s)
- B D Murphy
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada J2S 7C6.
| |
Collapse
|
27
|
Bathgate R, Moniac N, Bartlick B, Schumacher M, Fields M, Ivell R. Expression and regulation of relaxin-like factor gene transcripts in the bovine ovary: differentiation-dependent expression in theca cell cultures. Biol Reprod 1999; 61:1090-8. [PMID: 10491648 DOI: 10.1095/biolreprod61.4.1090] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The relaxin-like factor (RLF) was recently discovered as a new member of the insulin-insulin-like growth factor-relaxin family of growth factors and hormones predominantly in the Leydig cells of the testis. In cattle, in contrast to other species, the RLF gene is also expressed to a high level in the ovary, where its expression pattern in the corpus luteum of the late cycle and pregnancy is similar to that of relaxin in the pig. The RLF gene was also transcribed to a high level in the theca cells of estrogen-rich, large antral follicles. Long-term primary cultures of bovine theca cells showed that expression was insulin dependent. After an initial decline in specific mRNA concentrations, there was a switch to a transcript with a longer poly(A) tail at about Day 6 of culture, which continued to increase to very high levels by Day 15 of culture. Addition of fetal calf serum to cultures caused a rapid and irreversible down-regulation of the RLF gene. Also, LH caused a decline in specific gene expression in long-term primary theca cell cultures. As in the Leydig cells of the testis, the pattern of RLF gene expression appears to reflect the differentiation state of the ovarian theca-luteal cell lineage, and should prove useful for mapping the fate of these cells under differing stimulation regimes.
Collapse
Affiliation(s)
- R Bathgate
- Institute for Hormone and Fertility Research, University of Hamburg, 22529 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|