1
|
Paul B, Buchholz DR. Minireview: Glucocorticoid-Leptin Crosstalk: Role of Glucocorticoid-Leptin Counterregulation in Metabolic Homeostasis and Normal Development. Integr Comp Biol 2023; 63:1127-1139. [PMID: 37708034 DOI: 10.1093/icb/icad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Glucocorticoids and leptin are two important hormones that regulate metabolic homeostasis by controlling appetite and energy expenditure in adult mammals. Also, glucocorticoids and leptin strongly counterregulate each other, such that chronic stress-induced glucocorticoids upregulate the production of leptin and leptin suppresses glucocorticoid production directly via action on endocrine organs and indirectly via action on food intake. Altered glucocorticoid or leptin levels during development can impair organ development and increase the risk of chronic diseases in adults, but there are limited studies depicting the significance of glucocorticoid-leptin interaction during development and its impact on developmental programming. In mammals, leptin-induced suppression of glucocorticoid production is critical during development, where leptin prevents stress-induced glucocorticoid production by inducing a period of short-hyporesponsiveness when the adrenal glands fail to respond to certain mild to moderate stressors. Conversely, reduced or absent leptin signaling increases glucocorticoid levels beyond what is appropriate for normal organogenesis. The counterregulatory interactions between leptin and glucocorticoids suggest the potential significant involvement of leptin in disorders that occur from stress during development.
Collapse
Affiliation(s)
- Bidisha Paul
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
2
|
Stead SM, Bădescu I, Boonstra R. Of mammals and milk: how maternal stress affects nursing offspring. Mamm Rev 2021. [DOI: 10.1111/mam.12267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Samantha M. Stead
- Department of Anthropology University of Toronto Scarborough 1265 Military Trail Scarborough ONM1C 1A4Canada
| | - Iulia Bădescu
- Département d’Anthropologie Université de Montréal 3150 Rue Jean‐Brillant Montréal QCH3T 1N8Canada
| | - Rudy Boonstra
- Department of Biological Sciences University of Toronto Scarborough 1265 Military Trail Scarborough ONM1C 1A4Canada
| |
Collapse
|
3
|
Wang W, Chen ZJ, Myatt L, Sun K. 11β-HSD1 in Human Fetal Membranes as a Potential Therapeutic Target for Preterm Birth. Endocr Rev 2018; 39:241-260. [PMID: 29385440 DOI: 10.1210/er.2017-00188] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/23/2018] [Indexed: 12/18/2022]
Abstract
Human parturition is a complex process involving interactions between the myometrium and signals derived from the placenta, fetal membranes, and fetus. Signals originating from fetal membranes are crucial components that trigger parturition, which is clearly illustrated by the labor-initiating consequence of membrane rupture. It has been recognized for a long time that among fetal tissues in late gestation the fetal membranes possess the highest capacity for cortisol regeneration by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). However, the exact role of this unique feature remains a mystery. Accumulating evidence indicates that this extra-adrenal source of cortisol may serve as an upstream signal for critical events in human parturition, including enhanced prostaglandin and estrogen synthesis as well as extracellular matrix remodeling. This may explain why such high capacity for cortisol regeneration develops in human fetal membranes at late gestation. Therefore, inhibition of 11β-HSD1 may provide a potential therapeutic target for prevention of preterm birth. This review summarizes the current understanding of the functional role of cortisol regeneration by 11β-HSD1 in human fetal membranes.
Collapse
Affiliation(s)
- Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Bolis B, Prandi A, Rota A, Faustini M, Veronesi MC. Cortisol fetal fluid concentrations in term pregnancy of small-sized purebred dogs and its preliminary relation to first 24 hours survival of newborns. Theriogenology 2016; 88:264-269. [PMID: 28234232 DOI: 10.1016/j.theriogenology.2016.09.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/31/2016] [Accepted: 09/21/2016] [Indexed: 10/20/2022]
Abstract
Along the perinatal period, in mammals, cortisol (C) plays a pivotal role in the final intrauterine fetal maturation and in the early neonatal adaptation. Because of the scarce knowledge about canine perinatology, the present study was aimed to assess the C concentrations in amniotic and allantoic fluids collected, without invasiveness, from small-sized, purebred newborn puppies born by elective cesarean section, at term of pregnancy. Possible correlations between fetal fluid C concentrations and maternal parity, litter size, birth weight, Apgar score, were evaluated. In addition, the possible effect of fetal fluid C concentrations on newborn survival at 24 hours of age, and the effect of the litter or the newborn gender on fetal fluid C concentrations were also assessed. The results, obtained from 50 born alive, normal-weight puppies, without gross physical malformation, showed that C concentration was higher in allantoic than in amniotic fluid (P < 0.01), even if a strong positive correlation between the two fluids C concentration was found (P < 0.0001; R = 0.83). Neither amniotic nor allantoic C concentrations were correlated to maternal parity, litter size, birth weight, and Apgar score. Interestingly, higher amniotic (P < 0.05), but not allantoic, C concentrations were found in puppies not surviving at 24 hours after birth. Therefore, it could be suggested that this parameter may be useful for the recognition, at birth, of puppies needing special surveillance during the first day of age. A significant (P < 0.001) effect of the litter in both amniotic and allantoic C concentrations was found. In conclusion, the present results showed that in small-sized purebred puppies, born at term by elective cesarean section, the exact fetal, maternal, or placental source contributing to fetal fluid C concentrations remains to be clarified. From a clinical perspective, however, the evaluation of amniotic C concentration at birth seems useful for the detection of puppies that need special surveillance during the first 24 hours of age, and should be coupled to the early newborn evaluation by Apgar score. However, the small total number of newborns, and especially of the dead puppies enrolled in the present study, suggests that further, more-focused investigations on a large number of subjects are needed before the method could be considered for application in the clinical practices.
Collapse
Affiliation(s)
- B Bolis
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy; ECAR Resident Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy.
| | - A Prandi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - A Rota
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - M Faustini
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| | - M C Veronesi
- Department of Veterinary Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Fanson KV, Parrott ML. The value of eutherian-marsupial comparisons for understanding the function of glucocorticoids in female mammal reproduction. Horm Behav 2015; 76:41-7. [PMID: 26065733 DOI: 10.1016/j.yhbeh.2015.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 12/31/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Chronic stress is known to inhibit female reproductive function. Consequently, it is often assumed that glucocorticoid (GC) concentrations should be negatively correlated with reproductive success because of the role they play in stress physiology. In contrast, a growing body of evidence indicates that GCs play an active role in promoting reproductive function. It is precisely because GCs are so integral to the entire process that disruptions to adrenal activity have negative consequences for reproduction. The goal of this paper is to draw attention to the increasing evidence showing that increases in adrenal activity are important for healthy female reproduction. Furthermore, we outline several hypotheses about the functional role(s) that GCs may play in mediating reproduction and argue that comparative studies between eutherian and marsupial mammals, which exhibit some pronounced differences in reproductive physiology, may be particularly useful for testing different hypotheses about the functional role of GCs in reproduction. Much of our current thinking about GCs and reproduction comes from research involving stress-induced levels of GCs and has led to broad assumptions about the effects of GCs on reproduction. Unfortunately, this has left a gaping hole in our knowledge about basal GC levels and how they may influence reproductive function, thereby preventing a broader understanding of adrenal physiology and obscuring potential solutions for reproductive dysfunction.
Collapse
Affiliation(s)
- Kerry V Fanson
- Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia.
| | - Marissa L Parrott
- Wildlife Conservation & Science, Zoos Victoria, Victoria 3052, Australia
| |
Collapse
|
6
|
Bradshaw FJ, Bradshaw D. Progesterone and reproduction in marsupials: a review. Gen Comp Endocrinol 2011; 170:18-40. [PMID: 20688062 DOI: 10.1016/j.ygcen.2010.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/25/2010] [Accepted: 07/28/2010] [Indexed: 01/26/2023]
Abstract
Progesterone (P4) profiles throughout pregnancy and the oestrous cycle are reviewed in a wide range of marsupial species, representing 12 Families, and focus on the corpus luteum (CL) and its functioning, compared with its eutherian counterpart. Physiologically, P4 subtends the same fundamental processes supporting gestation in marsupials as it does in eutherian mammals, from its role in stimulating the secretory endometrium, effecting nutritional transfer across the placenta and establishing lactogenesis. Before the formation of the CL, however, secretion of P4 is widespread throughout many Families and the dual roles of P4 in the induction of sexual behaviour and ovulation are exposed. In Dasyuridae, raised levels of P4 are linked with the induction of sexual receptivity and are also present around the time of mating in Burramyidae, Petauridae and Tarsipedidae, but their function is unknown. Only in Didelphidae has research established that the pheromonally-induced levels of pro-oestrous P4 trigger ovulation. This is principally the role of oestradiol in the eutherian and may be an important difference between the marsupial and the eutherian. The deposition of the shell coat around the early marsupial embryo is also a function of P4, but perhaps the most striking difference is seen in the time taken to form the CL. This is not always immediate and the maximum secretion of P4 from the granulosa cells may not occur until some 2 weeks after ovulation. The slower development of the CL in some species is linked with delays in the development of the embryo during its unattached phase and results in relatively long gestation periods. A common feature of these, in monovular species, is a short pulse of P4 from the newly-luteinised CL, which is all that is needed for the subsequent development of the embryo to term. Maternal recognition of pregnancy occurs soon after the formation of the blastocyst, with embryo-induced changes in ovarian production of P4 and the uterine endometrium. The embryo, similar to the eutherian, determines the length of the gestation period and initiates its own birth, but in direct contrast, the embryo of some marsupial species shortens the life-span of the CL. The evidence points to a different strategy; one of a reduction, rather than an expansion of the potential ovarian and placental support available during pregnancy. The marsupial mode of reproduction, where all species produce highly altricial young, receiving complex and extensive maternal care, has facilitated the adaptive radiation of this group and avoided the need for precociality.
Collapse
Affiliation(s)
- Felicity J Bradshaw
- School of Animal Biology M092, The University of Western Australia, Perth, Western Australia, Australia.
| | | |
Collapse
|
7
|
Hickford D, Frankenberg S, Renfree MB. The tammar wallaby, Macropus eugenii: a model kangaroo for the study of developmental and reproductive biology. Cold Spring Harb Protoc 2010; 2009:pdb.emo137. [PMID: 20150075 DOI: 10.1101/pdb.emo137] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Danielle Hickford
- Department of Zoology, The University of Melbourne, Victoria 3010 Australia
| | | | | |
Collapse
|
8
|
Freyer C, Renfree MB. The mammalian yolk sac placenta. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:545-54. [DOI: 10.1002/jez.b.21239] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Abstract
Marsupials are distinguished from eutherian mammals in their mode of reproduction. They give birth to a highly altricial young, which completes its development whilst attached to a teat, usually within a pouch. The marsupial neonate has relatively well-developed digestive, respiratory and circulatory systems but retains its fetal excretory system with a fully functional mesonephric kidney and undifferentiated gonads and genitalia. We have investigated birth in the tammar wallaby (Macropus eugenii) and shown that the tiny (400 mg) fetus determines the time of its own delivery. Although plasma progesterone falls, and oestradiol associated with the postpartum oestrus typically rises, around the time of parturition, neither hormone is essential for the timing of birth. However relaxin may loosen the connective tissue of the cervix and vaginae for birth. Labour starts suddenly and is completed within minutes. Both prostaglandins and mesotocin are essential for the contractions that deliver the young. Prostaglandins from the reproductive tract act via the brain to control parturient behaviour. In the last 2 days of gestation fetal adrenal glucocorticoid production increases, promoting lung maturation and surfactant production and ultimately triggering labour. The accessibility of the altricial neonatal marsupial provides a unique opportunity for experimental manipulation of organ development and maturation.
Collapse
|
10
|
Meyer JM, Walker SL, Freeman EW, Steinetz BG, Brown JL. Species and fetal gender effects on the endocrinology of pregnancy in elephants. Gen Comp Endocrinol 2004; 138:263-70. [PMID: 15364209 DOI: 10.1016/j.ygcen.2004.06.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/17/2004] [Accepted: 06/29/2004] [Indexed: 11/25/2022]
Abstract
Quantitative and temporal progestin profiles vary during gestation in the elephant, sometimes making it difficult to determine if a pregnancy is progressing normally. The aim of the present study was to determine if circulating progestin variability was related to species or fetal gender effects. A similar comparison also was conducted for secretory profiles of prolactin, relaxin, and cortisol. Overall mean progestin concentrations during gestation in Asian (n = 19) and African (n = 8) elephants were similar; however, the temporal profiles differed (P < 0.001). Concentrations were higher in African elephants during the first half of pregnancy, but then declined to levels below those observed in Asian elephants (P < 0.05). There also was a fetal gender effect in Asian, but not African elephants. Progestin concentrations were higher in Asian cows carrying male calves (n = 9) as compared to those carrying females (n = 10) (P < 0.001). Overall prolactin concentrations were higher in Asian than in African elephants between 8 and 15 months of gestation ( P< 0.001). There were no species differences in the secretory patterns of relaxin. Cortisol was relatively stable until the end of gestation when significant surges were observed, mainly between 8 and 11 days before parturition, and again on the day of birth. In sum, a comparison of progestin patterns between Asian and African elephants identified notable differences related to species and fetal gender. A role for cortisol in the initiation of parturition also was inferred from these data. From a practical standpoint, understanding the factors affecting gestational hormone characteristics and recognizing what the species differences are will help ensure that data used in diagnosing and monitoring elephant pregnancies are properly interpreted.
Collapse
Affiliation(s)
- Jordana M Meyer
- Department of Reproductive Sciences, Conservation and Research Center, National Zoological Park, Smithsonian Institution, Front Royal, VA 22630, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
In this review, our knowledge, gleaned from a range of species, of what determines gestation length, how fetal maturation and birth are synchronized and how the uterotonic mechanisms are activated at birth are discussed. Accumulated data indicate that fetal glucocorticoids are involved in, but do not necessarily play a causative role in, the initiation of parturition in eutherian mammals generally. Present observations are consistent with a complex, positive regulatory interaction between estrogens, prostaglandins and oxytocin and are consistent with a role for prostaglandins as the final, common effector in myometrial activation. We are, however, left with the possibility that the initial mechanism for the timing of birth is encoded in the fetal genome and is closely linked to, and activated when, certain prerequisite developmental events have occurred in the fetus. Our understanding of these events in the sheep have led to its extensive use as an experimental model for the study of human clinical correlates of fetal maturation and development and the control of the initiation of parturition.
Collapse
Affiliation(s)
- G Jenkin
- Department of Physiology, P.O. Box 13F, Monash University, Melbourne, Victoria 3800, Australia.
| | | |
Collapse
|
12
|
Freyer C, Zeller U, Renfree MB. The marsupial placenta: a phylogenetic analysis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 299:59-77. [PMID: 12950035 DOI: 10.1002/jez.a.10291] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The structure, physiology, and endocrinology of the yolk sac placenta of different marsupial groups is compared and phylogenetically analyzed to provide information on placental characters in the marsupial stem species. We conclude that the marsupial stem species possessed a functional yolk sac placenta. Histotrophic nutrition by uterine secretion decreased during late pregnancy and at least half of the yolk sac was vascularized at the time of shell coat rupture. Due to yolk sac fusion, the larger part of the avascular, bilaminar yolk sac could not serve as a placenta at late gestation in the polyovular marsupial stem species. The bilaminar yolk sac gained a relatively greater importance for nutrition in monovular australidelphians. In macropodids a greater proportion of the yolk sac remained bilaminar at the time of shell coat rupture than in the stem species. Another derived feature of macropodids is the sustained plasma progesterone synthesis that is in turn responsible for an extended secretory phase of the uterus and a lengthened gestation. The placenta of the marsupial stem species was probably capable of metabolising histo- and hemotrophes. Recognition of pregnancy during early stages of development is a derived character of macropodids that we suggest did not occur in the marsupial stem species. However, birth and birth behaviour were apparently induced by prostaglandins in the marsupial stem species. Although the yolk sac formed the definitive placenta, it is likely that the allantois provided a supplementary placental function in the marsupial stem species, but that the role of the allantois became progressively less important during the evolution of marsupial placentation.
Collapse
Affiliation(s)
- Claudia Freyer
- Department of Zoology, The University of Melbourne, Victoria 3010, Australia.
| | | | | |
Collapse
|