1
|
Gonzalez Berrios CL, Bowden CF, Saad HM, Bishop JV, Van Campen H, Pinedo P, Hansen TR, Thomas MG. Identification of candidate SNPs associated with embryo mortality and fertility traits in lactating Holstein cows. Front Genet 2024; 15:1409335. [PMID: 39184351 PMCID: PMC11341358 DOI: 10.3389/fgene.2024.1409335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction: Targeted single nucleotide polymorphisms (SNPs) have been used in genomic prediction methodologies to enhance the accuracy of associated genetic transmitting abilities in Holstein cows. The objective of this study was to identify and validate SNPs associated with fertility traits impacting early embryo mortality. Methods: The mRNA sequencing data from day 16 normal (n = 9) and embryo mortality (n = 6) conceptuses from lactating multiparous Holstein cows were used to detect SNPs. The selection of specific genes with SNPs as preliminary candidates was based on associations with reproductive and fertility traits. Validation of candidate SNPs and genotype-to-phenotype analyses were conducted in a separate cohort of lactating primiparous Holstein cows (n = 500). After genotyping, candidate SNPs were filtered using a quality control pipeline via PLINK software. Continuous numeric and binary models from reproductive traits were evaluated using the mixed procedure for a generalized linear model-one way ANOVA or logistic regression, respectively. Results: Sixty-nine candidate SNPs were initially identified, but only 23 passed quality control procedures. Ultimately, the study incorporated 466 observations for statistical analysis after excluding animals with missing genotypes or phenotypes. Significant (p <0.05) associations with fertility traits were identified in seven of the 23 SNPs: DSC2 (cows with the A allele were older at first calving); SREBF1 and UBD (cows with the T or G alleles took longer to conceive); DECR1 and FASN (cows with the C allele were less likely to become pregnant at first artificial insemination); SREBF1 and BOLA-DMB (cows with the T allele were less likely to be pregnant at 150 days in milk). It was also determined that two candidate SNPs within the DSC2 gene were tag SNPs. Only DSC2 SNPs had an important allele substitution effect in cows with the G allele, which had a decreased age at first calving by 10 days. Discussion: Candidate SNPs found in this study could be used to develop genetic selection tools to improve fertility traits in dairy production systems.
Collapse
Affiliation(s)
- Carolina L. Gonzalez Berrios
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Courtney F. Bowden
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Hamad M. Saad
- Texas A&M AgriLife Research Station, Beeville, TX, United States
| | - Jeanette V. Bishop
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Hana Van Campen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Pablo Pinedo
- Department of Animal Sciences, College of Agricultural Sciences, Colorado State University, Fort Collins, CO, United States
| | - Thomas R. Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Milton G. Thomas
- Texas A&M AgriLife Research Station, Beeville, TX, United States
| |
Collapse
|
2
|
Latham KE. Preimplantation embryo gene expression: 56 years of discovery, and counting. Mol Reprod Dev 2023; 90:169-200. [PMID: 36812478 DOI: 10.1002/mrd.23676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023]
Abstract
The biology of preimplantation embryo gene expression began 56 years ago with studies of the effects of protein synthesis inhibition and discovery of changes in embryo metabolism and related enzyme activities. The field accelerated rapidly with the emergence of embryo culture systems and progressively evolving methodologies that have allowed early questions to be re-addressed in new ways and in greater detail, leading to deeper understanding and progressively more targeted studies to discover ever more fine details. The advent of technologies for assisted reproduction, preimplantation genetic testing, stem cell manipulations, artificial gametes, and genetic manipulation, particularly in experimental animal models and livestock species, has further elevated the desire to understand preimplantation development in greater detail. The questions that drove enquiry from the earliest years of the field remain drivers of enquiry today. Our understanding of the crucial roles of oocyte-expressed RNA and proteins in early embryos, temporal patterns of embryonic gene expression, and mechanisms controlling embryonic gene expression has increased exponentially over the past five and a half decades as new analytical methods emerged. This review combines early and recent discoveries on gene regulation and expression in mature oocytes and preimplantation stage embryos to provide a comprehensive understanding of preimplantation embryo biology and to anticipate exciting future advances that will build upon and extend what has been discovered so far.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA.,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, Michigan, USA.,Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
3
|
Liman N, Kuzkale M. Heat shock proteins exhibit distinct spatiotemporal expression patterns in the domestic cat ( Felis catus) ovary during the oestrous cycle. Reprod Fertil Dev 2022; 34:498-515. [PMID: 35115081 DOI: 10.1071/rd21155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/12/2021] [Indexed: 11/23/2022] Open
Abstract
Heat shock proteins (HSP) are significant regulators of cell proliferation, differentiation and apoptosis. HSP participate in ovarian physiology through proliferative and apoptotic mechanisms and the modulation of sex steroid receptor functions. We investigated whether the expression and localisation patterns of HSP in the domestic cat ovary vary with the oestrous cycle stage. Immunohistochemical analysis revealed cell type-specific localisation patterns of HSPD1/HSP60, HSPA/HSP70, HSPC/HSP90 and HSPH/HSP105 in several ovarian cells of the domestic cat, including oocytes, follicular (granulosa and theca cells) and luteal cells, stromal and thecal interstitial cells, stromal cells, and vascular endothelial and smooth muscle cells during the anoestrous, follicular and luteal phases of the oestrous cycle. Western blot results showed that the expression of three HSP (HSPD1/HSP60, HSPA/HSP70 and HSPH/HSP105) varied with the oestrous cycle stage. While the maximal expression of HSPD1/HSP60 and HSPH/HSP105 occurred during the luteal phase, the expression of HSPA/HSP70 was minimal. The expressions of HSPA/HSP70 and HSPH/HSP105 were low during the follicular phase compared to the anoestrous phase. In conclusion, the alterations that occur in the expression of HSP in the domestic cat ovary during the different stages of the oestrous cycle imply that these proteins participate in the regulation of ovarian function under different physiological conditions.
Collapse
Affiliation(s)
- Narin Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Erciyes, 38039, Kayseri, Turkey
| | - Murat Kuzkale
- Republic of Turkey Minister of Agriculture and Forestry, Afyonkarahisar Food Control Laboratory Directorate, 03100, Afyonkarahisar, Turkey
| |
Collapse
|
4
|
van der Weijden VA, Ulbrich SE. Embryonic diapause in roe deer: A model to unravel embryo-maternal communication during pre-implantation development in wildlife and livestock species. Theriogenology 2020; 158:105-111. [PMID: 32947063 DOI: 10.1016/j.theriogenology.2020.06.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 01/08/2023]
Abstract
An alarming number of large mammalian species with low reproduction rates is threatened with extinction. As basic knowledge of reproductive physiology is currently lacking in many species, increasing the understanding of reproductive physiology is imperative and includes the development of novel artificial reproduction technologies. Despite the relatively comprehensive knowledge on molecular mechanisms underlying reproduction in livestock species such as cattle, pregnancy failures are likewise far from understood. Contrary to other wildlife species, the European roe deer (Capreolus capreolus) displays a remarkably high pregnancy rate. In parts, cattle and roe deer exhibit comparable features of preimplantation embryo development. Therefore, understanding the high fertility rate in the roe deer holds a great potential for cross-species knowledge gain. As the only known species among the artiodactylae, the roe deer displays a long period of embryonic diapause. The preimplantation blastocyst reaches a diameter of 1 mm only at around 4 months compared to around 13 days post estrus in cattle. The expanded blastocyst survives in a uterine microenvironment that contains a unique set of yet unidentified factors that allow embryonic stem cells to proliferate at low pace without impairing their developmental potential. Upon reactivation, intimate embryo-maternal communication comparable to those reported in cattle is thought to occur. In this review, current knowledge, parallels and differences of reproductive physiology in cattle and roe deer are reviewed. The roe deer is proposed as a unique model species to (1) enhance our knowledge of fertility processes, (2) define factors that support embryo survival for an extended period, (3) advance knowledge on embryonic stem cells, and (4) unravel potential implications for the development of novel strategies for artificial reproductive technologies.
Collapse
Affiliation(s)
- V A van der Weijden
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Switzerland
| | - S E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Switzerland.
| |
Collapse
|
5
|
Lv L, Lu X, Feng T, Rehman SU, Sun J, Wu Z, Shi D, Liu Q, Cui K. Valproic acid enhances in vitro developmental competence of porcine handmade cloned embryos. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.103957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Mohalik PK, Sahoo SS, Mishra C, Dash SK, Nayak G. Novel polymorphism of HSP70 gene affected caprine physiological vital parameters. Anim Biotechnol 2020; 32:550-557. [PMID: 32049580 DOI: 10.1080/10495398.2020.1726364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The synthesis of heat shock protein 70 (HSP70) is temperature-dependent and its response is considered as a cellular thermometer in response to thermal stress. The variation in HSP70 gene expression has been positively correlated with thermo-tolerance. Three different goat populations (Black Bengal, Ganjam and Raighar) which differ in body size, coat color and production performance were assessed for effect of thermal stress at different temperature humidity index (THI). The physiological vital parameters like rectal temperature (RT), skin temperature (ST), heart rate (HR) and respiration rate (RR) which are related to thermal stress susceptibility were recorded. The genetic variation of HSP70 gene in the three goat populations and its effect on physiological vital parameters related to thermal stress was assessed. A novel polymorphism (C241T) in the exonic region of HSP70 gene with significant (p < .05) statistical association with the physiological vital parameters like RT, ST and RR was identified indicating its role in thermo-tolerance.HighlightsThe HSP70 gene was found to be polymorphic in Indian goats.The non-synonymous nucleotide change (C241T) resulted change in amino acid Arginine 241 Cysteine in mature polypeptide which were not reported earlier.The constructed phylogenetic tree showed that Ganjam and Raighar goats are more close to each other.
Collapse
Affiliation(s)
- Prasanta Kumar Mohalik
- Department of Animal Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Siddhant Sekhar Sahoo
- Department of Animal Breeding and Genetics, National Dairy Research Institute, Karnal, India
| | - Chinmoy Mishra
- Department of Animal Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Susant Kumar Dash
- Department of Animal Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, India
| | - Gangadhar Nayak
- Department of Animal Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, India
| |
Collapse
|
7
|
D'Occhio MJ, Campanile G, Zicarelli L, Visintin JA, Baruselli PS. Adhesion molecules in gamete transport, fertilization, early embryonic development, and implantation-role in establishing a pregnancy in cattle: A review. Mol Reprod Dev 2020; 87:206-222. [PMID: 31944459 DOI: 10.1002/mrd.23312] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
Cell-cell adhesion molecules have critically important roles in the early events of reproduction including gamete transport, sperm-oocyte interaction, embryonic development, and implantation. Major adhesion molecules involved in reproduction include cadherins, integrins, and disintegrin and metalloprotease domain-containing (ADAM) proteins. ADAMs on the surface of sperm adhere to integrins on the oocyte in the initial stages of sperm-oocyte interaction and fusion. Cadherins act in early embryos to organize the inner cell mass and trophectoderm. The trophoblast and uterine endometrial epithelium variously express cadherins, integrins, trophinin, and selectin, which achieve apposition and attachment between the elongating conceptus and uterine epithelium before implantation. An overview of the major cell-cell adhesion molecules is presented and this is followed by examples of how adhesion molecules help shape early reproductive events. The argument is made that a deeper understanding of adhesion molecules and reproduction will inform new strategies that improve embryo survival and increase the efficiency of natural mating and assisted breeding in cattle.
Collapse
Affiliation(s)
- Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Luigi Zicarelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - José A Visintin
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
8
|
The expression level of SOX2 at the blastocyst stage regulates the developmental capacity of bovine embryos up to day-13 of in vitro culture. ZYGOTE 2019; 27:398-404. [PMID: 31576792 DOI: 10.1017/s0967199419000509] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Quality of in vitro-produced embryos is influenced by changes in gene expression in response to adverse conditions. Gene markers for predicting 'good embryos' do not exist at present. We propose that the expression of pluripotency markers OCT4-SOX2-NANOG in D9 (day 9) bovine demi-embryos correlated with development at D13 (day 13). Day 8 in vitro-produced blastocysts were split in two cloned halves, one half (D9) was subjected to analysis of pluripotency markers and the other was kept in culture until D13 of development. Embryo development was scored and correlated with its own status at D9 and assigned to one of two categories: G1, arrested/dead; or G2, development up to D13. SOX2 and NANOG expression levels were significantly higher in embryos from G1 and there was also negative correlation between SOX2 and embryo survival to D13 (G3; r = -0.37; P = 0.03). We observed a significant reduction in the expression of the three studied genes from D9 to D13. Furthermore, there was a correlation between the expression of pluripotency markers at D9 and embryo diameter and the expression of trophoblastic markers at D13 (TP1-EOMES-FGF4-CDX2-TKDP1). Finally, the quotient between the relative expression of SOX2 and OCT4 in the D9 blastocysts from G1 and G2 showed that embryos that were considered as competent (G2) had a quotient close to one, while the other group had a quotient of 2.3 due to a higher expression of SOX2. These results might indicate that overexpression of SOX2 at the blastocyst stage had a negative effect on the control of embryonic developmental potential.
Collapse
|
9
|
Sood TJ, Lagah SV, Mukesh M, Singla SK, Chauhan MS, Manik RS, Palta P. RNA sequencing and transcriptome analysis of buffalo (
Bubalus bubalis
) blastocysts produced by somatic cell nuclear transfer and in vitro fertilization. Mol Reprod Dev 2019; 86:1149-1167. [DOI: 10.1002/mrd.23233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/10/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Tanushri Jerath Sood
- Embryo Biotechnology Laboratory, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnal Haryana India
| | - Swati Viviyan Lagah
- Embryo Biotechnology Laboratory, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnal Haryana India
| | - Manishi Mukesh
- Animal Biotechnology DivisionICAR‐National Bureau of Animal Genetic ResourcesKarnal Haryana India
| | - Suresh Kumar Singla
- Embryo Biotechnology Laboratory, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnal Haryana India
| | - Manmohan Singh Chauhan
- Embryo Biotechnology Laboratory, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnal Haryana India
| | - Radhey Sham Manik
- Embryo Biotechnology Laboratory, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnal Haryana India
| | - Prabhat Palta
- Embryo Biotechnology Laboratory, Animal Biotechnology CentreICAR‐National Dairy Research InstituteKarnal Haryana India
| |
Collapse
|
10
|
Costa Gerger RPD, Souza Ribeiro ED, Zago FC, Aguiar LHD, Rodriguez-Villamil P, Ongaratto FL, Ambrósio CE, Miglino MA, Rodrigues JL, Forell F, Bertolini LR, Bertolini M. Effects of fusion-activation interval and embryo aggregation on in vitro and in vivo development of bovine cloned embryos. Res Vet Sci 2019; 123:91-98. [PMID: 30597478 DOI: 10.1016/j.rvsc.2018.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 11/16/2018] [Accepted: 12/13/2018] [Indexed: 11/27/2022]
Abstract
Nuclear reprogramming in somatic cell cloning is one of the key factors for proper development, with variations in the protocol appearing to improve cloning efficiency. This study aimed to determine the effects of two fusion-activation intervals and the aggregation of bovine cloned embryos on subsequent in vitro and in vivo development. Zygotes produced by handmade cloning were exposed to two fusion-activation intervals (2 h or 4 h), and then cultured in microwells either individually (1 × 100%) or after aggregation of two structures (2 × 100%). Zona-intact oocytes and zona-free oocytes and hemi-oocytes were used as parthenote controls under the same fusion-activation intervals. Day-7 cloned blastocysts were transferred to synchronous recipients. Cleavage (Day 2), blastocyst (Day 7) and pregnancy (Day 30) rates were compared by the χ2 test (P < .05). Extending fusion-activation interval from 2 to 4 h reduced cleavage (91.0 vs. 74.4%) but not blastocyst (34.8 vs. 42.0%) rates. On a microwell basis, cloned embryo aggregation (2 × 100%) increased cleavage (91.5% vs. 74.4%) and blastocyst (46.0% vs. 31.3%) rates compared to controls (1 × 100%), but did not improve the overall embryo production efficiency on Day 7 (23.0% vs. 31.3%), on a per reconstructed embryo basis, respectively. Treatments had no effects on in vitro developmental kinetics, embryo quality, and in vivo development. In summary, the fusion-activation interval and/or the aggregation of cloned bovine embryos did not affect cloning efficiency based on the in vitro development to the blastocyst stage and on pregnancy outcome.
Collapse
Affiliation(s)
- Renato Pereira da Costa Gerger
- Center of Agronomy and Veterinary Sciences, Santa Catarina State University, Lages, SC, Brazil; School of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | | | - Luís Henrique de Aguiar
- School of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paula Rodriguez-Villamil
- School of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Felipe Ledur Ongaratto
- School of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | - José Luiz Rodrigues
- School of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabiana Forell
- Center of Agronomy and Veterinary Sciences, Santa Catarina State University, Lages, SC, Brazil
| | | | - Marcelo Bertolini
- School of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Improved Preimplantation Development of Porcine Cloned Embryos by Flavone Supplement as Antioxidant. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.4.255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Velásquez A, Mellisho E, Castro FO, Rodríguez-Álvarez L. Effect of BMP15 and/or AMH during in vitro maturation of oocytes from involuntarily culled dairy cows. Mol Reprod Dev 2018; 86:209-223. [PMID: 30548943 DOI: 10.1002/mrd.23096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/03/2018] [Indexed: 01/10/2023]
Abstract
The high metabolic activity to which the dairy cattle are exposed to maintain milk production altered steroid metabolism that affects reproductive physiology and reduce oocyte competence. Our aims were (a) to characterize the competence of immature oocytes collected from dairy cattle based on the expression of genes in cumulus cells (CCs) and (b) to improve oocyte competence to support preimplantation embryo development by the supplementation of maturation medium with bone morphogenetic protein 15 (BMP15) and/or anti-mullerian hormone (AMH). Oocyte donors were identified at the moment of ovary collection and grouped by involuntarily culled dairy cows (Holstein breed) or beef cattle. The embryo development speed to blastocyst of the cull dairy cattle versus beef cattle (control group) was lower. Besides, <10% of oocytes (with CC biopsies) derived from dairy cattle were able to develop to the blastocyst stage. In addition, a higher level of expression and a positive correlation were observed in the expression of most of the genes evaluated (LUM, KRT18, KRT8, CLIC3, BMPR1B, and SLC38A3) in the cumulus-oocyte complexes that produced blastocysts versus those which did not develop correctly (arrested development). Further, use of BMP15 in the maturation of oocytes from dairy cattle seems to increase competence, modulating the expression of OCT4, SOX2, CDX2, GATA6, and TP1 in resulting blastocysts.
Collapse
Affiliation(s)
- Alejandra Velásquez
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Edwin Mellisho
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Fidel Ovidio Castro
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Lleretny Rodríguez-Álvarez
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| |
Collapse
|
13
|
Siqueira LG, Tribulo P, Chen Z, Denicol AC, Ortega MS, Negrón-Pérez VM, Kannampuzha-Francis J, Pohler KG, Rivera RM, Hansen PJ. Colony-stimulating factor 2 acts from days 5 to 7 of development to modify programming of the bovine conceptus at day 86 of gestation†. Biol Reprod 2018; 96:743-757. [PMID: 28379294 DOI: 10.1093/biolre/iox018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/27/2017] [Indexed: 11/13/2022] Open
Abstract
Colony-stimulating factor 2 (CSF2) is an embryokine that improves competence of the embryo to establish pregnancy and which may participate in developmental programming. We tested whether culture of bovine embryos with CSF2 alters fetal development and alleviates abnormalities associated with in vitro production (IVP) of embryos. Pregnancies were established by artificial insemination (AI), transfer of an IVP embryo (IVP), or transfer of an IVP embryo treated with 10 ng/ml CSF2 from day 5 to 7 of development (CSF2). Pregnancies were produced using X-sorted semen. Female singleton conceptuses were collected on day 86 of gestation. There were few morphological differences between groups, although IVP and CSF2 fetuses were heavier than AI fetuses. Bicarbonate concentration in allantoic fluid was lower for IVP than for AI or CSF2. Expression of 92 genes in liver, placenta, and muscle was determined. The general pattern for liver and placenta was for IVP to alter expression and for CSF2 to sometimes reverse this effect. For muscle, CSF2 affected gene expression but did not generally reverse effects of IVP. Levels of methylation for each of the three tissues at 12 loci in the promoter of insulin-like growth factor 2 (IGF2) and five in the promoter of growth factor receptor bound protein 10 were unaffected by treatment except for CSF2 effects on two CpG for IGF2 in placenta and muscle. In conclusion, CSF2 can act as a developmental programming agent but alone is not able to abolish the adverse effects of IVP on fetal characteristics.
Collapse
Affiliation(s)
- Luiz G Siqueira
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, Genetics Institute, University of Florida, Gainesville, Florida, USA.,Embrapa Gado de Leite, Juiz de Fora, Minas Gerais, Brazil
| | - Paula Tribulo
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Zhiyuan Chen
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Anna C Denicol
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - M Sofia Ortega
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Veronica M Negrón-Pérez
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Jasmine Kannampuzha-Francis
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Ky G Pohler
- Department of Animal Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Rocio M Rivera
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA
| | - Peter J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
The integration of cloning by nuclear transfer in the conservation of animal genetic resources. ACTA ACUST UNITED AC 2018. [DOI: 10.1017/s0263967x0004204x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractCloning mammals from somatic cells by nuclear transfer has the potential to assist with the preservation of genetic diversity. An increasing number of species have been successfully cloned by this approach; however, present methods are inefficient with few cloned embryos resulting in healthy offspring. In those livestock species that have already been cloned, it is clearly feasible to use cloning to preserve endangered breeds (e.g. the last surviving Enderby Island cow). The opportunity exists to recover oocytes from these cloned heifers and use frozen Enderby Island sperm from deceased bulls for in vitro fertilisation and thus, expand the genetic diversity of this breed. Where there exists an adequate understanding of the reproductive biology and embryology of the species concerned and adequate sources of females to supply both recipient oocytes and surrogates to gestate the pregnancies, intra-specific nuclear transfer and embryo transfer can be utilised. However, when these requirements cannot be met, as is common for most endangered species, cloning technology invariably involves the use of inter-species nuclear transfer and embryo transfer. Even in intra-specific cloning the source of oocyte for nuclear transfer is an important consideration. Typically, cloned animals are only genomic copies of the founder if they possess mitochondrial DNA which differs from the original animal. Different maternal lineages of oocytes both within and between breeds significantly affect cloning efficiency and livestock production characteristics. Cloning should not distract conservation efforts from encouraging the use of indigenous livestock breeds with traits of adaptation to local environments, the preservation of wildlife habitats or the use of other forms of assisted reproduction. Whilst it is often difficult to justify cloning in animal conservation at present, the appropriate cryo-preservation of tissues and cells from a wide selection of biodiversity is of paramount importance. This provides an insurance against further losses of genetic variation from dwindling populations, disease epidemics or even possible extinction. It would also complement the gene banking of gametes or embryos and can be performed more easily and cheaply. Future cloning from preserved somatic cells can reintroduce lost genes back into the breeding pool. With greater appreciation of the heritable attributes of traditional livestock breeds there is the desire to identify superior animals within these local populations and the genetic loci involved. Through clonal family performance testing, nuclear transfer can aid the selection of desirable genotypes and then the production of larger numbers of embryos or animals for natural breeding to more widely disseminate the desirable traits. With the identification of alleles conferring desirable attributes, transgenesis could be utilised to both improve traditional and industrial livestock breeds. This further emphasizes the importance of preserving global farm animal genetic resources.
Collapse
|
15
|
Miyoshi K, Kawaguchi H, Maeda K, Sato M, Akioka K, Noguchi M, Horiuchi M, Tanimoto A. Birth of Cloned Microminipigs Derived from Somatic Cell Nuclear Transfer Embryos That Have Been Transiently Treated with Valproic Acid. Cell Reprogram 2017; 18:390-400. [PMID: 27906585 DOI: 10.1089/cell.2016.0025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In our previous study, we found that treatment of miniature pig somatic cell nuclear transfer (SCNT) embryos with 4 mM valproic acid (VPA), a histone deacetylase inhibitor, for 48 hours after activation enhanced blastocyst formation rate and octamer-binding transcription factor-3/4 (Oct-3/4) gene expression at the late blastocyst stage; however, the production of viable cloned pups failed, when those VPA-treated SCNT embryos were transferred to recipients. This failure suggests that the present VPA treatment is suboptimal. In the present study, we explored the optimal conditions for VPA to have beneficial effects on the development of SCNT embryos. When miniature pig SCNT embryos were treated with 8 mM VPA for 24 hours after activation, both the rates of blastocyst formation and blastocysts expressing the Oct-3/4 gene were significantly (p < 0.05) improved. A similar increase in blastocyst formation was also observed when microminipig-derived cells were used as SCNT donors. Five cloned piglets were obtained after the transfer of 152 microminipig SCNT embryos that had been treated with 8 mM VPA for 24 hours. The results indicated that a short duration of treatment with VPA improves the development of both miniature pig and microminipig SCNT embryos, possibly via an enhanced reprogramming mechanism.
Collapse
Affiliation(s)
- Kazuchika Miyoshi
- 1 Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University , Kagoshima, Japan
| | - Hiroaki Kawaguchi
- 2 Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima, Japan
| | - Kosuke Maeda
- 1 Laboratory of Animal Reproduction, Faculty of Agriculture, Kagoshima University , Kagoshima, Japan
| | - Masahiro Sato
- 3 Section of Gene Expression Regulation, Center for Advanced Biomedical Science and Swine Research, Kagoshima University , Kagoshima, Japan
| | - Kohei Akioka
- 4 Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University , Kagoshima, Japan
| | - Michiko Noguchi
- 5 Laboratory of Theriogenology, Faculty of Veterinary Medicine, Azabu University , Kanagawa, Japan
| | - Masahisa Horiuchi
- 2 Department of Hygiene and Health Promotion Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima, Japan
| | - Akihide Tanimoto
- 6 Department of Pathology, Graduate School of Medical and Dental Sciences, Kagoshima University , Kagoshima, Japan
| |
Collapse
|
16
|
Abstract
DNA methylation is an important form of epigenetic regulation in mammalian development. Methyl-CpG-binding domain protein 1 (MBD1) and methyl-CpG-binding domain protein 2 (MeCP2) are two members of the MBD subfamily of proteins that bind methylated CpG to maintain the silencing effect of DNA methylation. Given their important roles in linking DNA methylation with gene silencing, this study characterized the coordinated mRNA expression and protein localization of MBD1 and MeCP2 in embryos and placentas and aimed to analysis the effects of MBD1 and MeCP2 on transgenic cloned goats. Our result showed that MBD1 expression of transgenic cloned embryo increased significantly at the 2-4-cell and 8-16-cell stages (P < 0.05), then decreased at the morula and blastocyst stages (P < 0.05); MeCP2 expression in transgenic cloned embryo was significant decreased at the 2-4-cell stage and increased at the 8-16-cell stage (P < 0.05). Placenta morphology analysis showed that the cotyledon number of deceased transgenic cloned group (DTCG) was significantly lower than that the normal goats (NG) and in the live transgenic cloned goats (LTCG) (P < 0.05). MBD1 and MeCP2 were clearly detectable in the placental trophoblastic binucleate cells by immunohistochemical staining. Moreover, MBD1 and MeCP2 expression in DTCG was significant higher than in the NG and the LTCG (P < 0.05). In summary, aberrant expression of methylation CpG binding proteins MBD1 and MeCP2 was detected in embryonic and placental development, which reflected abnormal transcription regulation and DNA methylation involved in MBD1 and MeCP2. These findings have implications in understanding the low efficiency of transgenic cloning.
Collapse
|
17
|
Wang GN, Yang WZ, Xu D, Li DJ, Zhang C, Chen WN, Li SJ. Aberrant expression of MICO1 and MICO1OS in deceased somatic cell nuclear transfer calves. Mol Reprod Dev 2017; 84:517-524. [PMID: 28383772 DOI: 10.1002/mrd.22807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/31/2017] [Indexed: 11/06/2022]
Abstract
Incomplete reprogramming of a donor nucleus following somatic cell nuclear transfer (SCNT) results in aberrant expression of developmentally important genes, and is the primary source of the phenotypic abnormalities observed in cloned animals. Expression of non-coding RNAs in the murine Dlk1-Dio3 imprinted domain was previously shown to correlate with the pluripotency of mouse induced pluripotent stem cells. In this study, we examined the transcription of the bovine orthologs from this locus, MICO1 (Maternal intergenic circadian oscillating 1) and MICO1OS (MICO1 opposite strand), in tissues from artificially inseminated and SCNT calves that died during the perinatal period. A single-nucleotide polymorphism (SNP), a T-to-C transition, was used to analyze the allelic transcription of MICO1. Our results indicate monoallelic expression of the MICO1C allele among the six analyzed tissues (heart, liver, spleen, lung, kidney, and brain) of artificially inseminated calves, indicating that this gene locus may be imprinted in bovine. Conversely, we observed variable allelic transcription of MICO1 in SCNT calves. We asked if DNA methylation regulated the monoallelic expression of MICO1 and MICO1OS by evaluating the methylation levels of six regions within or around this locus in tissues with normal or aberrant MICO1 transcription; all of the samples from either artificially inseminated or SCNT calves exhibited hypermethylation, implying that DNA methylation may not be involved in regulating its monoallelic expression. Furthermore, three imprinted genes (GTL2, MEG9, and DIO3) nearby MICO1 showed monoallelic expression in SCNT calves with aberrant MICO1 transcription, indicating that not all of the genes in the bovine DLK1-DIO3 domain are mis-regulated.
Collapse
Affiliation(s)
- Guan-Nan Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Hebei Agriculture University, Baoding, China
| | - Wen-Zhi Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Hebei Agriculture University, Baoding, China
| | - Da Xu
- Department of Biochemistry and Molecular Biology, College of Life Science, Hebei Agriculture University, Baoding, China
| | - Dong-Jie Li
- College of Life Science and Life Engineering, Hebei Science and Technology University, Shijiazhuang, China
| | - Cui Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, Hebei Agriculture University, Baoding, China
| | - Wei-Na Chen
- Department of Traditional Chinese medicine, Hebei University, Baoding, China
| | - Shi-Jie Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Hebei Agriculture University, Baoding, China
| |
Collapse
|
18
|
Jin L, Guo Q, Zhu HY, Xing XX, Zhang GL, Xuan MF, Luo QR, Luo ZB, Wang JX, Choe HM, Paek HJ, Yin XJ, Kang JD. Histone deacetylase inhibitor M344 significantly improves nuclear reprogramming, blastocyst quality, and in vitro developmental capacity of cloned pig embryos1. J Anim Sci 2017; 95:1388-1395. [DOI: 10.2527/jas.2016.1240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
19
|
Nagayach R, Gupta U, Prakash A. Expression profiling of hsp70 gene during different seasons in goats (Capra hircus) under sub-tropical humid climatic conditions. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2016.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
20
|
Rout PK, Kaushik R, Ramachandran N. Differential expression pattern of heat shock protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress period. Cell Stress Chaperones 2016; 21:645-51. [PMID: 27169748 PMCID: PMC4907995 DOI: 10.1007/s12192-016-0689-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 12/14/2022] Open
Abstract
It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36-89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at -70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5-2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5.29 and 2.63-fold higher expression than control. Liver and brain tissues showed the highest gene expression at mRNA levels as compared to kidney, spleen and heart. HST individuals had higher levels of mRNA level expression than HSS individuals in all breeds. The Sirohi breed showed the highest (6.3-fold) mRNA expression levels as compared to the other three breeds, indicating the better heat stress regulation activity in the breed.
Collapse
Affiliation(s)
- P K Rout
- Genetics and Breeding Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, 281122, UP, India.
| | - R Kaushik
- Genetics and Breeding Division, ICAR-Central Institute for Research on Goats, Makhdoom, Farah, Mathura, 281122, UP, India
| | | |
Collapse
|
21
|
Niemann H. Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology 2016; 86:80-90. [PMID: 27160443 DOI: 10.1016/j.theriogenology.2016.04.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 12/16/2022]
Abstract
The birth of "Dolly," the first mammal cloned from an adult mammary epithelial cell, abolished the decades-old scientific dogma implying that a terminally differentiated cell cannot be reprogrammed into a pluripotent embryonic state. The most dramatic epigenetic reprogramming occurs in SCNT when the expression profile of a differentiated cell is abolished and a new embryo-specific expression profile, involving 10,000 to 12,000 genes, and thus, most genes of the entire genome is established, which drives embryonic and fetal development. The initial release from somatic cell epigenetic constraints is followed by establishment of post-zygotic expression patterns, X-chromosome inactivation, and adjustment of telomere length. Somatic cell nuclear transfer may be associated with a variety of pathologic changes of the fetal and placental phenotype in a proportion of cloned offspring, specifically in ruminants, that are thought to be caused by aberrant epigenetic reprogramming. Improvements in our understanding of this dramatic epigenetic reprogramming event will be instrumental in realizing the great potential of SCNT for basic research and for important agricultural and biomedical applications. Here, current knowledge on epigenetic reprogramming after use of SCNT in livestock is reviewed, with emphasis on gene-specific and global DNA methylation, imprinting, X-chromosome inactivation, and telomere length restoration in early development.
Collapse
Affiliation(s)
- Heiner Niemann
- Institute of Farm Animal Genetics (FLI), Mariensee, Neustadt, Germany.
| |
Collapse
|
22
|
Zou C, Fu Y, Li C, Liu H, Li G, Li J, Zhang H, Wu Y, Li C. Genome-wide gene expression and DNA methylation differences in abnormally cloned and normally natural mating piglets. Anim Genet 2016; 47:436-50. [DOI: 10.1111/age.12436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2016] [Indexed: 01/24/2023]
Affiliation(s)
- C. Zou
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - Y. Fu
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - C. Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - H. Liu
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - G. Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - J. Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - H. Zhang
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - Y. Wu
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| | - C. Li
- Key Lab of Agriculture Animal Genetics, Breeding, and Reproduction of Ministry of Education; College of Animal Science and Technology; Huazhong Agricultural University; Wuhan 430070 People's Republic of China
| |
Collapse
|
23
|
Differential developmental competence and gene expression patterns in buffalo (Bubalus bubalis) nuclear transfer embryos reconstructed with fetal fibroblasts and amnion mesenchymal stem cells. Cytotechnology 2015; 68:1827-48. [PMID: 26660476 DOI: 10.1007/s10616-015-9936-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 12/01/2015] [Indexed: 01/01/2023] Open
Abstract
The developmental ability and gene expression pattern at 8- to 16-cell and blastocyst stages of buffalo (Bubalus bubalis) nuclear transfer (NT) embryos from fetal fibroblasts (FFs), amnion mesenchymal stem cells (AMSCs) and in vitro fertilized (IVF) embryos were compared in the present studies. The in vitro expanded buffalo FFs showed a typical "S" shape growth curve with a doubling time of 41.4 h and stained positive for vimentin. The in vitro cultured undifferentiated AMSCs showed a doubling time of 39.5 h and stained positive for alkaline phosphatase, and these cells also showed expression of pluripotency markers (OCT 4, SOX 2, NANOG), and mesenchymal stem cell markers (CD29, CD44) and were negative for haematopoietic marker (CD34) genes at different passages. Further, when AMSCs were exposed to corresponding induction conditions, these cells differentiated into adipogenic, chondrogenic and osteogenic lineages which were confirmed through oil red O, alcian blue and alizarin staining, respectively. Donor cells at 3-4 passage were employed for NT. The cleavage rate was significantly (P < 0.05) higher in IVF than in FF-NT and AMSC-NT embryos (82.6 ± 8.2 vs. 64.6 ± 1.3 and 72.3 ± 2.2 %, respectively). However, blastocyst rates in IVF and AMSC-NT embryos (30.6 ± 2.7 and 28.9 ± 3.1 %) did not differ and were significantly (P < 0.05) higher than FF-NT (19.5 ± 1.8 %). Total cell number did not show significant (P > 0.05) differences between IVF and AMSC-NT embryos (186.7 ± 4.2, 171.2 ± 3.8, respectively) but were significantly (P < 0.05) higher than that from FF-NT (151.3 ± 4.1). Alterations in the expression pattern of genes implicated in transcription and pluripotency (OCT4, STAT3, NANOG), DNA methylation (DNMT1, DNMT3A), histone deacetylation (HDAC2), growth factor signaling and imprinting (IGF2, IGF2R), apoptosis (BAX, BCL2), metabolism (GLUT1) and oxidative stress (MnSOD) regulation were observed in cloned embryos. The transcripts or expression patterns in AMSC-NT embryos more closely followed that of the in vitro derived embryos compared with FF-NT embryos. The results demonstrate that multipotent amnion MSCs have a greater potential as donor cells than FFs in achieving enhanced production of cloned buffalo embryos.
Collapse
|
24
|
Wan Y, Deng M, Zhang G, Ren C, Zhang H, Zhang Y, Wang L, Wang F. Abnormal expression of DNA methyltransferases and genomic imprinting in cloned goat fibroblasts. Cell Biol Int 2015; 40:74-82. [DOI: 10.1002/cbin.10540] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/16/2015] [Accepted: 08/22/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Guomin Zhang
- Jiangsu Livestock Embryo Engineering Laboratory; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Caifang Ren
- Jiangsu Livestock Embryo Engineering Laboratory; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Hao Zhang
- Jiangsu Livestock Embryo Engineering Laboratory; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Lizhong Wang
- Jiangsu Livestock Embryo Engineering Laboratory; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing 210095 China
| |
Collapse
|
25
|
Transcriptomic Features of Bovine Blastocysts Derived by Somatic Cell Nuclear Transfer. G3-GENES GENOMES GENETICS 2015; 5:2527-38. [PMID: 26342001 PMCID: PMC4683625 DOI: 10.1534/g3.115.020016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reprogramming incompletely occurs in most somatic cell nuclear transfer (SCNT) embryos, which results in misregulation of developmentally important genes and subsequent embryonic malfunction and lethality. Here we examined transcriptome profiles in single bovine blastocysts derived by in vitro fertilization (IVF) and SCNT. Different types of donor cells, cumulus cell and ear-skin fibroblast, were used to derive cSCNT and fSCNT blastocysts, respectively. SCNT blastocysts expressed 13,606 genes on average, similar to IVF (13,542). Correlation analysis found that both cSCNT and fSCNT blastocyst groups had transcriptomic features distinctive from the IVF group, with the cSCNT transcriptomes closer to the IVF ones than the fSCNT. Gene expression analysis identified 56 underrepresented and 78 overrepresented differentially expressed genes in both SCNT groups. A 400-kb locus harboring zinc-finger protein family genes in chromosome 18 were found coordinately down-regulated in fSCNT blastocysts, showing a feature of reprogramming-resistant regions. Probing into different categories of genes important for blastocyst development revealed that genes involved in trophectoderm development frequently were underrepresented, and those encoding epigenetic modifiers tended to be overrepresented in SCNT blastocysts. Our effort to identify reprogramming-resistant, differentially expressed genes can help map reprogramming error-prone loci onto the genome and elucidate how to handle the stochastic events of reprogramming to improve cloning efficiency.
Collapse
|
26
|
A comparative study on expression profile of developmentally important genes during pre-implantation stages in buffalo hand-made cloned embryos derived from adult fibroblasts and amniotic fluid derived stem cells. Cytotechnology 2015. [PMID: 26224482 DOI: 10.1007/s10616-015-9904-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Abnormal gene expression in somatic cell nuclear transfer embryos due to aberrant epigenetic modifications of the donor nucleus may account for much of the observed diminished viability and developmental abnormalities. The present study compared the developmentally important gene expression pattern at 4-cell, 8- to 16-cell, morula, and blastocyst stages of buffalo nuclear transfer (NT) embryos from adult fibroblasts (AFs) and amniotic fluid stem cells (AFSCs). In vitro fertilized embryos were used as control embryos. Alterations in the expression pattern of genes implicated in transcription and pluripotency (OCT4, STAT3, NANOG), DNA methylation (DNMT1, DNMT3A), histone deacetylation (HDAC2), growth factor signaling, and imprinting (IGF2, IGF2R), apoptosis (BAX, BCL2), oxidative stress (MnSOD), metabolism (GLUT1) regulation were observed in cloned embryos. The expression of transcripts in AFSC-NT embryos more closely followed that of the in vitro fertilized embryos compared with AF-NT embryos. It is concluded that AFSCs with a relatively undifferentiated genome may serve as suitable donors which could be reprogrammed more efficiently to reactivate expression of early embryonic genes in buffalo NT.
Collapse
|
27
|
Mohapatra SK, Sandhu A, Singh KP, Singla SK, Chauhan MS, Manik R, Palta P. Establishment of Trophectoderm Cell Lines from Buffalo (Bubalus bubalis) Embryos of Different Sources and Examination of In Vitro Developmental Competence, Quality, Epigenetic Status and Gene Expression in Cloned Embryos Derived from Them. PLoS One 2015; 10:e0129235. [PMID: 26053554 PMCID: PMC4459972 DOI: 10.1371/journal.pone.0129235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/06/2015] [Indexed: 11/26/2022] Open
Abstract
Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF.
Collapse
Affiliation(s)
| | - Anjit Sandhu
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Karn Pratap Singh
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Suresh Kumar Singla
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | | | - Radheysham Manik
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
- * E-mail:
| |
Collapse
|
28
|
Arias ME, Risopatrón J, Sánchez R, Felmer R. Intracytoplasmic sperm injection affects embryo developmental potential and gene expression in cattle. Reprod Biol 2014; 15:34-41. [PMID: 25726375 DOI: 10.1016/j.repbio.2014.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/06/2014] [Accepted: 11/02/2014] [Indexed: 01/25/2023]
Abstract
Some reports have linked intracytoplasmic sperm injection (ICSI) with chromosomal abnormalities, low developmental potential and altered gene expression in embryos. ICSI has also been linked with obesity, early aging and increased incidence of tumors in offspring. Other reports have demonstrated that some of these complications disappeared within a few weeks of life or even showed a lack of such associations. The aim of this study was to evaluate and compare embryo development, quality and gene expression in bovine embryos generated by ICSI and by conventional in vitro fertilization (IVF) insemination. The results showed differences in cleavage (88.5% in IVF and 64.1% in ICSI) and blastocyst formation rates (36.1% in IVF and 22.3% in ICSI). The proportion of ICM cells to total cell count was higher in ICSI (39.2%) than in IVF embryos (29.5%). However, no differences were observed in the total embryonic cell numbers (159.3±28.5 and 161.2±56.2 for IVF and ICSI, respectively) or in the proportion of apoptotic nuclei to the total embryonic cell numbers (2.12 and 2.64% for IVF and ICSI, respectively). Gene expression analysis showed a down-regulation of insulin-like growth factor 2 (IGF2) and overexpression of bcl-2-like protein 4 (BAX), octamer-binding transcription factor four (OCT4), interferon-tau (IFNt), Mn-superoxide dismutase in the mitochondria (SOD2), and catalase (CAT) in embryos generated by ICSI. In conclusion, our study demonstrated differences in the morphological development of bovine embryos as well as in the expression of genes involved in early development between ICSI and IVF embryos. The results may indicate lower developmental potential of ICSI embryos compared with that of IVF.
Collapse
Affiliation(s)
- María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Jennie Risopatrón
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Raúl Sánchez
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
29
|
Bao ZJ, Zhao S, Haq IU, Zeng SM. Recombinant bovine interferon-τ enhances in vitro development of bovine embryos by upregulating expression of connexin 43 and E-cadherin. J Dairy Sci 2014; 97:6917-25. [DOI: 10.3168/jds.2014-8106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 08/10/2014] [Indexed: 11/19/2022]
|
30
|
Expression profile of developmentally important genes between hand-made cloned buffalo embryos produced from reprogramming of donor cell with oocytes extract and selection of recipient cytoplast through brilliant cresyl blue staining and in vitro fertilized embryos. J Assist Reprod Genet 2014; 31:1541-52. [PMID: 25141841 DOI: 10.1007/s10815-014-0316-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/07/2014] [Indexed: 01/21/2023] Open
Abstract
PURPOSE To compare the expression profile of developmentally important genes between hand-made cloned buffalo embryos produced from reprogramming of donor cell with oocyte extracts and selection of recipient cytoplast through brilliant cresyl blue staining and in vitro fertilized (IVF) embryos. METHODS Hand-made cloned embryos were produced using oocyte extracts treated donor cells and brilliant cresyl blue (BCB) stained recipient cytoplasts. IVF embryos were produced by culturing 15-20 COCs in BO capacitated sperms from frozen thawed buffalo semen and the mRNA expression patterns of genes implicated in metabolism (GLUT1), pluripotency (OCT4), DNA methylation (DNMT1), pro- apoptosis (BAX) and anti-apoptosis (BCL2) were evaluated at 8- to16- cell stage embryos. RESULTS A significantly (P < 0.05) higher number of 8- to16- cell and blastocyst stages (73.9 %, 32.8 %, respectively) were reported in hand-made cloning (HMC) as compared to in vitro fertilization (49.2 %, 24.2 %, respectively). The amount of RNA recovered from 8- to 16- cell embryos of HMC and in vitro fertilization did not appear to be influenced by the method of embryo generation (3.76 ± 0.61 and 3.82 ± 0.62 ng/μl for HMC and in vitro fertilization embryos, respectively). There were no differences in the expression of the mRNA transcripts of genes (GLUT1, OCT4, DNMT1, BAX and BCL2) were analysed by real-time PCR between hand-made cloned and IVF embryos. CONCLUSIONS Pre-treatment of donor cells with oocyte extracts and selection of developmentally competent oocytes through BCB staining for recipient cytoplast preparations may enhance expression of developmentally important genes GLUT1, OCT4, DNMT1, BAX, and BCL2 in hand-made cloned embryos at levels similar to IVF counterparts. These results also support the notion that if developmental differences observed in HMC and in vitro fertilization produced foetuses and neonates are the results of aberrant gene expression during the pre-implantation stage, those differences in expression are subtle or appear after the maternal to zygotic transition stage of development.
Collapse
|
31
|
Cho J, Kang S, Lee BC. Identification of abnormal gene expression in bovine transgenic somatic cell nuclear transfer embryos. J Vet Sci 2014; 15:225-31. [PMID: 24675837 PMCID: PMC4087224 DOI: 10.4142/jvs.2014.15.2.225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/28/2013] [Indexed: 12/03/2022] Open
Abstract
This study was conducted to investigate the expression of three genes related to early embryonic development in bovine transgenic cloned embryos. To accomplish this, development of bovine transgenic somatic cell nuclear transfer (SCNT) embryos was compared with non-transgenic embryos. Next, mRNA transcription of three specific genes (DNMT1, Hsp 70.1, and Mash2) related to early embryo development in transgenic SCNT embryos was compared between transgenic and non-transgenic SCNTs, parthenogenetic embryos, and in vitro fertilization (IVF) embryos. Transgenic SCNT embryos showed significantly lower rates of development to the blastocyst stage than non-transgenic ones. To investigate normal gene expression, RNA was extracted from ten blastocysts derived from parthenogenesis, IVF, non-transgenic, and transgenic SCNT embryos and reverse-transcribed to synthesize cDNA. The cDNA was then subjected to PCR amplification and semi-quantified. More DNMT1 mRNA was detected in the transgenic SCNT group than the other three groups. Hsp 70.1 mRNA was detected in the IVF embryos, while lower levels were found in SCNT and parthenogenetic embryos. Mash2 mRNA was present at the highest levels in transgenic SCNT embryos. In conclusion, the higher levels of methylation and lower protein synthesis after heat shock in the transgenic SCNT embryos expected based on our results may cause lower embryonic development.
Collapse
Affiliation(s)
- Jongki Cho
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Korea
| | | | | |
Collapse
|
32
|
Kong Q, Xie B, Li J, Huan Y, Huang T, Wei R, Lv J, Liu S, Liu Z. Identification and characterization of an oocyte factor required for porcine nuclear reprogramming. J Biol Chem 2014; 289:6960-6968. [PMID: 24474691 PMCID: PMC3945357 DOI: 10.1074/jbc.m113.543793] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/26/2014] [Indexed: 01/15/2023] Open
Abstract
Nuclear reprogramming of somatic cells can be induced by oocyte factors. Despite numerous attempts, the factors responsible for successful nuclear reprogramming remain elusive. In the present study, we found that porcine oocytes with the first polar body collected at 42 h of in vitro maturation had a stronger ability to support early development of cloned embryos than porcine oocytes with the first polar body collected at 33 h of in vitro maturation. To explore the key reprogramming factors responsible for the difference, we compared proteome signatures of the two groups of oocytes. 18 differentially expressed proteins between these two groups of oocytes were discovered by mass spectrometry (MS). Among these proteins, we especially focused on vimentin (VIM). A certain amount of VIM protein was stored in oocytes and accumulated during oocyte maturation, and maternal VIM was specifically incorporated into transferred somatic nuclei during nuclear reprogramming. When maternal VIM function was inhibited by anti-VIM antibody, the rate of cloned embryos developing to blastocysts was significantly lower than that of IgG antibody-injected embryos and non-injected embryos (12.24 versus 22.57 and 21.10%; p < 0.05), but the development of in vitro fertilization and parthenogenetic activation embryos was not affected. Furthermore, we found that DNA double strand breaks dramatically increased and that the p53 pathway was activated in cloned embryos when VIM function was inhibited. This study demonstrates that maternal VIM, as a genomic protector, is crucial for nuclear reprogramming in porcine cloned embryos.
Collapse
Affiliation(s)
- Qingran Kong
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Bingteng Xie
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingyu Li
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanjun Huan
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Tianqing Huang
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Renyue Wei
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiawei Lv
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shichao Liu
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zhonghua Liu
- Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
33
|
Park SH, Cho HS, Yu IJ. Effect of bovine follicular fluid on reactive oxygen species and glutathione in oocytes, apoptosis and apoptosis-related gene expression of in vitro-produced blastocysts. Reprod Domest Anim 2014; 49:370-7. [PMID: 24592966 DOI: 10.1111/rda.12281] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/30/2013] [Indexed: 01/19/2023]
Abstract
The reactive oxygen species (ROS) generated during the in vitro maturation of oocytes affect oocyte maturation and subsequent embryonic development. Bovine follicular fluid (bFF) has an effective antioxidant capacity. This study was conducted to investigate the effects of supplementing oocyte maturation media with bFF from different size classes (3-8 and 9-13 mm) on the glutathione (GSH) and ROS levels of oocytes. Embryonic development and apoptosis, as well as the relative abundance of INFτ, BAX, BCL2 and HSP70 transcripts in blastocysts, were also monitored. Oocytes collected from ovaries were matured in TCM-199 with FBS (control) and 10% 3-8 mm (M), 9-13 mm (L) or a mixture of 3-8 mm and 9-13 mm (M + L) bFF. Glutathione and ROS levels in oocytes after 24 h were assessed by Cell Tracker Blue CMF2HC and DCHFDA staining, respectively. Apoptosis in day-8 blastocysts was assessed by TUNEL staining. The relative abundance of BAX, BCL2, HSP70 and INFτ transcripts was assessed using quantitative real-time polymerase chain reaction (PCR). The GSH level was significantly higher in the L group compared to the other groups (p < 0.05), while the ROS levels in the M group were significantly higher than in the other groups (p < 0.05). The apoptosis levels of blastocysts in the FBS group were significantly higher than those in the M + L group (p < 0.05), although the embryonic development did not differ between the groups. The HSP70 and INFτ expression levels in group M were significantly greater than in the controls (p < 0.05). There was no significant difference in BAX expression between the groups. Supplementation with bFF from various sizes of follicles into the maturation medium was capable of supporting oocyte cytoplasmic maturation by decreasing the ROS. Moreover, bFF subsequently affected antioxidative gene expression, increasing HSP70 and INFτ expressions.
Collapse
Affiliation(s)
- S-H Park
- Laboratory of Theriogenology and Reproductive Biotechnologies, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Jeonju, Korea
| | | | | |
Collapse
|
34
|
LONG CHARLESR, WESTHUSIN MARKE, GOLDING MICHAELC. Reshaping the transcriptional frontier: epigenetics and somatic cell nuclear transfer. Mol Reprod Dev 2014; 81:183-93. [PMID: 24167064 PMCID: PMC3953569 DOI: 10.1002/mrd.22271] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/20/2013] [Indexed: 12/11/2022]
Abstract
Somatic-cell nuclear transfer (SCNT) experiments have paved the way to the field of cellular reprogramming. The demonstrated ability to clone over 20 different species to date has proven that the technology is robust but very inefficient, and is prone to developmental anomalies. Yet, the offspring from cloned animals exhibit none of the abnormalities of their parents, suggesting the low efficiency and high developmental mortality are epigenetic in origin. The epigenetic barriers to reprogramming somatic cells into a totipotent embryo capable of developing into a viable offspring are significant and varied. Despite their intimate relationship, chromatin structure and transcription are often not uniformly reprogramed after nuclear transfer, and many cloned embryos develop gene expression profiles that are hybrids between the donor cell and an embryonic blastomere. Recent advances in cellular reprogramming suggest that alteration of donor-cell chromatin structure towards that found in an normal embryo is actually the rate-limiting step in successful development of SCNT embryos. Here we review the literature relevant to the transformation of a somatic-cell nucleus into an embryo capable of full-term development. Interestingly, while resetting somatic transcription and associated epigenetic marks are absolutely required for development of SCNT embryos, life does not demand perfection.
Collapse
Affiliation(s)
- CHARLES R. LONG
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - MARK E. WESTHUSIN
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| | - MICHAEL C. GOLDING
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
35
|
Park SK, Roh S, Park JI. A simplified one-step nuclear transfer procedure alters the gene expression patterns and developmental potential of cloned porcine embryos. J Vet Sci 2013; 15:73-80. [PMID: 23820223 PMCID: PMC3973768 DOI: 10.4142/jvs.2014.15.1.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/28/2013] [Indexed: 12/25/2022] Open
Abstract
Various somatic cell nuclear transfer (SCNT) techniques for mammalian species have been developed to adjust species-specific procedures to oocyte-associated differences among species. Species-specific SCNT protocols may result in different expression levels of developmentally important genes that may affect embryonic development and pregnancy. In the present study, porcine oocytes were treated with demecolcine that facilitated enucleation with protruding genetic material. Enucleation and donor cell injection were performed either simultaneously with a single pipette (simplified one-step SCNT; SONT) or separately with different pipettes (conventional two-step SCNT; CTNT) as the control procedure. After blastocysts from both groups were cultured in vitro, the expression levels of developmentally important genes (OCT4, NANOG, EOMES, CDX2, GLUT-1, PolyA, and HSP70) were analyzed by real-time quantitative polymerase chain reaction. Both the developmental rate according to blastocyst stage as well as the expression levels CDX2, EOMES, and HSP70 were elevated with SONT compared to CTNT. The genes with elevated expression are known to influence trophectoderm formation and heat stress-induced arrest. These results showed that our SONT technique improved the development of SCNT porcine embryos, and increased the expression of genes that are important for placental formation and stress-induced arrest.
Collapse
Affiliation(s)
- Sang Kyu Park
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, Seoul National University School of Dentistry, Seoul 110-749, Korea
| | | | | |
Collapse
|
36
|
Moulavi F, Hosseini SM, Hajian M, Forouzanfar M, Abedi P, Ostadhosseini S, Asgari V, Nasr-Esfahani MH. Nuclear transfer technique affects mRNA abundance, developmental competence and cell fate of the reconstituted sheep oocytes. Reproduction 2013; 145:345-55. [DOI: 10.1530/rep-12-0318] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The effect of technical steps of somatic cell nuclear transfer (SCNT) on different aspects of cloned embryo development was investigated in sheep.In vitro-matured oocytes were enucleated in the presence or absence of zona and reconstituted by three different SCNT techniques: conventional zona-intact (ZI-NT), standard zona-free (ZF-NT) and intracytoplasmic nuclear injection (ICI-NT). Stepwise alterations in nuclear remodeling events and in mRNA abundances, throughput and efficiency of cloned embryo development and cell allocation of the resulted blastocysts were assessed. Early signs of nuclear remodeling were observed as soon as 2 h post-reconstitution (hpr) for fusion-based methods of nuclear transfer (ZI-NT and ZF-NT) but were not observable until 4 hpr with the ICI-NT method. The relative mRNA abundances ofHSP90AA1(HSP90),NPM2andATPasegenes were not affected by i) presence or absence of zona, ii) oocyte enucleation method and iii) nuclear transfer method. After reconstitution, however, the relative mRNA contents ofPOU5F1(OCT4) with the ZI-NT and ZF-NT methods and ofPAPOLA(PAP) with ZF-NT were significantly lower than those for the ICI-NT method. Zona removal doubled the throughput of cloned blastocyst development for the ZF-NT technique compared with ZI-NT and ICI-NT. Cleavage rate was not affected by the SCNT protocol, whereas blastocyst yield rate in ICI-NT technique (17.0±1.0%) was significantly (P<0.05; ANOVA) higher than in ZF-NT (7.1±1.5%) but not in the ZI-NT group (11.2±3.3%). Despite the similarities in total cell number, SCNT protocol changed the distribution of cells in the blastocysts, as ZF-NT-cloned blastocysts had significantly smaller inner cell mass than ZI-NT. These results indicate that technical aspects of cloning may result in the variety of cloning phenotypes.
Collapse
|
37
|
Harris D, Huang B, Oback B. Inhibition of MAP2K and GSK3 Signaling Promotes Bovine Blastocyst Development and Epiblast-Associated Expression of Pluripotency Factors1. Biol Reprod 2013; 88:74. [DOI: 10.1095/biolreprod.112.103390] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
38
|
Expression of antisense of insulin-like growth factor-2 receptor RNA non-coding (AIRN) during early gestation in cattle. Anim Reprod Sci 2013; 138:64-73. [PMID: 23473694 DOI: 10.1016/j.anireprosci.2013.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 01/02/2013] [Accepted: 01/28/2013] [Indexed: 11/23/2022]
Abstract
The insulin-like growth factor type 2 receptor (IGF2R) regulates fetal growth by removing IGF2 from circulation. In mice, expression of the Igf2r gene is only imprinted after implantation and is associated with expression of the antisense non-coding (nc)RNA, Airn. The objectives of this study were, first, to determine if bovine AIRN was expressed during developmentally important stages of gestation, and second, to determine if expression of bAIRN was affected by method of embryo production. Control reactions confirmed that sequence verified bAIRN PCR amplicons resulted from RNA within the sample and not from genomic DNA contamination. IGF2R mRNA was expressed in all fetal liver samples at Days 35-55 and 70 of gestation as well as in 8 of 9 Day 15 conceptuses, 10 of 10 Day 18 conceptuses, and in all day 7 blastocyst pools. bAIRN was expressed in all samples of fetal liver at Days 35-55 and 70 of gestation. The proportion of conceptuses that expressed bAIRN increased from 1 of 9 at Day 15 of gestation to 8 of 10 at Day 18 of gestation. No bAIRN was expressed in any blastocyst pools. The relative level of bAIRN was greater (P<0.05) in fetal liver from embryos produced in vivo compared to that from embryos produced in vitro. In summary bAIRN was not expressed in blastocyst-stage embryos, was expressed in an increasing proportion of embryos around the time of maternal recognition of pregnancy and was expressed following implantation. Furthermore, relative levels of bAIRN in bovine fetal liver can be altered by method of embryo production.
Collapse
|
39
|
Gall L, Brochard V, Ruffini S, Laffont L, Fleurot R, Lavin TA, Jouneau A, Beaujean N. Intermediate Filaments Promote Nuclear Mechanical Constraints During Somatic Cell Nuclear Transfer in the Mouse. Cell Reprogram 2012. [DOI: 10.1089/cell.2012.0027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Laurence Gall
- INRA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France
- ENVA, F-94700 Maisons Alfort, France
| | - Vincent Brochard
- INRA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France
- ENVA, F-94700 Maisons Alfort, France
| | - Sylvie Ruffini
- INRA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France
- ENVA, F-94700 Maisons Alfort, France
| | - Ludivine Laffont
- INRA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France
- ENVA, F-94700 Maisons Alfort, France
| | - Renaud Fleurot
- INRA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France
- ENVA, F-94700 Maisons Alfort, France
| | - Tiphaine Aguirre Lavin
- INRA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France
- ENVA, F-94700 Maisons Alfort, France
| | - Alice Jouneau
- INRA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France
- ENVA, F-94700 Maisons Alfort, France
| | - Nathalie Beaujean
- INRA, UMR 1198 Biologie du Développement et Reproduction, F-78350 Jouy en Josas, France
- ENVA, F-94700 Maisons Alfort, France
| |
Collapse
|
40
|
The combined treatment of calcium ionophore with strontium improves the quality of ovine SCNT embryo development. ZYGOTE 2012; 21:139-50. [DOI: 10.1017/s0967199412000470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
SummaryPoor embryo quality is a major problem that contributes to the failure of pregnancy in somatic cell nuclear transfer (SCNT). The aims of this study were to improve the quality of ovine SCNT embryos by modifying the conventional activation protocol with the addition of SrCl2. In order to achieve this objective we conducted a series of experiments with in vitro-matured oocytes to optimize conditions for oocyte activation with strontium, and subsequently applied the protocol to SCNT embryos. The results showed that in vitro-matured oocytes could be activated effectively by 10 mM SrCl2 + 5 mg/ml cytochalasin B (CB) for 5 h in the absence of Ca2+ and that the blastocyst rate on day 7 (33.2%) was similar to that in the control group (31.0%) (5 M calcium ionophore [IP] A23187 for 5 min and cultured in CB/cycloheximide [CHX] for 5 h; P > 0.05). In SCNT experiments, the total cell number/blastocyst (104.12 ± 6.86) in the IP + SrCl2/CB-treatment group was, however, significantly higher than that in the control group (81.07 ± 3.39; P < 0.05). Apoptotic index (12.29 ± 1.22%) was significantly lower than the control (17.60 ± 1.39%; P < 0.05) when a combination of IP and SrCl2/CB was applied to SCNT embryos. In addition, karyotyping of the SCNT embryos showed that the percentage of diploid blastocysts in the IP + SrCl2/CB-treatment group was slightly higher than that in the control (P > 0.05). We conclude that the modified activation protocol with IP + SrCl2/CB can improve significantly the quality of ovine SCNT embryos in terms of total cell number, apoptosis and ploidy.
Collapse
|
41
|
Saraiva NZ, Oliveira CS, Tetzner TAD, de Lima MR, de Melo DS, Niciura SCM, Garcia JM. Chemically assisted enucleation results in higher G6PD expression in early bovine female embryos obtained by somatic cell nuclear transfer. Cell Reprogram 2012; 14:425-35. [PMID: 22908977 DOI: 10.1089/cell.2011.0077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Despite extensive efforts, low efficiency is still an issue in bovine somatic cell nuclear transfer (SCNT). The hypothesis of our study was that the use of cytoplasts produced by chemically assisted enucleation (EN) would improve nuclear reprogramming in nuclear transfer (NT)-derived embryos because it results in lower damage and higher cytoplasm content than conventional EN. For that purpose, we investigated the expression of two X-linked genes: X inactive-specific transcript (XIST) and glucose 6-phosphate dehydrogenase (G6PD). In the first experiment, gene expression was assessed in day-7 female blastocysts from embryonic cell NT (ECNT) groups [conventional, ECNT conv; chemically assisted, ECNT deme (demecolcine)]. Whereas in the ECNT conv group, only one embryo (25%; n=4) expressed XIST transcripts, most embryos showed XIST expression (75%; n=4) in the ECNT deme group. However, no significant differences in transcript abundance of XIST and G6PD were found when comparing the embryos from all groups. In a second experiment using somatic cells as nuclear donors, we evaluated gene expression profiles in female SCNT-derived embryos. No significant differences in relative abundance (RA) of XIST transcripts were observed among the groups. Nonetheless, higher (p<0.05) levels of G6PD were observed in SCNT deme and in vitro-derived groups in comparison to SCNT conv. To know whether higher G6PD expression in embryos derived from SCNT chemically assisted EN indicates higher metabolism in embryos considered of superior quality or if the presence of higher reactive oxygen species (ROS) levels generated by the increased oxygen consumption triggers G6PD activation, the expression of genes related to stress response should be investigated in embryos produced by that technique.
Collapse
Affiliation(s)
- Naiara Zoccal Saraiva
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Universidade Estadual Paulista, Jaboticabal, Brazil.
| | | | | | | | | | | | | |
Collapse
|
42
|
Hosseini SM, Hajian M, Forouzanfar M, Moulavi F, Abedi P, Asgari V, Tanhaei S, Abbasi H, Jafarpour F, Ostadhosseini S, Karamali F, Karbaliaie K, Baharvand H, Nasr-Esfahani MH. Enucleated ovine oocyte supports human somatic cells reprogramming back to the embryonic stage. Cell Reprogram 2012; 14:155-63. [PMID: 22384929 DOI: 10.1089/cell.2011.0061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Increased possibility of universality of ooplasmic reprogramming factors resulted in a parallel increased interest to use interspecies somatic cell nuclear transfer (iSCNT) to address basic questions of developmental biology and to improve the feasibility of cell therapy. In this study, the interactions between human somatic cells and ovine oocytes were investigated. Nuclear remodeling events were first observed 3 h post-iSCNT as nuclear swelling, chromosome condensation, and spindle formation. A time-dependent decrease in maturation promoting activity of inactivated reconstructs coincided with increased aberrations in chromosome and spindle organization of the newly developed embryos. The sequence and duration of nuclear remodeling events were irrespective of donor cell type used. Although the majority of the reconstituted embryos arrested before embryonic genome activation (8-16-cell) stage, less than 5% of them could progress beyond transcription-requiring developmental stage and formed blastocyst-like structures with distinct inner cell mass and trophectoderm at days 7 and 8 post-SCNT. Importantly, real-time assessment of three developmentally important genes (Oct4, Sox2, and Nanog) indicated their upregulation in iSCNT blastocysts. Blastocyst-derived outgrowths had alkaline phosphatase activity that was lost upon passage. Collectively, this study introduced ovine oocyte as a credible cytoplast for remodeling and reprogramming of human somatic cells back to the embryonic stage and provided a platform for further studies to unravel possible differences exist between reprogramming ability of oocytes of different mammalian species.
Collapse
Affiliation(s)
- S Morteza Hosseini
- Department of Reproduction and Development, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Isfahan, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sawai K, Fujii T, Hirayama H, Hashizume T, Minamihashi A. Epigenetic status and full-term development of bovine cloned embryos treated with trichostatin A. J Reprod Dev 2012; 58:302-9. [PMID: 22322145 DOI: 10.1262/jrd.2011-020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the comprehensive epigenetic status, including histone H3 and H4 acetylation, DNA methylation and level of mRNA transcripts of bovine somatic cell nuclear transfer (SCNT) embryos treated with trichostatin A (TSA), along with their full-term developmental efficacy. Treatment with 50 nM TSA enhanced early developmental competence; increased acetylation of two histones, H3K9K14 and H4K8, at the blastocyst stage; and maintained the DNA methylation status of the satelliteI sequence in bovine SCNT embryos. The difference in IGFBP-3 transcript levels between in vivo and SCNT embryos disappeared in SCNT embryos after treatment with 50 nM TSA. Pregnancy, full-term developmental competence and body weight at birth of offspring did not differ between SCNT embryos treated with 50 nM TSA and untreated embryos. These results suggest that treatment with TSA improves preimplantation development and changes the epigenetic status but does not promote the full-term development competence in bovine SCNT embryos.
Collapse
Affiliation(s)
- Ken Sawai
- Agriculture, Iwate University, Iwate 020-8550, Japan.
| | | | | | | | | |
Collapse
|
44
|
Iwamoto D, Kasamatsu A, Ideta A, Urakawa M, Matsumoto K, Hosoi Y, Iritani A, Aoyagi Y, Saeki K. Donor Cells at the G1 Phase Enhance Homogeneous Gene Expression Among Blastomeres in Bovine Somatic Cell Nuclear Transfer Embryos. Cell Reprogram 2012; 14:20-8. [DOI: 10.1089/cell.2011.0035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Daisaku Iwamoto
- Department of Genetic Engineering, Kinki University, Kinokawa, Wakayama, Japan
| | - Aya Kasamatsu
- Department of Genetic Engineering, Kinki University, Kinokawa, Wakayama, Japan
| | - Atsushi Ideta
- ZEN-NOH Embryo Transfer Center, Kamishihoro, Hokkaido, Japan
| | - Manami Urakawa
- ZEN-NOH Embryo Transfer Center, Kamishihoro, Hokkaido, Japan
| | - Kazuya Matsumoto
- Department of Genetic Engineering, Kinki University, Kinokawa, Wakayama, Japan
| | - Yoshihiko Hosoi
- Department of Genetic Engineering, Kinki University, Kinokawa, Wakayama, Japan
| | - Akira Iritani
- Department of Genetic Engineering, Kinki University, Kinokawa, Wakayama, Japan
| | - Yoshito Aoyagi
- ZEN-NOH Embryo Transfer Center, Kamishihoro, Hokkaido, Japan
| | - Kazuhiro Saeki
- Department of Genetic Engineering, Kinki University, Kinokawa, Wakayama, Japan
| |
Collapse
|
45
|
Kobolak J, Horsch M, Geissler S, Mamo S, Beckers J, Dinnyes A. Comparative analysis of nuclear transfer embryo-derived mouse embryonic stem cells. Part II: gene regulation. Cell Reprogram 2011; 14:68-78. [PMID: 22204593 DOI: 10.1089/cell.2011.0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In a mouse model nuclear transfer embryo-derived embryonic stem cell lines (ntESCs) of various genetic backgrounds and donor cell types were compared with reference ESCs and analyzed comprehensively at molecular level as a second part of a larger study. Expression profiles of ntESCs established by different NT-methods (piezoelectric microinjection or zona-free) were indistinguishable. However, expression profiling analyses identified differentially regulated genes between reference ESCs and ntESCs from different genetic backgrounds. A number of pluripotency and stemness marker genes significantly differed at the mRNA level between the cell lines. However, cluster and lineage analyses revealed that such differences had no effect on cell differentiation and cell fate. Regardless of the donor cell type, gene expression profiles of ntESCs were more similar to each other than to their counterpart fertilized embryo-derived ESCs of the same genotype. Overall, the results indicated that expression profile differences may be related to the genotype rather than to technical variations.
Collapse
Affiliation(s)
- Julianna Kobolak
- Genetic Reprogramming Group, Agricultural Biotechnology Center, Gödöllő, Hungary
| | | | | | | | | | | |
Collapse
|
46
|
Huang Y, Tang X, Xie W, Zhou Y, Li D, Yao C, Zhou Y, Zhu J, Lai L, Ouyang H, Pang D. Histone Deacetylase Inhibitor Significantly Improved the Cloning Efficiency of Porcine Somatic Cell Nuclear Transfer Embryos. Cell Reprogram 2011; 13:513-20. [DOI: 10.1089/cell.2011.0032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yongye Huang
- Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Xiaochun Tang
- Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Wanhua Xie
- Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Yan Zhou
- Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Dong Li
- Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Chaogang Yao
- Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Yang Zhou
- Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Jianguo Zhu
- Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Liangxue Lai
- Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Hongsheng Ouyang
- Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Daxin Pang
- Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
47
|
Jeon Y, Jeong SH, Biswas D, Jung EM, Jeung EB, Lee ES, Hyun SH. Cleavage pattern and survivin expression in porcine embryos by somatic cell nuclear transfer. Theriogenology 2011; 76:1187-96. [DOI: 10.1016/j.theriogenology.2011.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Revised: 03/28/2011] [Accepted: 04/03/2011] [Indexed: 01/09/2023]
|
48
|
Cui XS, Xu YN, Shen XH, Zhang LQ, Zhang JB, Kim NH. Trichostatin A Modulates Apoptotic-Related Gene Expression and Improves Embryo Viability in Cloned Bovine Embryos. Cell Reprogram 2011; 13:179-89. [DOI: 10.1089/cell.2010.0060] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Xiang-Shun Cui
- Center for Laboratory Animal, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Yong-Nan Xu
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Xing-Hui Shen
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, People's Republic of China
| | - Li-Qun Zhang
- Reproductive Medical Center, The First Hospital of Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Jia-Bao Zhang
- Center for Laboratory Animal, Jilin University, Changchun, Jilin Province, People's Republic of China
| | - Nam-Hyung Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Korea
| |
Collapse
|
49
|
Fujii T, Moriyasu S, Hirayama H, Hashizume T, Sawai K. Aberrant expression patterns of genes involved in segregation of inner cell mass and trophectoderm lineages in bovine embryos derived from somatic cell nuclear transfer. Cell Reprogram 2011; 12:617-25. [PMID: 20726774 DOI: 10.1089/cell.2010.0017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High rates of embryonic, fetal, or placental abnormalities have consistently been observed in bovine cloning. Segregation of inner cell mass (ICM) and trophectoderm (TE) lineages in early embryos is an important process for fetal and placental formation. In mouse embryos, differentiation of ICM and TE is regulated by various transcription factors, such as OCT-4, CDX2, and TEAD4, but molecular mechanisms that regulate differentiation in bovine embryos remain unknown. To clarify gene transcripts involved in segregation of ICM and TE lineages in bovine embryos, we examined the relative abundances of OCT-4, CDX2, TEAD4, GATA3, NANOG, and FGF4 transcripts in blastocyst embryos derived from in vitro fertilization (IVF). Furthermore, transcript levels of such genes in bovine embryos derived from somatic cell nuclear transfer (NT-SC) and in vivo (Vivo) were also compared. OCT-4, NANOG, and FGF4 transcript levels in IVF embryos were significantly higher in ICM than in TE. In contrast, the CDX2 transcript level was lower in ICM than in TE. In NT-SC embryos at the blastocyst stage, transcript levels of all genes except CDX2 were lower than that in Vivo embryos. In the elongated stage, expression levels of the six genes did not differ between NT-SC and Vivo embryos. We observed aberrant expression patterns of various genes involved in segregation of ICM and TE lineages in bovine NT-SC embryos. These results raise the possibility that abnormalities in the cloned fetus and placenta are related to the aberrant expression of genes involved in segregation and differentiation process in the early developmental stage.
Collapse
|
50
|
Effects of vascular endothelial growth factor on porcine preimplantation embryos produced by in vitro fertilization and somatic cell nuclear transfer. Theriogenology 2011; 75:256-67. [DOI: 10.1016/j.theriogenology.2010.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 08/20/2010] [Accepted: 08/20/2010] [Indexed: 11/19/2022]
|