1
|
Iyyappan R, Aleshkina D, Ming H, Dvoran M, Kakavand K, Jansova D, del Llano E, Gahurova L, Bruce AW, Masek T, Pospisek M, Horvat F, Kubelka M, Jiang Z, Susor A. The translational oscillation in oocyte and early embryo development. Nucleic Acids Res 2023; 51:12076-12091. [PMID: 37950888 PMCID: PMC10711566 DOI: 10.1093/nar/gkad996] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/13/2023] Open
Abstract
Translation is critical for development as transcription in the oocyte and early embryo is silenced. To illustrate the translational changes during meiosis and consecutive two mitoses of the oocyte and early embryo, we performed a genome-wide translatome analysis. Acquired data showed significant and uniform activation of key translational initiation and elongation axes specific to M-phases. Although global protein synthesis decreases in M-phases, translation initiation and elongation activity increases in a uniformly fluctuating manner, leading to qualitative changes in translation regulation via the mTOR1/4F/eEF2 axis. Overall, we have uncovered a highly dynamic and oscillatory pattern of translational reprogramming that contributes to the translational regulation of specific mRNAs with different modes of polysomal occupancy/translation that are important for oocyte and embryo developmental competence. Our results provide new insights into the regulation of gene expression during oocyte meiosis as well as the first two embryonic mitoses and show how temporal translation can be optimized. This study is the first step towards a comprehensive analysis of the molecular mechanisms that not only control translation during early development, but also regulate translation-related networks employed in the oocyte-to-embryo transition and embryonic genome activation.
Collapse
Affiliation(s)
- Rajan Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Daria Aleshkina
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Hao Ming
- Department of Animal Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Michal Dvoran
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Kianoush Kakavand
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Denisa Jansova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Edgar del Llano
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Lenka Gahurova
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Alexander W Bruce
- Laboratory of Early Mammalian Developmental Biology, Department of Molecular Biology & Genetics, Faculty of Science, University of South Bohemia in České Budějovice, Branisovšká 31a, České Budějovice, Czech Republic
| | - Tomas Masek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Martin Pospisek
- Laboratory of RNA Biochemistry, Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Filip Horvat
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Michal Kubelka
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Zongliang Jiang
- Department of Animal Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| |
Collapse
|
2
|
Laseca N, Molina A, Ramón M, Valera M, Azcona F, Encina A, Demyda-Peyrás S. Fine-Scale Analysis of Runs of Homozygosity Islands Affecting Fertility in Mares. Front Vet Sci 2022; 9:754028. [PMID: 35252415 PMCID: PMC8891756 DOI: 10.3389/fvets.2022.754028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The loss of genetic variability in livestock populations bred under strict selection processes is a growing concern, as it may lead to increased inbreeding values and lower fertility, as a consequence of the “inbreeding depression” effect. This is particularly important in horses, where inbreeding levels tend to rise as individuals become more and more closely related. In this study, we evaluated the effect of increased inbreeding levels on mare fertility by combining an SNP-based genomic approach using runs of homozygosity and the estimation of genetic breeding values for reproductive traits in a large population of Pura Raza Española mares. Our results showed a negative correlation between whole-genome homozygosity and fertility estimated breeding values (EBVs) at the genome level (ρ = −0.144). However, the analysis at chromosome level revealed a wide variability, with some chromosomes showing higher correlations than others. Interestingly, the correlation was stronger (−0.241) when we repeated the analysis in a reduced dataset including the 10% most and least fertile individuals, where the latter showed an increase in average inbreeding values (FROH) of around 30%. We also found 41 genomic regions (ROHi, runs of homozygosity islands) where homozygosity increased 100-fold, 13 of which were significantly associated with fertility after cross-validation. These regions encompassed 17 candidate genes previously related to oocyte and embryo development in several species. Overall, we demonstrated the relationship between increased homozygosis at the genomic level and fertility in mares. Our findings may help to deal with the occurrence of inbreeding depression, as well as further our understanding of the mechanisms underlying fertility in mares.
Collapse
Affiliation(s)
- Nora Laseca
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Antonio Molina
- Laboratorio de Diagnóstico Genético Veterinario, Departamento de Genética, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Ramón
- Cersyra de Valdepeñas, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal Castilla La Mancha, Tomelloso, Spain
| | - Mercedes Valera
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Sevilla, Spain
| | - Florencia Azcona
- IGEVET (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Ana Encina
- Departamento de Agronomía, Escuela Técnica Superior de Ingeniería Agronómica, Universidad de Sevilla, Sevilla, Spain
- Asociación Nacional de Criadores de Caballos de Pura Raza Española, Sevilla, Spain
| | - Sebastián Demyda-Peyrás
- Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET LA PLATA), La Plata, Argentina
- *Correspondence: Sebastián Demyda-Peyrás
| |
Collapse
|
3
|
Bezerra FTG, Paulino LRFM, Silva BR, Silva AWB, Souza Batista ALP, Silva JRV. Effects of epidermal growth factor and progesterone on oocyte meiotic resumption and the expression of maturation-related transcripts during prematuration of oocytes from small and medium-sized bovine antral follicles. Reprod Fertil Dev 2021; 32:1190-1199. [PMID: 32943135 DOI: 10.1071/rd20099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/10/2020] [Indexed: 01/08/2023] Open
Abstract
This study evaluated the effects of epidermal growth factor (EGF) and progesterone (P4) on growth, the resumption of meiosis and expression of eukaryotic translation initiation factor 4E(eIF4E), poly(A)-specific ribonuclease (PARN), oocyte-specific histone H1 (H1FOO), oocyte maturation factor Mos (cMOS), growth differentiation factor-9 (GDF9) and cyclin B1 (CCNB1) mRNA in oocytes from small and medium-sized antral follicles after prematuration and maturation invitro. Oocytes from small (<2.0mm) and medium (3.0-6.0mm) antral follicles were cultured in medium containing EGF (10ng mL-1), P4 (100 µM) or both. After culture, growth rate, resumption of meiosis and eIF4E, PARN, H1FOO, cMOS, GDF9 and CCNB1 mRNA levels were evaluated. P4 increased cMOS, H1FOO and CCNB1 mRNA levels after the culture of oocytes from small antral follicles, and EGF increased CCNB1 mRNA levels in these oocytes. In the medium-sized antral follicles, P4 alone or in combination with EGF increased oocyte diameter after prematuration invitro. In these oocytes, the presence of either EGF or P4 in the culture medium increased cMOS mRNA levels. In conclusion, P4 increases cMOS, H1FOO and CCNB1 mRNA levels after the culture of oocytes from small antral follicles. P4 and the combination of EGF and P4 promote the growth of oocytes from medium-sized antral follicles, and both EGF and P4 increase cMOS mRNA levels.
Collapse
Affiliation(s)
- Francisco Taiã G Bezerra
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral-CE, Brazil
| | - Laís R F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral-CE, Brazil
| | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral-CE, Brazil
| | - Anderson W B Silva
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral-CE, Brazil
| | - Ana L P Souza Batista
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral-CE, Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral-CE, Brazil; and Corresponding author.
| |
Collapse
|
4
|
Tetkova A, Susor A, Kubelka M, Nemcova L, Jansova D, Dvoran M, Del Llano E, Holubcova Z, Kalous J. Follicle-stimulating hormone administration affects amino acid metabolism in mammalian oocytes†. Biol Reprod 2020; 101:719-732. [PMID: 31290535 DOI: 10.1093/biolre/ioz117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/18/2019] [Accepted: 07/04/2019] [Indexed: 12/27/2022] Open
Abstract
Culture media used in assisted reproduction are commonly supplemented with gonadotropin hormones to support the nuclear and cytoplasmic maturation of in vitro matured oocytes. However, the effect of gonadotropins on protein synthesis in oocytes is yet to be fully understood. As published data have previously documented a positive in vitro effect of follicle-stimulating hormone (FSH) on cytoplasmic maturation, we exposed mouse denuded oocytes to FSH in order to evaluate the changes in global protein synthesis. We found that dose-dependent administration of FSH resulted in a decrease of methionine incorporation into de novo synthesized proteins in denuded mouse oocytes and oocytes cultured in cumulus-oocyte complexes. Similarly, FSH influenced methionine incorporation in additional mammalian species including human. Furthermore, we showed the expression of FSH-receptor protein in oocytes. We found that major translational regulators were not affected by FSH treatment; however, the amino acid uptake became impaired. We propose that the effect of FSH treatment on amino acid uptake is influenced by FSH receptor with the effect on oocyte metabolism and physiology.
Collapse
Affiliation(s)
- Anna Tetkova
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Andrej Susor
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Michal Kubelka
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Lucie Nemcova
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Denisa Jansova
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| | - Michal Dvoran
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Edgar Del Llano
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Zuzana Holubcova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic
| | - Jaroslav Kalous
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Libechov, Czech Republic
| |
Collapse
|
5
|
Kalous J, Jansová D, Šušor A. Role of Cyclin-Dependent Kinase 1 in Translational Regulation in the M-Phase. Cells 2020; 9:cells9071568. [PMID: 32605021 PMCID: PMC7408968 DOI: 10.3390/cells9071568] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Cyclin dependent kinase 1 (CDK1) has been primarily identified as a key cell cycle regulator in both mitosis and meiosis. Recently, an extramitotic function of CDK1 emerged when evidence was found that CDK1 is involved in many cellular events that are essential for cell proliferation and survival. In this review we summarize the involvement of CDK1 in the initiation and elongation steps of protein synthesis in the cell. During its activation, CDK1 influences the initiation of protein synthesis, promotes the activity of specific translational initiation factors and affects the functioning of a subset of elongation factors. Our review provides insights into gene expression regulation during the transcriptionally silent M-phase and describes quantitative and qualitative translational changes based on the extramitotic role of the cell cycle master regulator CDK1 to optimize temporal synthesis of proteins to sustain the division-related processes: mitosis and cytokinesis.
Collapse
|
6
|
Pavani KC, Rocha A, Oliveira E, da Silva FM, Sousa M. Novel ultrastructural findings in bovine oocytes matured in vitro. Theriogenology 2019; 143:88-97. [PMID: 31862672 DOI: 10.1016/j.theriogenology.2019.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/13/2023]
Abstract
The ultrastructural morphology of the bovine oocyte at different maturation stages has been previously analyzed but without detailed structural observations at the mature stage. The objective of the present study was thus to establish the ultrastructural characteristics of the mature bovine oocyte in full detail. Oocytes from Bos taurus (Holstein-Friesian) cows were aspirated from ovaries collected after being slaughtered at a local abattoir. After in vitro culture for 24 h, some of them were processed for electron microscopy. We described the ultrastructure of the zona pellucida, which presented three different regions, and novel cytoplasmic findings. There were two types of electron-lucent vesicles (heterogeneous and striated), which were suggested to give rise to lipid droplets, and presence of receptor-mediated endocytosis. In conclusion, our results indicate that although the mature bovine oocyte is devoid of evident yolk, it might be filled with an extensive lipid factory. In addition, even before fertilization, the mature oocyte seemed to absorb nutrients through receptor-mediated endocytosis, indicating active energy use or storage.
Collapse
Affiliation(s)
- K C Pavani
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - A Rocha
- Department of Immuno-Physiology and Pharmacology, Center of Animal Science Studies (CECA/ICETA), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (UP), Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - E Oliveira
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), Multidisciplinary Unit for Biomedical Research (UMIB), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - F Moreira da Silva
- Department of Reproduction, Faculty of Agrarian Sciences and Environment, Center of Investigation of Agrarian Technologies of Açores (CITA-A), Animal Reproduction, University of Açores (UAc), 9700-042, Angra do Heroísmo, Açores, Portugal.
| | - M Sousa
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), Multidisciplinary Unit for Biomedical Research (UMIB), University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
7
|
Bezerra FTG, Lima FEO, Paulino LRFM, Silva BR, Silva AWB, Souza ALP, van den Hurk R, Silva JRV. In vitro culture of secondary follicles and prematuration of cumulus-oocyte complexes from antral follicles increase the levels of maturation-related transcripts in bovine oocytes. Mol Reprod Dev 2019; 86:1874-1886. [PMID: 31621988 DOI: 10.1002/mrd.23284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/02/2019] [Indexed: 11/11/2022]
Abstract
This study evaluates the levels of messenger RNA (mRNA) for eIF4E, PARN, H1FOO, cMOS, GDF9, and CCNB1 in oocytes from secondary and antral follicles at different stages of development. The effects of in vitro culture, in vitro prematuration, and in vitro maturation on the expression of these genes on oocytes were also analyzed. The results showed that mRNA levels for H1FOO, GDF9, and PARN were higher in oocytes from small, medium, and large antral follicles, respectively, than those seen in secondary follicles. Oocytes from small, medium, and large antral follicles had higher levels of CCNB1 than oocytes from secondary follicles. Oocytes from cultured secondary follicles had higher levels of GDF9, CMOS, PARN, eIF4E, CCNB1, and H1FOO than before culture. Prematured oocytes from small antral follicles had higher levels of mRNA for GDF9, PARN, and eIF4E than before culture. In addition, higher levels of cMOS and H1FOO were identified in prematured oocytes from medium antral follicles. In conclusion, follicular growth is associated with an increase in the expression of H1FOO, GDF9, CCNB1, and PARN. The culture of secondary follicles, prematuration, and maturation of oocytes from antral follicles increase the expression of eIF4E, PARN, H1FOO, cMOS, GDF9, and CCNB1.
Collapse
Affiliation(s)
- Francisco Taiã G Bezerra
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Francisco Edilcarlos O Lima
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Laís Rayani F M Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Bianca R Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Anderson W B Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Ana Liza P Souza
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| | - Robert van den Hurk
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - José Roberto V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceara, Sobral-CE, Brazil
| |
Collapse
|
8
|
Spatio-temporal expression of ANK2 promotes cytokinesis in oocytes. Sci Rep 2019; 9:13121. [PMID: 31511568 PMCID: PMC6739377 DOI: 10.1038/s41598-019-49483-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/21/2019] [Indexed: 01/01/2023] Open
Abstract
In the absence of transcription, the regulation of gene expression in oocytes is controlled almost exclusively at the level of transcriptome and proteome stabilization, and translation. A subset of maternal transcripts is stored in a translationally dormant state in the oocyte, and temporally driven translation of specific mRNAs propel meiotic progression, oocyte-to-embryo transition and early embryo development. We identified Ank2.3 as the only transcript variant present in the mouse oocyte and discovered that it is translated after nuclear envelope breakdown. Here we show that Ank2.3 mRNA is localized in higher concentration in the oocyte nucleoplasm and, after nuclear envelope breakdown, in the newly forming spindle where its translation occurs. Furthermore, we reveal that Ank2.3 mRNA contains an oligo-pyrimidine motif at 5'UTR that predetermines its translation through a cap-dependent pathway. Lastly, we show that prevention of ANK2 translation leads to abnormalities in oocyte cytokinesis.
Collapse
|
9
|
Jansova D, Tetkova A, Koncicka M, Kubelka M, Susor A. Localization of RNA and translation in the mammalian oocyte and embryo. PLoS One 2018. [PMID: 29529035 PMCID: PMC5846722 DOI: 10.1371/journal.pone.0192544] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The tight correlation between mRNA distribution and subsequent protein localization and function indicate a major role for mRNA localization within the cell. RNA localization, followed by local translation, presents a mechanism for spatial and temporal gene expression regulation utilized by various cell types. However, little is known about mRNA localization and translation in the mammalian oocyte and early embryo. Importantly, fully-grown oocyte becomes transcriptionally inactive and only utilizes transcripts previously synthesized and stored during earlier development. We discovered an abundant RNA population in the oocyte and early embryo nucleus together with RNA binding proteins. We also characterized specific ribosomal proteins, which contribute to translation in the oocyte and embryo. By applying selected markers to mouse and human oocytes, we found that there might be a similar mechanism of RNA metabolism in both species. In conclusion, we visualized the localization of RNAs and translation machinery in the oocyte, that could shed light on this terra incognita of these unique cell types in mouse and human.
Collapse
Affiliation(s)
- Denisa Jansova
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
- * E-mail: (DJ); (AS)
| | - Anna Tetkova
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Marketa Koncicka
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Prague 2, Czech Republic
| | - Michal Kubelka
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
| | - Andrej Susor
- Institute of Animal Physiology and Genetics, CAS, Libechov, Czech Republic
- * E-mail: (DJ); (AS)
| |
Collapse
|
10
|
Kalous J, Tetkova A, Kubelka M, Susor A. Importance of ERK1/2 in Regulation of Protein Translation during Oocyte Meiosis. Int J Mol Sci 2018; 19:ijms19030698. [PMID: 29494492 PMCID: PMC5877559 DOI: 10.3390/ijms19030698] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/23/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023] Open
Abstract
Although the involvement of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway in the regulation of cytostatic factor (CSF) activity; as well as in microtubules organization during meiotic maturation of oocytes; has already been described in detail; rather less attention has been paid to the role of ERK1/2 in the regulation of mRNA translation. However; important data on the role of ERK1/2 in translation during oocyte meiosis have been documented. This review focuses on recent findings regarding the regulation of translation and the role of ERK1/2 in this process in the meiotic cycle of mammalian oocytes. The specific role of ERK1/2 in the regulation of mammalian target of rapamycin (mTOR); eukaryotic translation initiation factor 4E (eIF4E) and cytoplasmic polyadenylation element binding protein 1 (CPEB1) activity is addressed along with additional focus on the other key players involved in protein translation.
Collapse
Affiliation(s)
- Jaroslav Kalous
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic.
| | - Anna Tetkova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic.
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Albertov 6, 12843 Prague 2, Czech Republic.
| | - Michal Kubelka
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic.
| | - Andrej Susor
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 27721 Libechov, Czech Republic.
| |
Collapse
|
11
|
Jansova D, Koncicka M, Tetkova A, Cerna R, Malik R, del Llano E, Kubelka M, Susor A. Regulation of 4E-BP1 activity in the mammalian oocyte. Cell Cycle 2017; 16:927-939. [PMID: 28272965 PMCID: PMC5462087 DOI: 10.1080/15384101.2017.1295178] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 01/03/2023] Open
Abstract
Fully grown mammalian oocytes utilize transcripts synthetized and stored during earlier development. RNA localization followed by a local translation is a mechanism responsible for the regulation of spatial and temporal gene expression. Here we show that the mouse oocyte contains 3 forms of cap-dependent translational repressor expressed on the mRNA level: 4E-BP1, 4E-BP2 and 4E-BP3. However, only 4E-BP1 is present as a protein in oocytes, it becomes inactivated by phosphorylation after nuclear envelope breakdown and as such it promotes cap-dependent translation after NEBD. Phosphorylation of 4E-BP1 can be seen in the oocytes after resumption of meiosis but it is not detected in the surrounding cumulus cells, indicating that 4E-BP1 promotes translation at a specific cell cycle stage. Our immunofluorescence analyses of 4E-BP1 in oocytes during meiosis I showed an even localization of global 4E-BP1, as well as of its 4E-BP1 (Thr37/46) phosphorylated form. On the other hand, 4E-BP1 phosphorylated on Ser65 is localized at the spindle poles, and 4E-BP1 phosphorylated on Thr70 localizes on the spindle. We further show that the main positive regulators of 4E-BP1 phosphorylation after NEBD are mTOR and CDK1 kinases, but not PLK1 kinase. CDK1 exerts its activity toward 4E-BP1 phosphorylation via phosphorylation and activation of mTOR. Moreover, both CDK1 and phosphorylated mTOR co-localize with 4E-BP1 phosphorylated on Thr70 on the spindle at the onset of meiotic resumption. Expression of the dominant negative 4E-BP1 mutant adversely affects translation and results in spindle abnormality. Taken together, our results show that the phosphorylation of 4E-BP1 promotes translation at the onset of meiosis to support the spindle assembly and suggest an important role of CDK1 and mTOR kinases in this process. We also show that the mTOR regulatory pathway is present in human oocytes and is likely to function in a similar way as in mouse oocytes.
Collapse
Affiliation(s)
- Denisa Jansova
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| | - Marketa Koncicka
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| | - Anna Tetkova
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| | - Renata Cerna
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| | - Radek Malik
- Institute of Molecular Genetics, ASCR, Prague, Czech Republic
| | - Edgar del Llano
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| | - Michal Kubelka
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| | - Andrej Susor
- Institute of Animal Physiology and Genetics, ASC, Libechov, Czech Republic
| |
Collapse
|
12
|
Translation in the mammalian oocyte in space and time. Cell Tissue Res 2015; 363:69-84. [PMID: 26340983 DOI: 10.1007/s00441-015-2269-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/03/2015] [Indexed: 02/07/2023]
Abstract
A hallmark of oocyte development in mammals is the dependence on the translation and utilization of stored RNA and proteins rather than the de novo transcription of genes in order to sustain meiotic progression and early embryo development. In the absence of transcription, the completion of meiosis and early embryo development in mammals relies significantly on maternally synthesized RNAs. Post-transcriptional control of gene expression at the translational level has emerged as an important cellular function in normal development. Therefore, the regulation of gene expression in oocytes is controlled almost exclusively at the level of mRNA and protein stabilization and protein synthesis. This current review is focused on the recently emerged findings on RNA distribution related to the temporal and spatial translational control of the meiotic progression of the mammalian oocyte.
Collapse
|
13
|
Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR-eIF4F pathway. Nat Commun 2015; 6:6078. [PMID: 25629602 PMCID: PMC4317492 DOI: 10.1038/ncomms7078] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 12/10/2014] [Indexed: 02/07/2023] Open
Abstract
The fully grown mammalian oocyte is transcriptionally quiescent and utilizes only transcripts synthesized and stored during early development. However, we find that an abundant RNA population is retained in the oocyte nucleus and contains specific mRNAs important for meiotic progression. Here we show that during the first meiotic division, shortly after nuclear envelope breakdown, translational hotspots develop in the chromosomal area and in a region that was previously surrounded the nucleus. These distinct translational hotspots are separated by endoplasmic reticulum and Lamin, and disappear following polar body extrusion. Chromosomal translational hotspots are controlled by the activity of the mTOR–eIF4F pathway. Here we reveal a mechanism that—following the resumption of meiosis—controls the temporal and spatial translation of a specific set of transcripts required for normal spindle assembly, chromosome alignment and segregation. Meiotic maturation of oocytes and early development of mammalian embryos is largely dependent on the translation of mRNAs stored in the oocyte. Here the authors uncover a population of mRNA retained in the oocyte nucleus whose translation is spatially and temporally regulated by the mTOR–eIF4F pathway during meiosis.
Collapse
|
14
|
Colicchia M, Campagnolo L, Baldini E, Ulisse S, Valensise H, Moretti C. Molecular basis of thyrotropin and thyroid hormone action during implantation and early development. Hum Reprod Update 2014; 20:884-904. [PMID: 24943836 DOI: 10.1093/humupd/dmu028] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Implantation and early embryo development are finely regulated processes in which several molecules are involved. Evidence that thyroid hormones (TH: T4 and T3) might be part of this machinery is emerging. An increased demand for TH occurs during gestation, and any alteration in maternal thyroid physiology has significant implications for both maternal and fetal health. Not only overt but also subclinical hypothyroidism is associated with infertility as well as with obstetric complications, including disruptions and disorders of pregnancy, labor, delivery, and troubles in early neonatal life. METHODS We searched the PubMed and Google Scholar databases for articles related to TH action on ovary, endometrium, trophoblast maturation and embryo implantation. In addition, articles on the regulation of TH activity at cellular level have been reviewed. The findings are hereby summarized and critically discussed. RESULTS TH have been shown to influence endometrial, ovarian and placental physiology. TH receptors (TR) and thyrotropin (thyroid-stimulating hormone: TSH) receptors (TSHR) are widely expressed in the feto-maternal unit during implantation, and both the endometrium and the trophoblast might be influenced by TH either directly or through TH effects on the synthesis and activity of implantation-mediating molecules. Interestingly, due to the multiplicity of mechanisms involved in TH action (e.g. differential expression of TR isoforms, heterodimeric receptor partners, interacting cellular proteins, and regulating enzymes), the TH concentration in blood is not always predictive of their cellular availability and activity at both genomic and nongenomic level. CONCLUSIONS In addition to the known role of TH on the hormonal milieu of the ovarian follicle cycle, which is essential for a woman's fertility, evidence is emerging on the importance of TH signaling during implantation and early pregnancy. Based on recent observations, a local action of TH on female reproductive organs and the embryo during implantation appears to be crucial for a successful pregnancy. Furthermore, an imbalance in the spatio-temporal expression of factors involved in TH activity might induce early arrest of pregnancy in women considered as euthyroid, based on their hormonal blood concentration. In conclusion, alterations of the highly regulated local activity of TH may play a crucial, previously underestimated, role in early pregnancy and pregnancy loss. Further studies elucidating this topic should be encouraged.
Collapse
Affiliation(s)
- Martina Colicchia
- Department of Systems' Medicine, University of Rome Tor Vergata, UOC of Endocrinology and Diabetes, Section of Reproductive Endocrinology Fatebenefratelli Hospital, 'Isola Tiberina' 00187, Rome, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier1, 00133 Rome, Italy
| | - Enke Baldini
- Department of Experimental Medicine, 'Sapienza' University of Rome, Rome, Italy
| | - Salvatore Ulisse
- Department of Experimental Medicine, 'Sapienza' University of Rome, Rome, Italy
| | - Herbert Valensise
- Department of Obstetrics and Gynaecology, University of Rome Tor Vergata, Fatebenefratelli Hospital 'Isola Tiberina', 00187 Rome, Italy
| | - Costanzo Moretti
- Department of Systems' Medicine, University of Rome Tor Vergata, UOC of Endocrinology and Diabetes, Section of Reproductive Endocrinology Fatebenefratelli Hospital, 'Isola Tiberina' 00187, Rome, Italy
| |
Collapse
|
15
|
Mayer S, Wrenzycki C, Tomek W. Inactivation of mTor arrests bovine oocytes in the metaphase-I stage, despite reversible inhibition of 4E-BP1 phosphorylation. Mol Reprod Dev 2014; 81:363-75. [DOI: 10.1002/mrd.22305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/20/2014] [Indexed: 11/08/2022]
Affiliation(s)
| | - Christine Wrenzycki
- Faculty of Veterinary Medicine; Justus-Liebig-University Giessen, Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals; Giessen Germany
| | - Wolfgang Tomek
- Faculty of Veterinary Medicine; Justus-Liebig-University Giessen, Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals; Giessen Germany
- Leibniz-Institute for Farm Animal Biology; Institute for Reproductive Biology; Dummerstorf Germany
| |
Collapse
|
16
|
Association of maternal mRNA and phosphorylated EIF4EBP1 variants with the spindle in mouse oocytes: localized translational control supporting female meiosis in mammals. Genetics 2013; 195:349-58. [PMID: 23852387 DOI: 10.1534/genetics.113.154005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In contrast to other species, localized maternal mRNAs are not believed to be prominent features of mammalian oocytes. We find by cDNA microarray analysis enrichment for maternal mRNAs encoding spindle and other proteins on the mouse oocyte metaphase II (MII) spindle. We also find that the key translational regulator, EIF4EBP1, undergoes a dynamic and complex spatially regulated pattern of phosphorylation at sites that regulate its association with EIF4E and its ability to repress translation. These phosphorylation variants appear at different positions along the spindle at different stages of meiosis. These results indicate that dynamic spatially restricted patterns of EIF4EBP1 phosphorylation may promote localized mRNA translation to support spindle formation, maintenance, function, and other nearby processes. Regulated EIF4EBP1 phosphorylation at the spindle may help coordinate spindle formation with progression through the cell cycle. The discovery that EIF4EBP1 may be part of an overall mechanism that integrates and couples cell cycle progression to mRNA translation and subsequent spindle formation and function may be relevant to understanding mechanisms leading to diminished oocyte quality, and potential means of avoiding such defects. The localization of maternal mRNAs at the spindle is evolutionarily conserved between mammals and other vertebrates and is also seen in mitotic cells, indicating that EIF4EBP1 control of localized mRNA translation is likely key to correct segregation of genetic material across cell types.
Collapse
|
17
|
The Akt/mTor signaling cascade is modified during placentation in the porcine uterine tissue. Reprod Biol 2013; 13:184-94. [PMID: 24011189 DOI: 10.1016/j.repbio.2013.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 12/14/2022]
Abstract
Recently we showed that essential components for the initiation of protein synthesis, namely the eukaryotic initiation factor 4E (eIF4E, mRNA-cap-binding protein) and its repressors 4E-BP1 as well as 4E-BP2, are proteolytically processed in the porcine endometrium during implantation. Here, the situation during placentation was compared with ovariectomized (OVX) animals and animals on pregnancy day 1 (PD1). Furthermore, the research was extended to factors which phosphorylate eIF4E and 4E-BPs and regulate their activities. These are the protein kinase B/mammalian target of rapamycin kinase (Akt/mTor) with the regulators Raptor and Rictor as well as the mitogen activated protein kinases (MAPKs): extra cellular-signal regulated kinase 1 and 2 (ERK1 and ERK2). Striking differences in the placentation site (PS) and the areas aside from PS (peri-PS) were observed. EIF4E and 4E-BP2 truncation as well as 4E-BP1 degradation took place in the endometrium of the peri-PS on PD24. Accompanied by a fragmentation of Akt/mTor, no expression of Rictor was observed, whereas the abundance of Raptor was not altered. On the contrary, MAPKs expression and phosphorylation remained almost stable in the peri-PS. In conclusion, the results indicated that on PD24 the translational regulation was shifted to 4E-BP2 control. Furthermore, the Akt/mTor signaling cascade seemed to be down regulated which suggest reduced phosphorylation of 4E-BP2. Whereas Akt was proteolyzed, the observed mTor fragments represented most likely splicing variants. The results indicate that translational control of gene expression is an important feature in the porcine endometrium during early pregnancy.
Collapse
|
18
|
Wollenhaupt K, Brüssow KP, Albrecht D, Tomek W. The eIF4E repressor protein 4E-BP2 is merely truncated, despite 4E-BP1 degradation in the porcine uterine tissue during implantation. Mol Reprod Dev 2012; 79:767-76. [DOI: 10.1002/mrd.22108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/27/2012] [Indexed: 11/08/2022]
|
19
|
Tomek W, Wollenhaupt K. The "closed loop model" in controlling mRNA translation during development. Anim Reprod Sci 2012; 134:2-8. [PMID: 22917874 DOI: 10.1016/j.anireprosci.2012.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Translational control is particularly important in situations where the correlation of a distinct mRNA and the abundance of the corresponding protein might be low. This is the case for instance during oocyte maturation, shortly before the GVBD when the chromatin is condensed, until the embryonic genome is activated. In these situations, gene expression relies on the activation of maternal mRNAs which were stored stably in a dormant form. The most sophisticated model for translational initiation at present is the so-called "closed loop" model, where a circularization of the mRNA is mediated by associated 5'-cap- and 3'-poly(A) binding proteins. Depending on differential interactions, this event can result in translational stimulation or repression. Several studies describe correlated regulation mechanisms in model organisms like mouse or Xenopus, but data addressing translational regulation in farm animals are rare. Cytoplasmic mRNA activating or repressing factors, however, might contribute to achieve developmental competence in bovine or porcine oocytes. Recently we showed that, in the pig, embryonic signals can modify essential components of the mRNA-5'-translation initiation complex in the uterine luminal epithelium at the time of implantation. In accordance with the closed loop model of translational initiation, this review focuses on the regulatory impact of 5'-mRNA end associated proteins (components of the mRNA-cap binding complex) and 3'-end associated proteins (components of the poly(A) binding complex) during in vitro maturation of cattle and pig oocytes, early embryonic development and in the pig uterine epithelia.
Collapse
Affiliation(s)
- Wolfgang Tomek
- Leibniz Institute for Farm Animal Biology, Dep. of Reproductive Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | | |
Collapse
|
20
|
De Bem TH, Chiaratti MR, Rochetti R, Bressan FF, Sangalli JR, Miranda MS, Pires PR, Schwartz KR, Sampaio RV, Fantinato-Neto P, Pimentel JR, Perecin F, Smith LC, Meirelles FV, Adona PR, Leal CL. Viable Calves Produced by Somatic Cell Nuclear Transfer Using Meiotic-Blocked Oocytes. Cell Reprogram 2011; 13:419-29. [DOI: 10.1089/cell.2011.0010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tiago H.C. De Bem
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Marcos R. Chiaratti
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Raquel Rochetti
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Fabiana F. Bressan
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliano R. Sangalli
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Moysés S. Miranda
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Pedro R.L. Pires
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Kátia R.L. Schwartz
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Rafael V. Sampaio
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Paulo Fantinato-Neto
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - José R.V. Pimentel
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Felipe Perecin
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Lawrence C. Smith
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Québec, Canada
| | - Flávio V. Meirelles
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Paulo R. Adona
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Universidade do Norte do Paraná, Londrina, PR, Brazil
| | - Cláudia L.V. Leal
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
21
|
Wollenhaupt K, Reinke K, Brüssow KP, Kanitz W, Tomek W. 4E-BP1 degradation and eIF4E truncation occur spatially distinctly in the porcine uterine epithelia and are features of noninvasive implantation in the pig. Mol Reprod Dev 2011; 78:895-905. [DOI: 10.1002/mrd.21376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/24/2011] [Indexed: 11/11/2022]
|
22
|
Wollenhaupt K, Reinke K, Brüssow KP, Spitschak M, Kanitz W, Tomek W. Truncation of the mRNA Cap-Binding Protein eIF4E is Specific for the Non-Invasive Implantation in Pigs. Reprod Domest Anim 2011; 46:917-9. [DOI: 10.1111/j.1439-0531.2011.01779.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Marei WF, Wathes DC, Fouladi-Nashta AA. Impact of linoleic acid on bovine oocyte maturation and embryo development. Reproduction 2010; 139:979-88. [PMID: 20215338 DOI: 10.1530/rep-09-0503] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Linoleic acid (LA; 18:2 n-6) is the most abundant fatty acid in bovine follicular fluid, and it was previously reported that LA concentration significantly decreases when follicle size increases. This suggests that LA may have a role in the regulation of oocyte maturation. The present study investigated the effect of LA supplementation on bovine oocyte maturation and early embryo development in vitro. Treatment of cumulus-oocyte complexes (COCs) with LA significantly inhibited cumulus cell expansion and retarded development of the oocytes to the metaphase II (MII) stage in a dose-dependent manner. This effect was reversible, and the oocytes developed to the MII stage after extended culture in the absence of LA. Treatment of COCs with LA also resulted in a significantly lower percentage of cleaved embryos and blastocyst yield. Furthermore, COCs treated with LA had significant effects compared with controls in i) increasing prostaglandin E(2) concentration in the medium, ii) decreasing intracellular cAMP at 6 and 24 h of maturation and iii) decreasing phosphorylation of the MAPK1 and 3 at 24 h, and AKT at 6 h of maturation. In conclusion, LA supplementation to bovine oocytes during maturation altered the molecular mechanisms regulating oocyte maturation and resulted in decreased percentage of oocytes at MII stage and inhibition of the subsequent early embryo development. These data provide evidence for adverse effects of LA on oocyte development, which can be associated with dietary increased level of LA in the follicular fluid and the decline in fertility in farm animals and human.
Collapse
Affiliation(s)
- Waleed F Marei
- Reproduction, Genes and Development Research Group, Department of Veterinary Basic Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL97TA, UK
| | | | | |
Collapse
|
24
|
Kandil OM, Ghanem N, Abdoon ASS, Hölker M, Phatsara C, Schellander K, Tesfaye D. Transcriptional Analysis of Buffalo (Bubalus bubalis) Oocytes DuringIn VitroMaturation Using Bovine cDNA Microarray. Reprod Domest Anim 2010; 45:63-74. [DOI: 10.1111/j.1439-0531.2008.01238.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Siemer C, Smiljakovic T, Bhojwani M, Leiding C, Kanitz W, Kubelka M, Tomek W. Analysis of mRNA associated factors during bovine oocyte maturation and early embryonic development. Mol Reprod Dev 2010; 76:1208-19. [PMID: 19697362 DOI: 10.1002/mrd.21096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulation of gene expression at the translational level is particularly essential during developmental periods, when transcription is impaired. According to the closed-loop model of translational initiation, we have analyzed components of the 5 -mRNA cap-binding complex eIF4F (eIF4E, eIF4G, eIF4A), the eIF4E repressor 4E-BP1, and 3 -mRNA poly-(A) tail-associated proteins (PABP1 and 3, PAIP1 and 2, CPEB1, Maskin) during in vitro maturation of bovine oocytes and early embryonic development up to the 16-cell stage. Furthermore, we have elucidated the activity of distinct kinases which are potentially involved in their phosphorylation. Major phosphorylation of specific target sequences of PKA, PKB, PKC, CDKs, ATM/ATR, and MAPK were observed in M II stage oocytes. Furthermore, main changes in the abundance and/or phosphorylation of distinct mRNA-binding factors occur at the transition from M II stage oocytes to 2-cell embryos. In conclusion, the results indicate that, at the transition from oocyte to embryonic development, translational initiation is regulated by striking differences in the abundance and/or phosphorylation of 5 -end and 3 -end mRNA associated factors, mainly the poly-(A) bindings proteins PABP1 and 3, their repressor PAIP2 and a Maskin-like protein with distinct eIF4E-binding properties which prevents eIF4E/cap binding and eIF4F formation in vitro. Nevertheless, from the M II stage to 16-cell embryos a substantial amount of eIF4E and, to a lesser extent, of eIF4G was precipitated by (7)m-GTP-Separose indicating eIF4F complex formation. Therefore, it is likely that in general the reduction in PABP1 and 3 abundance represses overall translation during early embryonic development.
Collapse
Affiliation(s)
- Corinna Siemer
- Research Institute for the Biology of Farm Animals (FBN) Dummerstorf, 18196 Dummerstorf, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Marei WF, Wathes DC, Fouladi-Nashta AA. The effect of linolenic Acid on bovine oocyte maturation and development. Biol Reprod 2009; 81:1064-72. [PMID: 19587335 DOI: 10.1095/biolreprod.109.076851] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Dietary polyunsaturated fatty acids can influence reproductive performance. In dairy cattle, some high-fat diets resulted in higher blastocyst rates and improved embryo quality. These effects may partly be mediated by a direct action of fatty acids on oocyte development. The present study investigated the effect of linolenic acid (ALA; 18:3 n-3) supplementation on bovine oocyte maturation and early embryo development in vitro. Treatment of cumulus-oocyte complexes (COCs) with 50 muM ALA significantly increased the percentage of oocytes at the metaphase II (MII) stage compared with untreated controls (95% +/- 2% vs. 84% +/- 2%, respectively). Higher doses of ALA were detrimental. Treatment of COCs with 50 muM ALA compared with controls also resulted in a significantly higher percentage of cleaved embryos (77% +/- 9% vs. 69% +/- 9%, respectively) and blastocyst rate (36% +/- 4% vs. 23% +/- 5%, respectively) and better-quality embryos. Furthermore, COCs treated with ALA had significant increases compared with controls in: 1) prostaglandin E(2) (PGE(2)) concentration (233% +/- 41%) in the medium, 2) intracellular cAMP at 3 h of maturation, and 3) phosphorylation of the mitogen-activated protein kinases (MAPKs) during the first 6 h of maturation. Moreover, ALA overcame the suppressive effects of the prostaglandin-endoperoxide synthase 2 inhibitor (NS-398) on oocyte maturation and partially improved the maturation rate in the presence of the MAPK kinase inhibitor (U-0126). Linolenic acid could not, however, recover maturation in the presence of both inhibitors. In conclusion, treatment of bovine COCs with ALA during oocyte maturation affects the molecular mechanisms controlling oocyte nuclear maturation, leading to an increased number of MII-stage oocytes and improved subsequent early embryo development. This effect is mediated both directly through MAPK pathway and indirectly through PGE(2) synthesis.
Collapse
Affiliation(s)
- Waleed F Marei
- Reproduction, Genes and Development Research Group, Department of Veterinary Basic Sciences, The Royal Veterinary College, Hatfield, UK
| | | | | |
Collapse
|
27
|
Aghajanova L, Lindeberg M, Carlsson IB, Stavreus-Evers A, Zhang P, Scott JE, Hovatta O, Skjöldebrand-Sparre L. Receptors for thyroid-stimulating hormone and thyroid hormones in human ovarian tissue. Reprod Biomed Online 2009; 18:337-47. [PMID: 19298732 DOI: 10.1016/s1472-6483(10)60091-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Dysfunction in thyroid regulation can cause menstrual and ovulatory disturbances, the mechanism of which is not clear. The distribution and activity of the thyroid-stimulating hormone (TSHR), and the thyroid hormone receptors (TR) alpha1, alpha2 and beta1 in human ovarian tissue and in granulosa cells was studied using immunohistochemistry, reverse-transcriptase polymerase chain reaction (RT-PCR), quantitative PCR and immunoassays. Strong immunostaining of TSHR, TRalpha1 and TRbeta1 was observed in ovarian surface epithelium and in oocytes of primordial, primary and secondary follicles, with minimal staining in granulosa cells of secondary follicles. Granulosa cells of antral follicles expressed TSHR, TRalpha1 and TRbeta1 proteins. Messenger RNA for all receptors was present in ovarian tissue. Mature human granulosa cells expressed transcripts for 5' deiodinases types 2 and 3, but not type 1, indicating the possibility of conversion of peripheral thyroid hormone thyroxin (T(4)). Granulosa cells stimulated with TSH showed a significant increase in cAMP concentrations after 2 h of culture (P = 0.047), indicating activation through TSHR. Stimulation with T(4) resulted in increased extracellular signal-regulated kinase 1 and 2 activation after 10, 30, 60 min and 24 h. These data demonstrate that TSH and thyroid hormone receptors may participate in the regulation of ovarian function.
Collapse
Affiliation(s)
- Lusine Aghajanova
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynaecology, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Torner H, Ghanem N, Ambros C, Hölker M, Tomek W, Phatsara C, Alm H, Sirard MA, Kanitz W, Schellander K, Tesfaye D. Molecular and subcellular characterisation of oocytes screened for their developmental competence based on glucose-6-phosphate dehydrogenase activity. Reproduction 2008; 135:197-212. [PMID: 18239049 DOI: 10.1530/rep-07-0348] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oocyte selection based on glucose-6-phosphate dehydrogenase (G6PDH) activity has been successfully used to differentiate between competent and incompetent bovine oocytes. However, the intrinsic molecular and subcellular characteristics of these oocytes have not yet been investigated. Here, we aim to identify molecular and functional markers associated with oocyte developmental potential when selected based on G6PDH activity. Immature compact cumulus-oocyte complexes were stained with brilliant cresyl blue (BCB) for 90 min. Based on their colouration, oocytes were divided into BCB(-) (colourless cytoplasm, high G6PDH activity) and BCB(+) (coloured cytoplasm, low G6PDH activity). The chromatin configuration of the nucleus and the mitochondrial activity of oocytes were determined by fluorescence labelling and photometric measurement. The abundance and phosphorylation pattern of protein kinases Akt and MAP were estimated by Western blot analysis. A bovine cDNA microarray was used to analyse the gene expression profiles of BCB(+) and BCB(-) oocytes. Consequently, marked differences were found in blastocyst rate at day 8 between BCB(+) (33.1+/-3.1%) and BCB(-) (12.1+/-1.5%) oocytes. Moreover, BCB(+) oocytes were found to show higher phosphorylation levels of Akt and MAP kinases and are enriched with genes regulating transcription (SMARCA5), cell cycle (nuclear autoantigenic sperm protein, NASP) and protein biosynthesis (RPS274A and mRNA for elongation factor 1alpha, EF1A). BCB(-) oocytes, which revealed higher mitochondrial activity and still nucleoli in their germinal vesicles, were enriched with genes involved in ATP synthesis (ATP5A1), mitochondrial electron transport (FL405), calcium ion binding (S100A10) and growth factor activity (bone morphogenetic protein 15, BMP15). This study has evidenced molecular and subcellular organisational differences of oocytes with different G6PDH activity.
Collapse
Affiliation(s)
- Helmut Torner
- Department of Animal Breeding and Husbandry, Institute of Animal Science, University of Bonn, Endenicher allee 15, 53115 Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ellederová Z, Cais O, Susor A, Uhlírová K, Kovárová H, Jelínková L, Tomek W, Kubelka M. ERK1/2 map kinase metabolic pathway is responsible for phosphorylation of translation initiation factor eIF4E during in vitro maturation of pig oocytes. Mol Reprod Dev 2008; 75:309-17. [PMID: 17290414 DOI: 10.1002/mrd.20690] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Eukaryotic initiation factor 4E (eIF4E) plays an important role in mRNA translation by binding the 5'-cap structure of the mRNA and facilitating the recruitment to the mRNA of other translation factors and the 40S ribosomal subunit. eIF4E undergoes regulated phosphorylation on Ser-209 and this phosphorylation is believed to be important for its binding to mRNA and to other initiation factors. The findings showing that the translation initiation factor eIF4E becomes gradually phosphorylated during in vitro maturation (IVM) of pig oocytes with a maximum in metaphase II (M II) stage oocytes have been documented by us recently (Ellederova et al., 2006). The aim of this work was to study in details the metabolic pathways involved in this process. Using inhibitors of cyclin-dependent kinases, Butyrolactone I (BL I) and protein phosphatases, okadaic acid (OA) we show that ERK1/2 MAP kinase pathway is involved in this phosphorylation. We also demonstrate that activation and phosphorylation of ERK1/2 MAP kinase and eIF4E is associated with the activating phosphorylation of Mnk1 kinase, one of the two main kinases phosphorylating eIF4E in somatic cells.
Collapse
Affiliation(s)
- Zdenka Ellederová
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Uzbekova S, Arlot-Bonnemains Y, Dupont J, Dalbiès-Tran R, Papillier P, Pennetier S, Thélie A, Perreau C, Mermillod P, Prigent C, Uzbekov R. Spatio-Temporal Expression Patterns of Aurora Kinases A, B, and C and Cytoplasmic Polyadenylation-Element-Binding Protein in Bovine Oocytes During Meiotic Maturation1. Biol Reprod 2008; 78:218-33. [PMID: 17687118 DOI: 10.1095/biolreprod.107.061036] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Maturation of immature bovine oocytes requires cytoplasmic polyadenylation and synthesis of a number of proteins involved in meiotic progression and metaphase-II arrest. Aurora serine-threonine kinases--localized in centrosomes, chromosomes, and midbody--regulate chromosome segregation and cytokinesis in somatic cells. In frog and mouse oocytes, Aurora A regulates polyadenylation-dependent translation of several mRNAs such as MOS and CCNB1, presumably by phosphorylating CPEB, and Aurora B phosphorylates histone H3 during meiosis. We analyzed the expression of three Aurora kinase genes--AURKA, AURKB, and AURKC--in bovine oocytes during meiosis by reverse transcription followed by quantitative real-time PCR and immunodetection. Aurora A was the most abundant form in oocytes, both at mRNA and protein levels. AURKA protein progressively accumulated in the oocyte cytoplasm during antral follicle growth and in vitro maturation. AURKB associated with metaphase chromosomes. AURKB, AURKC, and Thr-phosphorylated AURKA were detected at a contractile ring/midbody during the first polar body extrusion. CPEB, localized in oocyte cytoplasm, was hyperphosphorylated during prophase/metaphase-I transition. Most CPEB degraded in metaphase-II oocytes and remnants remained localized in a contractile ring. Roscovitine, U0126, and metformin inhibited meiotic divisions; they all induced a decrease of CCNB1 and phospho-MAPK3/1 levels and prevented CPEB degradation. However, only metformin depleted AURKA. The Aurora kinase inhibitor VX680 at 100 nmol/L did not inhibit meiosis but led to multinuclear oocytes due to the failure of the polar body extrusion. Thus, in bovine oocyte meiosis, massive destruction of CPEB accompanies metaphase-I/II transition, and Aurora kinases participate in regulating segregation of the chromosomes, maintenance of metaphase-II, and formation of the first polar body.
Collapse
Affiliation(s)
- Svetlana Uzbekova
- INRA, UMR85 Physiologie de Reproduction et des Comportements, CNRS, UMR6175, Université de Tours, Haras Nationaux, 37380 Nouzilly, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rowlett RM, Chrestensen CA, Nyce M, Harp MG, Pelo JW, Cominelli F, Ernst PB, Pizarro TT, Sturgill TW, Worthington MT. MNK kinases regulate multiple TLR pathways and innate proinflammatory cytokines in macrophages. Am J Physiol Gastrointest Liver Physiol 2008; 294:G452-9. [PMID: 18032482 DOI: 10.1152/ajpgi.00077.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The MNK kinases are downstream of both the p38 and ERK MAP kinase pathways and act to increase gene expression. MNK inhibition using the compound CGP57380 has recently been reported to inhibit tumor necrosis factor (TNF) production in macrophage cell lines stimulated with Escherichia coli lipopolysaccharide (LPS). However, the range of receptors that signal through the MNK kinases and the extent of the resultant cytokine response are not known. We found that TNF production was inhibited in RAW264.7 macrophage cells by CGP57380 in a dose-responsive manner with agonists for Toll-like receptor (TLR) 2 (HKLM), TLR4 (Salmonella LPS), TLR6/2 (FSL), TLR7 (imiquimod), and TLR9 (CpG DNA). CGP57380 also inhibited the peak of TNF mRNA production and increased the rate of TNF mRNA decay, effects not due to the destabilizing RNA binding protein tristetraprolin (TTP). Similar to its effects on TNF, CGP57380 caused dose-responsive inhibition of TTP production from stimulation with either LPS or CpG DNA. MNK inhibition also blocked IL-6 but permitted IL-10 production in response to LPS. Studies using bone marrow-derived macrophages (BMDM) isolated from a spontaneous mouse model of Crohn's disease-like ileitis (SAMP1/YitFc strain) revealed significant inhibition by CGP57380 of the proinflammatory cytokines TNF, IL-6, and monocyte chemoattractant protein-1 at 4 and 24 h after LPS stimulation. IL-10 production was higher in CGP53870-treated BMDM at 4 h but was similar to the controls by 24 h. Taken together, these data demonstrate that MNK kinases signal through a variety of TLR agonists and mediate a potent innate, proinflammatory cytokine response.
Collapse
Affiliation(s)
- Robert M Rowlett
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wollenhaupt K, Brüssow KP, Tiemann U, Tomek W. The embryonic pregnancy signal oestradiol influences gene expression at the level of translational initiation in porcine endometrial cells. Reprod Domest Anim 2007; 42:167-75. [PMID: 17348974 DOI: 10.1111/j.1439-0531.2006.00747.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the pig, conceptus-derived oestrogens (days 11 and 12 of pregnancy) seem to be a critical component of the signalling mechanism for maternal recognition of pregnancy. Embryonic oestrogens can mediate effects on endometrial function by interactions with epithelial and stromal oestrogen receptors (ER). Recent data demonstrate that cell membrane ER interacts with the phosphatidylinositol 3-kinase/Akt pathway in several types of cells. The protein kinase Akt is involved in the control of cell growth, survival and proliferation. One distinct function of the Akt signalling cascade is its ability to phosphorylate the eukaryotic initiation factor-4E (eIF-4E)-binding protein 1 (4E-BP1). This phosphorylation suppresses the inhibitory effect of 4E-BP1 on the translation initiation factor eIF4E and in such a way potentially stimulates gene expression at the level of translational initiation. The aim of the present study was to examine if embryonic oestradiol (E(2)) transmits its effect by such a mechanism. Endometrial cells of cyclic gilts (day 13 of the oestrous cycle, n = 4) were cultured and supplemented with vehicle (control), E(2) (50 and 100 pm/l) or with the selective ER modulator raloxifen (10 and 1000 nm/l), and incubated for 24 h. The cell viability was detected by MTT assay, the abundance and phosphorylation of Akt, 4E-BP1 and ERalpha was analysed by Western blotting. Incubation with E(2) or raloxifen did not alter endometrial cell viability. The phosphorylation of Akt at Ser(473) seems to be increased by E(2) (p < 0.05) and decreased by raloxifen (p > 0.05). Raloxifen (1000 nm/l) induced a band shift in 4E-BP1 to the highest electrophoretic mobility which reflects a decrease in phosphorylation (p < 0.05), whereas an influence of E(2) on 4E-BP1 phosphorylation could not be detected. The decrease (p < 0.05) of the abundance of the 80 kDa ERalpha form both by E(2) and raloxifen indicates that the E(2)-stimulated Akt phosphorylation and the inhibition of 4E-BP1 phosphorylation by raloxifen is an E(2) ER-transmitted process. Therefore, embryonic oestrogens can potentially transmit their effect by influencing signalling cascades which modulate gene expression at the level of translational initiation.
Collapse
Affiliation(s)
- K Wollenhaupt
- Unit of Reproductive Biology, FBN Research Institute for the Biology of Farm Animals, Dummerstorf, Germany.
| | | | | | | |
Collapse
|
33
|
Bhojwani M, Rudolph E, Kanitz W, Zuehlke H, Schneider F, Tomek W. Molecular Analysis of Maturation Processes by Protein and Phosphoprotein Profiling during In Vitro Maturation of Bovine Oocytes: A Proteomic Approach. CLONING AND STEM CELLS 2006; 8:259-74. [PMID: 17196091 DOI: 10.1089/clo.2006.8.259] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cellular maturation and differentiation processes are accompanied by the expression of specific proteins. Especially in oocytes, there is no reliable strict linear correlation between mRNA levels and the abundance of proteins. Furthermore, the activity of proteins is modulated by specific kinases and phosphatases which control cellular processes like cellular growth, differentiation, cell cycle and meiosis. During the meiotic maturation of oocytes, the activation of protein kinases, namely of the MPF and MAPK play a predominant role. Therefore, the present study was performed to analyze meiotic maturation at a molecular level, concerning alterations of the proteom and phosphoproteom during IVM. Using a proteomic approach by combining two-dimensional gel electrophoresis followed by selective protein and phosphoprotein staining and mass spectrometry, we identified proteins which were differentially expressed and/or phosphorylated during IVM. Furthermore, we used the MPF inhibitor butyrolactone I, to reveal new molecular effects which are potentially essential for successful maturation. The results show that approximately 550 protein spots could be visualized by the fluorescent dye Sypro ruby at any maturation stage (GV, M I, M II) investigated. From GV stage to M II, ProQ diamond staining indicate in GV 30%, in M I 50%, and in M II 45% of the spots were phosphorylated. The Identity of 40 spots could be established. These proteins belong to different families, for example, cytoskeleton, molecular chaperons, redox, energy and metabolism related proteins, nucleic acid binding proteins, cell cycle regulators, and protein kinases. Four of them were differentially expressed (alteration higher than factor 2) during IVM, namely tubulin beta-chain, cyclin E(2), protein disulfide isomerase and one of two different forms of peroxiredoxin 2. Seven proteins were differentially stained by ProQ diamond, indicating a differential phosphorylation. These are tubulin beta-chain, beta-actin, cyclin E(2), aldose reductase and UMP-synthase, protein disulfide isomerase 2, and peroxiredoxin 2. Furthermore, the results indicate that the phosphorylation of at least peroxiredoxin 2 respond to BL I treatment. This indicates that its phosphorylation is under the control of MPF or MAPK. In summary these results indicates that the reduction of cyclin Eexpression and the (partially) inactivation of peroxiredoxin 2 by phosphorylation, hence alterations in the peroxide levels which can mediate signal transduction are essential components for successful maturation.
Collapse
Affiliation(s)
- Monika Bhojwani
- Department of Reproductive Biology, Research Institute for the Biology of Farm Animals (FBN), Dummerstorf, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Ellederova Z, Kovarova H, Melo-Sterza F, Livingstone M, Tomek W, Kubelka M. Suppression of translation during in vitro maturation of pig oocytes despite enhanced formation of cap-binding protein complex eIF4F and 4E-BP1 hyperphosphorylation. Mol Reprod Dev 2006; 73:68-76. [PMID: 16211600 DOI: 10.1002/mrd.20368] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, we document that the overall rate of protein synthesis decreases during in vitro maturation (IVM) of pig oocytes despite enhanced formation of the 5' cap structure eIF4F. Within somatic/interphase cells, formation of the eIF4F protein complex correlates very well with overall rates of protein translation, and the formation of this complex is controlled primarily by the availability of the 5' cap binding protein eIF4E. We show that the eIF4E inhibitory protein, 4E-BP1, becomes phosphorylated during IVM, which results in gradual release of eIF4E from 4E-BP1, as documented by immunoprecipitation analyses. Isoelectric focusing and Western blotting experiments show conclusively that eIF4E becomes gradually phosphorylated with a maximum at metaphase II (M II). The activity of eIF4E and its ability to bind mRNA also increases during oocyte maturation as documented in experiments with m7-methyl GTP-Sepharose, which mimics the cap structure of mRNA. Complementary analysis of flow-through fraction for 4E-BP1, and eIF4G proteins additionally provides evidence for enhanced formation of cap-binding protein complex eIF4F. Altogether, our results bring new insights to the regulation of translation initiation during meiotic division, and more specifically clarify that 4E-BP1 hyper-phosphorylation is not the cause of the observed suppression of overall translation rates.
Collapse
Affiliation(s)
- Zdenka Ellederova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | | | | | | | | | | |
Collapse
|
35
|
Wollenhaupt K, Dänicke S, Brüssow KP, Tiemann U. In vitro and in vivo effects of deoxynivalenol (DNV) on regulators of cap dependent translation control in porcine endometrium. Reprod Toxicol 2006; 21:60-73. [PMID: 16099139 DOI: 10.1016/j.reprotox.2005.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 06/07/2005] [Accepted: 06/10/2005] [Indexed: 11/17/2022]
Abstract
Deoxynivalenol (DNV) is the most frequently encountered trichothecene in grain-based foods, and is able to produce toxic effects resulting in various diseases in farm and laboratory animals. The molecular mechanisms that control this mycotoxin mediated effects in porcine endometrial cells are far from being completely understood. Recent results show that DNV inhibits protein synthesis in actively proliferating tissues. Therefore, the present study investigated the effects of this mycotoxin on a cellular level in an in vivo and in vitro system. The abundance and phosphorylation state (activity) of the cell cycle dependent kinases MAPk and Akt (PKB) and their potential targets eIF-4E (eukaryotic initiation factor 4E) and 4E-BP1 (4E binding protein, eIF4E repressor protein) were examined. In previous investigations it was found that these factors are involved in initiation of mRNA translation. The results show that DNV in vitro strongly reduce the abundance of p38 MAPk, protein kinase Akt and the alpha- and beta-4E-BP1 bands. The phosphorylation state of these proteins was obviously not modulated. In contrast, the eIF4E phosphorylation was strongly reduced in DNV treated cells. In summary, our in vitro results let assume that DNV potentially influences gene expression, but this work does not present a direct proof that DNV alters processes, which are involved in the initiation of mRNA translation. Surprisingly in vivo, an influence of DNV feeding on the investigated molecular events could not be demonstrated.
Collapse
Affiliation(s)
- K Wollenhaupt
- Unit of Reproductive Biology, Research Institute for the Biology of Farm Animals, 18196 Dummerstorf, Germany.
| | | | | | | |
Collapse
|
36
|
Hamamah S, Matha V, Berthenet C, Anahory T, Loup V, Dechaud H, Hedon B, Fernandez A, Lamb N. Comparative protein expression profiling in human cumulus cells in relation to oocyte fertilization and ovarian stimulation protocol. Reprod Biomed Online 2006; 13:807-14. [PMID: 17169200 DOI: 10.1016/s1472-6483(10)61028-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Comparative profiling was performed on proteins synthesized in human cumulus cells (CC) from individual oocytes recovered after two different ovarian stimulation protocols for classical IVF (cIVF). Using high-resolution two-dimensional protein electrophoresis after metabolic labelling with [35S]-methionine, protein expression was profiled in CC of metaphase II oocytes obtained after two different ovarian stimulation protocols (rFSH versus human menopausal gonadotrophin). Analysis was done on CC from two cIVF cycles in the same patient and then extended to CC from individual oocytes from two groups of patients. CC from single oocytes have robust levels of protein expression into 600-800 protein spots. Comparison of CC protein expression from oocytes obtained from the same patient but after two different stimulation protocols shows that the type of hormonal treatment influences CC protein expression. In contrast, CC from oocytes obtained under the same stimulation protocol but with different fertilization outcome show a high profile similarity with differences in only a few spots. Comparison of two groups of patients indicates that dissimilarities in protein pattern between patients become very high, even when comparing the same stimulation protocol and oocyte fertilization outcome. Thus protein expression profiling of human CC may provide a correlation between the synthesis of specific cumulus proteins and maturity and fecundity.
Collapse
Affiliation(s)
- Samir Hamamah
- Service de Biologie de la Reproduction, Hôpital Arnaud de Villeneuve, Montpellier Cedex 5, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tomek W, Smiljakovic T. Activation of Akt (protein kinase B) stimulates metaphase I to metaphase II transition in bovine oocytes. Reproduction 2005; 130:423-30. [PMID: 16183860 DOI: 10.1530/rep.1.00754] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In somatic cells, the serine/threonine kinase Akt (or protein kinase B) was shown to contribute to processes linked to cellular growth, cell survival and cell cycle regulation. In contrast to these findings, the function of Akt during the meiosis of mammalian oocytes remains to be investigated. We analysed the phosphorylation pattern and the activity of Akt during meiotic maturation (transition from prophase I to metaphase II) of bovine oocytes. The oocytes were maturedin vitro(IVM) for 0, 10 and 24 h to reach the germinal vesicle (GV), metaphase I (M I) and metaphase II (M II) stages respectively. The abundance and phosphorylation pattern of Akt was revealed by Western blotting using total Akt or phosphoso-Akt-specific antibodies. The activity of this particular kinase was determined by anin vitrokinase assay. Furthermore, functional properties were analysed by cultivating oocytes in the presence of the Akt inhibitor SH6. The results showed that the overall abundance of Akt did not change significantly during IVM. On the other hand, Akt became phosphorylated at Thr 308 and Ser 473, reaching its maximum at the M I phase. In the GV and M II stages, only low basal phosphorylation levels were observed on both sides. This phosphorylation profile corresponded strictly to the activity of the kinase. The cultivation of oocytes in the presence of the phosphatidylinositol analogue SH6 for 24 h showed that, with higher concentrations, up to 65% of the oocytes were arrested in the M I stage. This result indicated that Akt is involved in the M I/M II transition during the meiotic maturation of bovine oocytes. The physiological aspects of the Akt function will be discussed.
Collapse
Affiliation(s)
- Wolfgang Tomek
- Unit of Reproductive Biology, FBN Research Institute for the Biology of Farm Animals, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | | |
Collapse
|
38
|
LaRosa C, Downs SM. MEK inhibitors block AICAR-induced maturation in mouse oocytes by a MAPK-independent mechanism. Mol Reprod Dev 2005; 70:235-45. [PMID: 15570612 DOI: 10.1002/mrd.20200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study was carried out to assess the possible role of mitogen-activated protein kinase (MAPK) in the meiosis-inducing action of the AMP-activated protein kinase (AMPK) activator, 5-aminoimidazole-4-carboxamide 1-beta-ribofuranoside (AICAR). Cumulus cell-enclosed oocytes (CEO) or denuded oocytes (DO) from immature, eCG-primed mice were cultured 4 hr in Eagle's minimum essential medium containing dbcAMP plus increasing concentrations of AICAR or okadaic acid (OA). OA is a phosphatase inhibitor known to stimulate both meiotic maturation and MAPK activation and served as a positive control. Both OA and AICAR were potent inducers of meiotic resumption in mouse oocytes and brought about the phosphorylation (and thus, activation) of MAPK, but by different kinetics: MAPK phosphorylation preceded GVB in OA-treated oocytes, while that resulting from AICAR treatment appeared only after GVB. The MEK inhibitors, PD98059 and U0126, blocked the meiotic resumption induced by AICAR but not that induced by OA. Although the MEK inhibitors suppressed MAPK phosphorylation in both OA- and AICAR-treated oocytes, meiotic resumption was not causally linked to MAPK phosphorylation in either group. Furthermore, AICAR-induced meiotic resumption in Mos-null oocytes (which are unable to stimulate MAPK) was also abrogated by PD98059 treatment. A non-specific effect of the MEK inhibitors on AICAR accessibility to the oocyte was discounted by showing that they failed to suppress either nucleoside uptake or AICAR-stimulated phosphorylation of acetyl CoA carboxylase (ACC), a substrate of AMPK. The suppression of AICAR-induced maturation by MEK inhibitors must, therefore, be occurring by actions unrelated to MEK stimulation of MAPK; consequently, it would be prudent to consider this possible non-specific action of the inhibitors when they are used to block MAPK activation in mouse oocytes.
Collapse
Affiliation(s)
- Cean LaRosa
- Biology Department, Marquette University, 530 N 15th Street, Milwaukee, WI 53233, USA
| | | |
Collapse
|
39
|
Tan X, Wang YC, Sun QY, Peng A, Chen DY, Tang YZ. Effects of MAP kinase pathway and other factors on meiosis ofUrechis unicinctus eggs. Mol Reprod Dev 2005; 71:67-76. [PMID: 15736126 DOI: 10.1002/mrd.20232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The eggs of Urechis unicinctus Von Drasche, an echiuroid, are arrested at P-I stage in meiosis. The meiosis is reinitiated by fertilization. Immunoblotting analysis using anti-ERK2 and anti-phospho-MAPK antibodies revealed a 44 kDa MAP kinase species that was constantly expressed in U. unicinctus eggs, quickly phosphorylated after fertilization, and dephosphorylated slowly before the completion of meiosis I. Phosphorylation of the protein was not depressed by protein synthesis inhibitor Cycloheximide (CHX), but was depressed by the MEK1 inhibitor PD98059. Under PD98059 treatment, polar body extrusion was suppressed and the function of centrosome and spindle was abnormal though GVBD was not affected, indicating that MAP kinase cascade was important for meiotic division of U. unicinctus eggs. Other discovery includes: A23187 and OA could parthenogenetically activate U. unicinctus eggs and phosphorylated 44 kDa MAP kinase species, indicating that the effect of fertilization on reinitiating meiosis and phosphorylation of 44 kDa MAP kinase specie is mediated by raising intracellular free calcium and by phosphorylation of some proteins, and that phosphotase(s) sensitive to OA is responsible for arresting U. unicinctus eggs in prophase I. diC8, an activator of PKC, accelerated the process of U. unicinctus egg meiotic division after fertilization and accelerated the dephosphorylation of 44 kDa MAP kinase specie, which implied that the acceleration effect of PKC on meiotic division was mediated by inactivation of MAP kinase cascade. Elevating cAMP/PKA level in U. unicinctus eggs had no effect on meiotic division of the eggs.
Collapse
Affiliation(s)
- Xin Tan
- College of Life Sciences, Beijing Normal University, Beijing, P.R. China
| | | | | | | | | | | |
Collapse
|
40
|
Wollenhaupt K, Jonas L, Tiemann U, Tomek W. Influence of the mycotoxins α- and β-zearalenol (ZOL) on regulators of cap-dependent translation control in pig endometrial cells. Reprod Toxicol 2004; 19:189-99. [PMID: 15501384 DOI: 10.1016/j.reprotox.2004.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 08/10/2004] [Accepted: 08/17/2004] [Indexed: 11/29/2022]
Abstract
The molecular mechanisms that control the mycotoxin-mediated effects in porcine endometrial cells are far from being completely understood. Recent results show that they could inhibit cell proliferation. Therefore, the present study investigated the effects of the mycotoxins alpha-zearalenol (alpha-ZOL) and beta-zearalenol (beta-ZOL) on a cellular level. Mainly, the abundance and phosphorylation state (activity) of the cell cycle-dependent kinases MAPK and Akt (PKB) and their potential targets eIF4E (eukaryotic initiation factor 4E) and 4E-BP1 (4E binding protein, eIF4E repressor protein) were investigated. The results show that alpha-ZOL has apparently only a slight influence on the phosphorylation state of MAP kinases, Akt and on eIF4E and 4E-BP1. In contrast, their phosphorylation was strongly reduced in beta-ZOL-treated cells in a concentration-dependent manner. Therefore, our results indicate that beta-ZOL potentially not only influences transcription but also effects gene expression on translational level. The effect of alpha- and beta-ZOL on endometrial cell proliferation and their toxicology are discussed.
Collapse
Affiliation(s)
- K Wollenhaupt
- Unit of Reproductive Biology, Research Institute for the Biology of Farm Animals, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | | | | | | |
Collapse
|
41
|
Lequarre AS, Traverso JM, Marchandise J, Donnay I. Poly(A) RNA Is Reduced by Half During Bovine Oocyte Maturation but Increases when Meiotic Arrest Is Maintained with CDK Inhibitors1. Biol Reprod 2004; 71:425-31. [PMID: 15056564 DOI: 10.1095/biolreprod.103.026724] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Variations in the amount of different RNA species were investigated during in vitro maturation of bovine oocytes. Total RNA content was estimated to be 2 ng before meiosis, and after meiosis resumption, no decrease was observed. Ribosomal RNA did not appear to be degraded either, whereas poly(A) RNA was reduced by half after meiosis resumption, from 53 pg to 25 pg per oocyte. Real-time polymerase chain reaction was performed on growth and differentiation factor-9 (GDF-9), on cyclin B1, and on two genes implicated in the resistance to oxidative stress, glucose-6-phosphate-dehydrogenase (G6PD) and peroxiredoxin-6 (PRDX6). When these transcripts were reverse-transcribed with hexamers, the amplification results were not different before or after in vitro maturation. But when reverse transcription was performed with oligo(dT), amplification was dramatically reduced after maturation, except for cyclin B1 mRNA, implying deadenylation without degradation of three transcripts. Although calf oocytes have a lower developmental competence, their poly(A) RNA contents were not different from that of cow oocytes, nor were they differently affected during maturation. When bovine oocytes were maintained in vitro under meiotic arrest with CDK inhibitors, their poly(A) RNA amount increased, but this rise did not change the poly(A) RNA level once maturation was achieved. The increase could not be observed under transcription inhibition and, when impeding transcription and adenylation, the poly(A) RNA decreased to a level normally observed after maturation, in spite of the maintenance of meiotic arrest. These results demonstrate the importance of adenylation and deadenylation processes during in vitro maturation of bovine oocytes.
Collapse
Affiliation(s)
- Anne Sophie Lequarre
- Unité des Sciences Vétérinaires, Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium.
| | | | | | | |
Collapse
|
42
|
Miyoshi K, Rzucidlo SJ, Pratt SL, Stice SL. Improvements in cloning efficiencies may be possible by increasing uniformity in recipient oocytes and donor cells. Biol Reprod 2003; 68:1079-86. [PMID: 12606466 DOI: 10.1095/biolreprod.102.010876] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The low efficiency of somatic cell cloning is the major obstacle to widespread use of this technology. Incomplete nuclear reprogramming following the transfer of donor nuclei into recipient oocytes has been implicated as a primary reason for the low efficiency of the cloning procedure. The mechanisms and factors that affect the progression of the nuclear reprogramming process have not been completely elucidated, but the identification of these factors and their subsequent manipulation would increase cloning efficiency. At present, many groups are studying donor nucleus reprogramming. Here, we present an approach in which the efficiency of producing viable offspring is improved by selecting recipient oocytes and donor cells that will produce cloned embryos with functionally reprogrammed nuclei. This approach will produce information useful in future studies aimed at further deciphering the nuclear reprogramming process.
Collapse
Affiliation(s)
- Kazuchika Miyoshi
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia 30602-2771, USA
| | | | | | | |
Collapse
|
43
|
Walsh D, Meleady P, Power B, Morley SJ, Clynes M. Increased levels of the translation initiation factor eIF4E in differentiating epithelial lung tumor cell lines. Differentiation 2003; 71:126-34. [PMID: 12641566 DOI: 10.1046/j.1432-0436.2003.710203.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rates of eukaryotic protein synthesis and proliferation are dependent upon the availability of eIF4F, the cap-binding translation initiation complex that guides the ribosome onto the mRNA. One possible rate-limiting factor in eIF4F complex formation is the availability of eIF4E, which interacts specifically with the mRNA cap structure. As such, it has a potential role in the selective translation of growth-related mRNAs, with overexpression of eIF4E resulting in aberrant cell growth and transformation. A number of studies suggest that eIF4E may play a role in cellular differentiation as well as proliferation. We have previously reported that post-transcriptional regulation is involved in the induction of keratins in epithelial lung tumor cell lines exposed to the differentiation-modulating agent, bromo-deoxyuridine (BrdU). Here, we demonstrate that these BrdU-treated lung cells express elevated levels of eIF4E protein and enhanced phosphorylation of eIF4E. Overexpression of eIF4E by cDNA transfection in the poorly differentiated, keratin-negative human lung cell line, DLKP, was found to promote a flattened, more epithelial appearance to these cells, coupled with the induction of simple keratins (keratins 8 and 18). In contrast, levels of eIF4E expression were found to decrease during BrdU-induced differentiation of the leukemic cell line, HL-60, suggesting that there are cell-type differences in the response to BrdU and in the requirement for eIF4E during differentiation.
Collapse
Affiliation(s)
- Derek Walsh
- National Cell and Tissue Culture Centre/National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Ireland
| | | | | | | | | |
Collapse
|
44
|
Kubelka M, Anger M, Kalous J, Schultz RM, Motlík J. Chromosome condensation in pig oocytes: lack of a requirement for either cdc2 kinase or MAP kinase activity. Mol Reprod Dev 2002; 63:110-8. [PMID: 12211068 DOI: 10.1002/mrd.10176] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, butyrolactone I (BL I), a potent and specific inhibitor of cyclin-dependent kinases (cdk), is shown to inhibit germinal vesicle breakdown (GVBD) in pig oocytes. Oocytes treated with 100 microM BL I were arrested in the germinal vesicle (GV)-stage and displayed low activity of cdc2 kinase and MAP kinase. Nevertheless, chromosome condensation occurred and highly condensed bivalents were seen within an intact GV after a 24-hr culture in the presence of BL I. The inhibitory effect of BL I on MAP kinase activation during culture was likely mediated through a cdk-dependent pathway, since MAP kinase activity present in extracts derived from metaphase II eggs was not inhibited by BL I. The block of GVBD could be released by treating oocytes with okadaic acid (OA), an inhibitor of type 1 and 2A phosphatases; 82% of the oocytes treated with the combination of OA/BL I underwent GVBD, and MAP kinase became activated, while cdc2 kinase remained inhibited. These results suggest that both chromosome condensation and GVBD could occur without activation of cdc2 kinase, whereas an increase in MAP kinase activity may be a requisite for GVBD in pig oocytes in conditions when cdc2 kinase activation is blocked by BL I.
Collapse
Affiliation(s)
- Michal Kubelka
- Department of Physiology of Reproduction, Institute of Animal Physiology and Genetics, Libechov, Czech Republic.
| | | | | | | | | |
Collapse
|