1
|
Zeineddine Y, Friedman MA, Buettmann EG, Abraham LB, Hoppock GA, Donahue HJ. Genetic diversity modulates the physical and transcriptomic response of skeletal muscle to simulated microgravity in male mice. NPJ Microgravity 2023; 9:86. [PMID: 38040743 PMCID: PMC10692100 DOI: 10.1038/s41526-023-00334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023] Open
Abstract
Developments in long-term space exploration necessitate advancements in countermeasures against microgravity-induced skeletal muscle loss. Astronaut data shows considerable variation in muscle loss in response to microgravity. Previous experiments suggest that genetic background influences the skeletal muscle response to unloading, but no in-depth analysis of genetic expression has been performed. Here, we placed eight, male, inbred founder strains of the diversity outbred mice (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/ShiLtJ, NZO/HILtJ, PWK/PhJ, and WSB/EiJ) in simulated microgravity (SM) via hindlimb unloading for three weeks. Body weight, muscle morphology, muscle strength, protein synthesis marker expression, and RNA expression were collected. A/J and CAST/EiJ mice were most susceptible to SM-induced muscle loss, whereas NOD/ShiLtJ mice were the most protected. In response to SM, A/J and CAST/EiJ mice experienced reductions in body weight, muscle mass, muscle volume, and muscle cross-sectional area. A/J mice had the highest number of differentially expressed genes (68) and associated gene ontologies (328). Downregulation of immunological gene ontologies and genes encoding anabolic immune factors suggest that immune dysregulation contributes to the response of A/J mice to SM. Several muscle properties showed significant interactions between SM and mouse strain and a high degree of heritability. These data imply that genetic background plays a role in the degree of muscle loss in SM and that more individualized programs should be developed for astronauts to protect their skeletal muscles against microgravity on long-term missions.
Collapse
Affiliation(s)
- Yasmina Zeineddine
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Lovell B Abraham
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Responses of neuromuscular properties to unloading and potential countermeasures during space exploration missions. Neurosci Biobehav Rev 2022; 136:104617. [PMID: 35283170 DOI: 10.1016/j.neubiorev.2022.104617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022]
Abstract
We reviewed the responses of the neuromuscular properties of mainly the soleus and possible mechanisms. Sensory nervous activity in response to passive shortening and/or active contraction, associated with plantar-flexion or dorsi-flexion of the ankle joints, may play an essential role in the regulation of muscle properties. Passive shortening of the muscle fibers and sarcomeres inhibits the development of tension, electromyogram (EMG), and afferent neurogram. Remodeling of the sarcomeres, which decreases the total sarcomere number in a single muscle fiber causing recovery of the length in each sarcomere, is induced in the soleus following chronic unloading. Although EMG activity and tension development in each sarcomere are increased, the total tension produced by the whole muscle is still less owing to the lower sarcomere number. Therefore, muscle atrophy continues to progress. Moreover, walking or slow running by rear-foot strike landing with the application of greater ground reaction force, which stimulates soleus mobilization, could be an effective countermeasure. Periodic, but not chronic, passive stretching of the soleus may also be effective.
Collapse
|
3
|
Ferrara PJ, Verkerke ARP, Maschek JA, Shahtout JL, Siripoksup P, Eshima H, Johnson JM, Petrocelli JJ, Mahmassani ZS, Green TD, McClung JM, Cox JE, Drummond MJ, Funai K. Low lysophosphatidylcholine induces skeletal muscle myopathy that is aggravated by high-fat diet feeding. FASEB J 2021; 35:e21867. [PMID: 34499764 DOI: 10.1096/fj.202101104r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022]
Abstract
Obesity alters skeletal muscle lipidome and promotes myopathy, but it is unknown whether aberrant muscle lipidome contributes to the reduction in skeletal muscle contractile force-generating capacity. Comprehensive lipidomic analyses of mouse skeletal muscle revealed a very strong positive correlation between the abundance of lysophosphatidylcholine (lyso-PC), a class of lipids that is known to be downregulated with obesity, with maximal tetanic force production. The level of lyso-PC is regulated primarily by lyso-PC acyltransferase 3 (LPCAT3), which acylates lyso-PC to form phosphatidylcholine. Tamoxifen-inducible skeletal muscle-specific overexpression of LPCAT3 (LPCAT3-MKI) was sufficient to reduce muscle lyso-PC content in both standard chow diet- and high-fat diet (HFD)-fed conditions. Strikingly, the assessment of skeletal muscle force-generating capacity ex vivo revealed that muscles from LPCAT3-MKI mice were weaker regardless of diet. Defects in force production were more apparent in HFD-fed condition, where tetanic force production was 40% lower in muscles from LPCAT3-MKI compared to that of control mice. These observations were partly explained by reductions in the cross-sectional area in type IIa and IIx fibers, and signs of muscle edema in the absence of fibrosis. Future studies will pursue the mechanism by which LPCAT3 may alter protein turnover to promote myopathy.
Collapse
Affiliation(s)
- Patrick J Ferrara
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Anthony R P Verkerke
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - J Alan Maschek
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Metabolomics, Mass Spectrometry, and Proteomics Core, University of Utah, Salt Lake City, Utah, USA
| | - Justin L Shahtout
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Piyarat Siripoksup
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Hiroaki Eshima
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of International Tourism, Nagasaki International University, Sasebo, Japan
| | - Jordan M Johnson
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Jonathan J Petrocelli
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Ziad S Mahmassani
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Thomas D Green
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - Joseph M McClung
- East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA
| | - James E Cox
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Metabolomics, Mass Spectrometry, and Proteomics Core, University of Utah, Salt Lake City, Utah, USA.,Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Micah J Drummond
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, USA.,East Carolina Diabetes & Obesity Institute, East Carolina University, Greenville, North Carolina, USA.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA.,Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Moosavi D, Wolovsky D, Depompeis A, Uher D, Lennington D, Bodden R, Garber CE. The effects of spaceflight microgravity on the musculoskeletal system of humans and animals, with an emphasis on exercise as a countermeasure: a systematic scoping review. Physiol Res 2021; 70:119-151. [PMID: 33992043 DOI: 10.33549/physiolres.934550] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The purpose of this systematic review is twofold: 1) to identify, evaluate, and synthesize the heretofore disparate scientific literatures regarding the effects of direct exposure to microgravity on the musculoskeletal system, taking into account for the first time both bone and muscle systems of both humans and animals; and 2) to investigate the efficacy and limitations of exercise countermeasures on the musculoskeletal system under microgravity in humans.The Framework for Scoping Studies (Arksey and O'Malley 2005) and the Cochrane Handbook for Systematic Reviews of Interventions (Higgins JPT 2011) were used to guide this review. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist was utilized in obtaining the combined results (Moher, Liberati et al. 2009). Data sources, PubMed, Embase, Scopus, and Web of Science were searched for published articles through October 2019 using the Mesh terms of microgravity, musculoskeletal system, and exercise countermeasures. A total of 84 references were selected, including 40 animal studies and 44 studies with human participants. The heterogeneity in the study designs, methodologies, and outcomes deemed this review unsuitable for a meta-analysis. Thus, we present a narrative synthesis of the results for the key domains under five categories: 1) Skeletal muscle responses to microgravity in humans 2) Skeletal muscle responses to microgravity in animals 3) Adaptation of the skeletal system to microgravity in humans 4) Adaptation of the skeletal system to microgravity in animals 5) Effectiveness of exercise countermeasures on the human musculoskeletal system in microgravity. Existing studies have produced only limited data on the combined effects on bone and muscle of human spaceflight, despite the likelihood that the effects on these two systems are complicated due to the components of the musculoskeletal system being anatomically and functionally interconnected. Bone is directly affected by muscle atrophy as well as by changes in muscle strength, notably at muscle attachments. Given this interplay, the most effective exercise countermeasure is likely to be robust, individualized, resistive exercise, primarily targeting muscle mass and strength.
Collapse
Affiliation(s)
- D Moosavi
- Department of Biobehavioral Sciences, Teachers College, Columbia University. New York City, NY, United States.
| | | | | | | | | | | | | |
Collapse
|
5
|
Qaisar R, Karim A, Elmoselhi AB. Muscle unloading: A comparison between spaceflight and ground-based models. Acta Physiol (Oxf) 2020; 228:e13431. [PMID: 31840423 DOI: 10.1111/apha.13431] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022]
Abstract
Prolonged unloading of skeletal muscle, a common outcome of events such as spaceflight, bed rest and hindlimb unloading, can result in extensive metabolic, structural and functional changes in muscle fibres. With advancement in investigations of cellular and molecular mechanisms, understanding of disuse muscle atrophy has significantly increased. However, substantial gaps exist in our understanding of the processes dictating muscle plasticity during unloading, which prevent us from developing effective interventions to combat muscle loss. This review aims to update the status of knowledge and underlying mechanisms leading to cellular and molecular changes in skeletal muscle during unloading. We have also discussed advances in the understanding of contractile dysfunction during spaceflights and in ground-based models of muscle unloading. Additionally, we have elaborated on potential therapeutic interventions that show promising results in boosting muscle mass and strength during mechanical unloading. Finally, we have identified key gaps in our knowledge as well as possible research direction for the future.
Collapse
Affiliation(s)
- Rizwan Qaisar
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
| | - Asima Karim
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
| | - Adel B. Elmoselhi
- Department of Basic Medical Sciences College of Medicine University of Sharjah Sharjah UAE
- Department of Physiology Michigan State University East Lansing MI USA
| |
Collapse
|
6
|
Khairullin AE, Eremeev AA, Grishin SN. Synaptic Aspects of Hypogravity Motor Syndrome. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919050087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Brioche T, Pagano AF, Py G, Chopard A. Muscle wasting and aging: Experimental models, fatty infiltrations, and prevention. Mol Aspects Med 2016; 50:56-87. [PMID: 27106402 DOI: 10.1016/j.mam.2016.04.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
Identification of cost-effective interventions to maintain muscle mass, muscle strength, and physical performance during muscle wasting and aging is an important public health challenge. It requires understanding of the cellular and molecular mechanisms involved. Muscle-deconditioning processes have been deciphered by means of several experimental models, bringing together the opportunities to devise comprehensive analysis of muscle wasting. Studies have increasingly recognized the importance of fatty infiltrations or intermuscular adipose tissue for the age-mediated loss of skeletal-muscle function and emphasized that this new important factor is closely linked to inactivity. The present review aims to address three main points. We first mainly focus on available experimental models involving cell, animal, or human experiments on muscle wasting. We next point out the role of intermuscular adipose tissue in muscle wasting and aging and try to highlight new findings concerning aging and muscle-resident mesenchymal stem cells called fibro/adipogenic progenitors by linking some cellular players implicated in both FAP fate modulation and advancing age. In the last part, we review the main data on the efficiency and molecular and cellular mechanisms by which exercise, replacement hormone therapies, and β-hydroxy-β-methylbutyrate prevent muscle wasting and sarcopenia. Finally, we will discuss a potential therapeutic target of sarcopenia: glucose 6-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Thomas Brioche
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France.
| | - Allan F Pagano
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Guillaume Py
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| | - Angèle Chopard
- Université de Montpellier, INRA, UMR 866 Dynamique Musculaire et Métabolisme, Montpellier F-34060, France
| |
Collapse
|
8
|
Ohira T, Kawano F, Ohira T, Goto K, Ohira Y. Responses of skeletal muscles to gravitational unloading and/or reloading. J Physiol Sci 2015; 65:293-310. [PMID: 25850921 PMCID: PMC10717835 DOI: 10.1007/s12576-015-0375-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 03/17/2015] [Indexed: 02/04/2023]
Abstract
Adaptation of morphological, metabolic, and contractile properties of skeletal muscles to inhibition of antigravity activities by exposure to a microgravity environment or by simulation models, such as chronic bedrest in humans or hindlimb suspension in rodents, has been well reported. Such physiological adaptations are generally detrimental in daily life on earth. Since the development of suitable countermeasure(s) is essential to prevent or inhibit these adaptations, effects of neural, mechanical, and metabolic factors on these properties in both humans and animals were reviewed. Special attention was paid to the roles of the motoneurons (both efferent and afferent neurograms) and electromyogram activities as the neural factors, force development, and/or length of sarcomeres as the mechanical factors and mitochondrial bioenergetics as the metabolic factors.
Collapse
Affiliation(s)
- Takashi Ohira
- Space Biomedical Research Office, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki 305-8505 Japan
| | - Fuminori Kawano
- Graduate School of Medicine, Osaka University, Toyonaka, Osaka 560-0043 Japan
| | - Tomotaka Ohira
- Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi 440-8511 Japan
| | - Katsumasa Goto
- Graduate School of Health Sciences, Toyohashi SOZO University, Toyohashi, Aichi 440-8511 Japan
| | - Yoshinobu Ohira
- Graduate School of Health and Sports Science, Doshisha University, Miyakodani 1-3, Tatara, Kyotanabe, Kyoto 610-0394 Japan
| |
Collapse
|
9
|
Baldwin KM, Haddad F, Pandorf CE, Roy RR, Edgerton VR. Alterations in muscle mass and contractile phenotype in response to unloading models: role of transcriptional/pretranslational mechanisms. Front Physiol 2013; 4:284. [PMID: 24130531 PMCID: PMC3795307 DOI: 10.3389/fphys.2013.00284] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/18/2013] [Indexed: 01/30/2023] Open
Abstract
Skeletal muscle is the largest organ system in mammalian organisms providing postural control and movement patterns of varying intensity. Through evolution, skeletal muscle fibers have evolved into three phenotype clusters defined as a motor unit which consists of all muscle fibers innervated by a single motoneuron linking varying numbers of fibers of similar phenotype. This fundamental organization of the motor unit reflects the fact that there is a remarkable interdependence of gene regulation between the motoneurons and the muscle mainly via activity-dependent mechanisms. These fiber types can be classified via the primary type of myosin heavy chain (MHC) gene expressed in the motor unit. Four MHC gene encoded proteins have been identified in striated muscle: slow type I MHC and three fast MHC types, IIa, IIx, and IIb. These MHCs dictate the intrinsic contraction speed of the myofiber with the type I generating the slowest and IIb the fastest contractile speed. Over the last ~35 years, a large body of knowledge suggests that altered loading state cause both fiber atrophy/wasting and a slow to fast shift in the contractile phenotype in the target muscle(s). Hence, this review will examine findings from three different animal models of unloading: (1) space flight (SF), i.e., microgravity; (2) hindlimb suspension (HS), a procedure that chronically eliminates weight bearing of the lower limbs; and (3) spinal cord isolation (SI), a surgical procedure that eliminates neural activation of the motoneurons and associated muscles while maintaining neurotrophic motoneuron-muscle connectivity. The collective findings demonstrate: (1) all three models show a similar pattern of fiber atrophy with differences mainly in the magnitude and kinetics of alteration; (2) transcriptional/pretranslational processes play a major role in both the atrophy process and phenotype shifts; and (3) signaling pathways impacting these alterations appear to be similar in each of the models investigated.
Collapse
Affiliation(s)
- Kenneth M Baldwin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine CA, USA
| | | | | | | | | |
Collapse
|
10
|
Ohira T, Terada M, Kawano F, Nakai N, Ogura A, Ohira Y. Region-specific responses of adductor longus muscle to gravitational load-dependent activity in Wistar Hannover rats. PLoS One 2011; 6:e21044. [PMID: 21731645 PMCID: PMC3120817 DOI: 10.1371/journal.pone.0021044] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 05/17/2011] [Indexed: 11/18/2022] Open
Abstract
Response of adductor longus (AL) muscle to gravitational unloading and reloading was studied. Male Wistar Hannover rats (5-wk old) were hindlimb-unloaded for 16 days with or without 16-day ambulation recovery. The electromyogram (EMG) activity in AL decreased after acute unloading, but that in the rostral region was even elevated during continuous unloading. The EMG levels in the caudal region gradually increased up to 6th day, but decreased again. Approximately 97% of fibers in the caudal region were pure type I at the beginning of experiment. Mean percentage of type I fibers in the rostral region was 61% and that of type I+II and II fiber was 14 and 25%, respectively. The percent type I fibers decreased and de novo appearance of type I+II was noted after unloading. But the fiber phenotype in caudal, not rostral and middle, region was normalized after 16-day ambulation. Pronounced atrophy after unloading and re-growth following ambulation was noted in type I fibers of the caudal region. Sarcomere length in the caudal region was passively shortened during unloading, but that in the rostral region was unchanged or even stretched slightly. Growth-associated increase of myonuclear number seen in the caudal region of control rats was inhibited by unloading. Number of mitotic active satellite cells decreased after unloading only in the caudal region. It was indicated that the responses of fiber properties in AL to unloading and reloading were closely related to the region-specific neural and mechanical activities, being the caudal region more responsive.
Collapse
Affiliation(s)
- Takashi Ohira
- Graduate School of Frontier Biosciences, Osaka University, Toyonaka City, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Analysis by two-dimensional Blue Native/SDS-PAGE of membrane protein alterations in rat soleus muscle after hindlimb unloading. Eur J Appl Physiol 2010; 110:1215-24. [DOI: 10.1007/s00421-010-1592-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2010] [Indexed: 01/03/2023]
|
13
|
Ohira Y, Kawano F, Dong Wang X, Nakai N, Ohira T, Okabe H, Naito H, Goto K. Role(s) of Mechanical Load and Satellite Cells in The Regulation of The Size of Soleus Muscle Fiber in Rats. ACTA ACUST UNITED AC 2010. [DOI: 10.2187/bss.24.135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Boonyarom O, Inui K. Atrophy and hypertrophy of skeletal muscles: structural and functional aspects. Acta Physiol (Oxf) 2006; 188:77-89. [PMID: 16948795 DOI: 10.1111/j.1748-1716.2006.01613.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review summarizes current information on structural and functional changes that occur during muscle atrophy and hypertrophy. Most published studies consider an increase in total mass of a muscle as hypertrophy, whereas a decrease in total mass of a muscle is referred to as atrophy. In hypertrophy, the rate of synthesis is much higher than the rate of degradation of muscle contractile proteins, leading to an increase in the size or volume of an organ due to enlargement of existing cells. When a muscle remains in disuse for a long period, the rate of degradation of contractile proteins becomes greater than the rate of replacement, resulting in muscle atrophy. This defect may occur as a result of lack of nutrition, loss of nerve supply, micro-gravity, ageing, systemic disease, prolonged immobilization or disuse. An understanding of the specific modifications that occur during muscle atrophy and hypertrophy may facilitate the development of novel techniques, as well as new therapies for affected muscles.
Collapse
Affiliation(s)
- O Boonyarom
- Department of Physical Therapy, Naresuan University, Phitsanulok, Thailand.
| | | |
Collapse
|
15
|
Wang XD, Kawano F, Matsuoka Y, Fukunaga K, Terada M, Sudoh M, Ishihara A, Ohira Y. Mechanical load-dependent regulation of satellite cell and fiber size in rat soleus muscle. Am J Physiol Cell Physiol 2006; 290:C981-9. [PMID: 16291821 DOI: 10.1152/ajpcell.00298.2005] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of mechanical unloading and reloading on the properties of rat soleus muscle fibers were investigated in male Wistar Hannover rats. Satellite cells in the fibers of control rats were distributed evenly throughout the fiber length. After 16 days of hindlimb unloading, the number of satellite cells in the central, but not the proximal or distal, region of the fiber was decreased. The number of satellite cells in the central region gradually increased during the 16-day period of reloading. The mean sarcomere length in the central region of the fibers was passively shortened during unloading due to the plantarflexed position at the ankle joint: sarcomere length was maintained at <2.1 μm, which is a critical length for tension development. Myonuclear number and domain size, fiber cross-sectional area, and the total number of mitotically active and quiescent satellite cells of whole muscle fibers were lower than control fibers after 16 days of unloading. These values then returned to control values after 16 days of reloading. These results suggest that satellite cells play an important role in the regulation of muscle fiber properties. The data also indicate that the satellite cell-related regulation of muscle fiber properties is dependent on the level of mechanical loading, which, in turn, is influenced by the mean sarcomere length. However, it is still unclear why the region-specific responses, which were obvious in satellite cells, were not induced in myonuclear number and fiber cross-sectional area.
Collapse
Affiliation(s)
- X D Wang
- Graduate School of Medicine, Osaka University, Suita City, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gallagher P, Trappe S, Harber M, Creer A, Mazzetti S, Trappe T, Alkner B, Tesch P. Effects of 84-days of bedrest and resistance training on single muscle fibre myosin heavy chain distribution in human vastus lateralis and soleus muscles. ACTA ACUST UNITED AC 2005; 185:61-9. [PMID: 16128698 DOI: 10.1111/j.1365-201x.2005.01457.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM This investigation determined the effects of 84 days of bedrest on the composition of myosin heavy chain (MHC) in single skeletal muscle fibres with and without a resistance-training countermeasure programme. METHODS Muscle biopsies were obtained from the m. vastus lateralis (VL) and m. soleus (SOL) before and after 84 days of bedrest. While control (BR) subjects (VL n = 9; SOL n = 3) refrained from exercise, BRE subjects (VL n = 8; SOL n = 3) performed knee extensor and plantar flexor resistance exercise every third day. Approximately 110 fibres per sample were analysed for MHC composition using SDS-PAGE. RESULTS BR-VL had 16 and 14% decreases (P < 0.05) in MHC I and IIa fibres, respectively. There were 10% increases (P < 0.05) in MHC I/IIa, IIa/IIx, I/IIa/IIx, and a approximately 30% increase (P < 0.05) in total hybrid fibres. BRE-VL showed a 15% reduction (P < 0.05) in MHC I fibres, no change in MHC IIa fibres, and a 13% increase (P < 0.05) in total hybrids. BR-SOL had a 19% decrease (P < 0.05) in MHC I fibres with a 22% increase in total hybrids. BRE-SOL showed no change in MHC composition across all fibre types. CONCLUSION These data suggest that the exercise countermeasures programme prevented MHC shifts in the SOL and mitigated MHC shifts in the VL. Furthermore, in the VL it appears that the resistance training programme employed in this investigation during bedrest, emphasized the use of MHC IIa phenotype muscle fibres.
Collapse
Affiliation(s)
- P Gallagher
- Human Performance Laboratory, Ball State University, Muncie, IN 47306, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Grindeland RE, Ilyin EA, Holley DC, Skidmore MG. International collaboration on Russian spacecraft and the case for free flyer biosatellites. ACTA ACUST UNITED AC 2005; 10:41-80. [PMID: 16101104 DOI: 10.1016/s1569-2574(05)10003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Animal research has been critical to the initiation and progress of space exploration. Animals were the original explorers of "space" two centuries ago and have played a crucial role by demonstrating that the space environment, with precautions, is compatible with human survival. Studies of mammals have yielded much of our knowledge of space physiology. As spaceflights to other planets are anticipated, animal research will continue to be essential to further reveal space physiology and to enable the longer missions. Much of the physiology data collected from space was obtained from the Cosmos (Bion) spaceflights, a series of Russian (Soviet)-International collaborative flights, over a 22 year period, which employed unmanned, free flyer biosatellites. Begun as a Soviet-only program, after the second flight the Russians invited American and other foreign scientists to participate. This program filled the 10 year hiatus between the last US biosatellite and the first animal experiments on the shuttles. Of the 11 flights in the Cosmos program nine of them were international; the flights continued over the years regardless of political differences between the Soviet Union and the Western world. The science evolved from sharing tissues to joint international planning and development, and from rat postmortem tissue analysis to in vivo measurements of a host of monkey physiological parameters during flight. Many types of biological specimens were carried on the modified Vostok spacecraft, but only the mammalian studies are discussed herein. The types of studies done encompass the full range of physiology and have begun to answer "critical" questions of space physiology posed by various ad hoc committees. The studies have not only yielded a prodigious and significant body of data, they have also introduced some new perspectives in physiology. A number of the physiological insights gained are relevant to physiology on Earth. The Cosmos flights also added significantly to flight-related technology, some of which also has application on our planet. In summary, the Cosmos biosatellite flights were extremely productive and of low cost. The Bion vehicles are versatile in that they can be placed into a variety of orbits and altitudes, and can carry radiation sources or other hazardous material which cannot be carried on manned vehicles. With recent advances in sensor, robotic, and data processing technology, future free flyers will be even more productive, and will largely preclude the need to fly animal experiments on manned vehicles. Currently, mammalian researchers do not have access to space for an unknown time, seriously impeding the advancement and understanding of space physiology during long duration missions. Initiation of a new, international program of free flyer biosatellites is critical to our further understanding of space physiology, and essential to continued human exploration of space.
Collapse
|
18
|
Hilder TL, Baer LA, Fuller PM, Fuller CA, Grindeland RE, Wade CE, Graves LM. Insulin-independent pathways mediating glucose uptake in hindlimb-suspended skeletal muscle. J Appl Physiol (1985) 2005; 99:2181-8. [PMID: 16099889 DOI: 10.1152/japplphysiol.00743.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Insulin resistance accompanies atrophy in slow-twitch skeletal muscles such as the soleus. Using a rat hindlimb suspension model of atrophy, we have previously shown that an upregulation of JNK occurs in atrophic muscles and correlates with the degradation of insulin receptor substrate-1 (IRS-1) (Hilder TL, Tou JC, Grindeland RF, Wade CE, and Graves LM. FEBS Lett 553: 63-67, 2003), suggesting that insulin-dependent glucose uptake may be impaired. However, during atrophy, these muscles preferentially use carbohydrates as a fuel source. To investigate this apparent dichotomy, we examined insulin-independent pathways involved in glucose uptake following a 2- to 13-wk hindlimb suspension regimen. JNK activity was elevated throughout the time course, and IRS-1 was degraded as early as 2 wk. AMP-activated protein kinase (AMPK) activity was significantly higher in atrophic soleus muscle, as were the activities of the ERK1/2 and p38 MAPKs. As a comparison, we examined the kinase activity in solei of rats exposed to hypergravity conditions (2 G). IRS-1 phosphorylation, protein, and AMPK activity were not affected by 2 G, demonstrating that these changes were only observed in soleus muscle from hindlimb-suspended animals. To further examine the effect of AMPK activation on glucose uptake, C2C12 myotubes were treated with the AMPK activator metformin and then challenged with the JNK activator anisomycin. While anisomycin reduced insulin-stimulated glucose uptake to control levels, metformin significantly increased glucose uptake in the presence of anisomycin and was independent of insulin. Taken together, these results suggest that AMPK may be an important mediator of insulin-independent glucose uptake in soleus during skeletal muscle atrophy.
Collapse
Affiliation(s)
- Thomas L Hilder
- Dept. of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7365, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Hilder TL, Tou JCL, Grindeland RE, Wade CE, Graves LM. Phosphorylation of insulin receptor substrate-1 serine 307 correlates with JNK activity in atrophic skeletal muscle. FEBS Lett 2003; 553:63-7. [PMID: 14550547 DOI: 10.1016/s0014-5793(03)00972-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
c-Jun NH(2)-terminal kinase (JNK) has been shown to negatively regulate insulin signaling through serine phosphorylation of residue 307 within the insulin receptor substrate-1 (IRS-1) in adipose and liver tissue. Using a rat hindlimb suspension model for muscle disuse atrophy, we found that JNK activity was significantly elevated in atrophic soleus muscle and that IRS-1 was phosphorylated on Ser(307) prior to the degradation of the IRS-1 protein. Moreover, we observed a corresponding reduction in Akt activity, providing biochemical evidence for the development of insulin resistance in atrophic skeletal muscle.
Collapse
Affiliation(s)
- Thomas L Hilder
- Department of Pharmacology, University of North Carolina, Chapel Hill 27599-7365, USA.
| | | | | | | | | |
Collapse
|
20
|
Belozerova IN, Nemirovskaya TL, Shenkman BS, Kozlovskaya IB. Characteristic of changes in the structure and metabolism of the vastus lateralis muscles in monkeys after space flight. ACTA ACUST UNITED AC 2003; 33:735-40. [PMID: 14552544 DOI: 10.1023/a:1024429311622] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Monkeys subjected to space flight were found to have significant decreases in the sizes of slow and rapid fibers in the vastus lateralis muscle, due not only to weightlessness but also, to some extent, to restriction of movement activity within the capsule. The quantity of total protein in muscle fibers did not decrease. The respiratory peak in the pool of vastus lateralis muscle fibers decreased after space flight, as did the activity of oxidative enzymes (particularly in rapid fibers of the vastus lateralis muscle).
Collapse
Affiliation(s)
- I N Belozerova
- State Scientific Center, Russian Federation Institute of Medical Biological Problems, Russian Academy of Sciences, 76a Khorosheevskoe Chaussee, 123007 Moscow, Russia
| | | | | | | |
Collapse
|
21
|
Shenkman BS, Belozerova IN, Lee P, Nemirovskaya TL, Kozlovskaya IB. Effects of weightlessness and movement restriction on the structure and metabolism of the soleus muscle in monkeys after space flight. ACTA ACUST UNITED AC 2003; 33:717-22. [PMID: 14552541 DOI: 10.1023/a:1024473126643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
After humans and animals have been in conditions of real and modeled weightlessness, the most marked changes are seen in the "slow" tonic muscles, particularly soleus. Studies of the effects of weightlessness and movement restriction on the soleus muscle in monkeys demonstrated significant reductions in the sizes of slow and rapid fibers due mainly to the actions of real weightlessness (rather than movement restriction in the space capsule). Protein loss in soleus muscle fibers in monkeys following space flight was more marked than loss of other components, including water. The level of atrophy of soleus muscle fibers in these conditions was greater than the decrease in the number of capillaries. Succinate dehydrogenase activity in soleus muscle fibers decreased proportionally to the reduction in fiber size.
Collapse
Affiliation(s)
- B S Shenkman
- State Scientific Center, Russian Federation Institute of Medical and Biological Problems, Khoroshevskoe Chaussee, 123007 Moscow, Russia
| | | | | | | | | |
Collapse
|
22
|
Tidball JG, Spencer MJ. Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse. J Physiol 2002; 545:819-28. [PMID: 12482888 PMCID: PMC2290726 DOI: 10.1113/jphysiol.2002.024935] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2002] [Accepted: 10/03/2002] [Indexed: 01/14/2023] Open
Abstract
Muscle wasting is a prominent feature of several systemic diseases, neurological damage and muscle disuse. The contribution of calpain proteases to muscle wasting in any instance of muscle injury or disease has remained unknown because of the inability to specifically perturb calpain activity in vivo. We have generated a transgenic mouse with muscle-specific overexpression of calpastatin, which is the endogenous inhibitor of calpains, and induced muscle atrophy by unloading hindlimb musculature for 10 days. Expression of the transgene resulted in increases in calpastatin concentration in muscle by 30- to 50-fold, and eliminated all calpain activity that was detectable on zymograms. Muscle fibres in ambulatory, transgenic mice were smaller in diameter, but more numerous, so that muscle mass did not differ between transgenic and non-transgenic mice. This is consistent with the role of the calpain-calpastatin system in muscle cell fusion that has been observed in vitro. Overexpression of calpastatin reduced muscle atrophy by 30 % during the 10 day unloading period. In addition, calpastatin overexpression completely prevented the shift in myofibrillar myosin content from slow to fast isoforms, which normally occurs in muscle unloading. These findings indicate that therapeutics directed toward regulating the calpain-calpastatin system may be beneficial in preventing muscle mass loss in muscle injury and disease.
Collapse
Affiliation(s)
- James G Tidball
- Department of Physiological Science, David Geffen School of Medicine at UCLA, 5833 Life Science Building, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
23
|
Abstract
Major accomplishments in nutritional sciences for support of human space travel have occurred over the past 40 y. This article reviews these accomplishments, beginning with the early Gemini program and continuing through the impressive results from the first space station Skylab program that focused on life sciences research, the Russian contributions through the Mir space station, the US Shuttle life sciences research, and the emerging International Space Station missions. Nutrition is affected by environmental conditions such as radiation, temperature, and atmospheric pressures, and these are reviewed. Nutrition with respect to space flight is closely interconnected with other life sciences research disciplines including the study of hematology, immunology, as well as neurosensory, cardiovascular, gastrointestinal, circadian rhythms, and musculoskeletal physiology. These relationships are reviewed in reference to the overall history of nutritional science in human space flight. Cumulative nutritional research over the past four decades has resulted in the current nutritional requirements for astronauts. Space-flight nutritional recommendations are presented along with the critical path road map that outlines the research needed for future development of nutritional requirements.
Collapse
Affiliation(s)
- Helen W Lane
- National Aeronautics and Space Administration, Lyndon B. Johnson Space Center, Houston, Texas 77058, USA.
| | | |
Collapse
|
24
|
Abstract
One of the remarkable features of skeletal muscle is its adaptability. Skeletal muscle adaptations are characterized by modifications of morphological, biochemical, and molecular variables that alter the functional attributes of specific skeletal muscle fiber types. Skeletal muscle adaptation is diverse and the magnitude of change is dependent on many factors, such as activity pattern, age, and muscle fiber type composition. The adaptation of skeletal muscle in the adult population is well described. In contrast, the adaptation of skeletal muscle in the older population is less documented, especially in the area of inactivity-induced alterations. Age-related changes in skeletal muscle may play a significant role in the magnitude of change with inactivity and influence the rehabilitation process for the older adult. A consistent feature of age and inactivity is limb muscle atrophy and the loss of peak force and power. Differences exist in the rate and mechanisms of muscle wasting and in the susceptibility of a given fiber type to atrophy. Most likely, the rapid muscle wasting might be in part due to a decrease in protein synthesis coupled with an increased degradation. Besides the quantitative change in muscle mass, age and inactivity induce important qualitative changes in the structure of key skeletal muscle proteins that are manifested in alterations in contractile properties. Therefore, the purpose of this clinical commentary is to identify the major effects of age and inactivity on skeletal muscle structure and function, and discuss potential therapeutic interventions. Special emphasis will be placed on how alterations in muscle structure affect function and on the cellular and molecular mechanisms of the age-related and inactivity-induced muscle changes.
Collapse
Affiliation(s)
- LaDora V Thompson
- Department of Physical Medicine and Rehabilitation, University of Minnesota Medical School, Minneapolis, USA.
| |
Collapse
|
25
|
Ohira Y, Yoshinaga T, Nomura T, Kawano F, Ishihara A, Nonaka I, Roy RR, Edgerton VR. Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2002; 30:777-781. [PMID: 12530363 DOI: 10.1016/s0273-1177(02)00395-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effects of gravitational unloading with or without intact neural activity and/or tension development on myosin heavy chain (MHC) composition, cross-sectional area (CSA), number of myonuclei, and myonuclear domain (cytoplasmic volume per myonucleus ratio) in single fibers of both slow and fast muscles of rat hindlimbs are reviewed briefly. The atrophic response to unloading is generally graded as follows: slow extensors > fast extensors > fast flexors. Reduction of CSA is usually greater in the most predominant fiber type of that muscle. The percentage of fibers expressing fast MHC isoforms increases in unloaded slow but not fast muscles. Myonuclear number per mm of fiber length and myonuclear domain is decreased in the fibers of the unloaded predominantly slow soleus muscle, but not in the predominantly fast plantaris. Decreases in myonuclear number and domain, however, are observed in plantaris fibers when tenotomy, denervation, or both are combined with hindlimb unloading. All of these results are consistent with the view that a major factor for fiber atrophy is an inhibition or reduction of loading of the hindlimbs. These data also indicate that predominantly slow muscles are more responsive to unloading than predominantly fast muscles.
Collapse
Affiliation(s)
- Y Ohira
- Dept. Physiol. Biomech., Kyoto Univ., Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Frigeri A, Nicchia GP, Desaphy JF, Pierno S, De Luca A, Camerino DC, Svelto M. Muscle loading modulates aquaporin-4 expression in skeletal muscle. FASEB J 2001; 15:1282-4. [PMID: 11344114 DOI: 10.1096/fj.00-0525fje] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- A Frigeri
- Department of General and Environmental Physiology, University of Bari, I-70126 Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
27
|
Chopard A, Pons F, Marini JF. Cytoskeletal protein contents before and after hindlimb suspension in a fast and slow rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2001; 280:R323-30. [PMID: 11208558 DOI: 10.1152/ajpregu.2001.280.2.r323] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transversal cytoskeletal organization of muscle fibers is well described, although very few data are available concerning protein content. Measurements of desmin, alpha-actinin, and actin contents in soleus and extensor digitorum longus (EDL) rat skeletal muscles, taken with the results previously reported for several dystrophin-glycoprotein complex (DGC) components, indicate that the contents of most cytoskeletal proteins are higher in slow-type fibers than in fast ones. The effects of hypokinesia and unloading on the cytoskeleton were also investigated, using hindlimb suspension. First, this resulted in a decrease in contractile protein contents, only after 6 wk, in the soleus. Dystrophin and associated proteins were shown to be reduced for soleus at 3 wk, whereas only the dystrophin-associated proteins were found to increase after 6 wk. On the other hand, the contents of DGC components were increased for EDL for the two durations. Desmin and alpha-actinin levels were unchanged in the same conditions. Consequently, it can be concluded that the cytoskeletal protein expression levels could largely contribute to muscle fiber adaptation induced by modified functional demands.
Collapse
Affiliation(s)
- A Chopard
- Laboratoire de Physiologie Cellulaire et Moléculaire des Systèmes Intégrés, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6548, Faculté des Sciences, 06108 Nice Cedex 2, France.
| | | | | |
Collapse
|
28
|
Fitts RH, Riley DR, Widrick JJ. Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol (1985) 2000; 89:823-39. [PMID: 10926670 DOI: 10.1152/jappl.2000.89.2.823] [Citation(s) in RCA: 334] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spaceflight (SF) has been shown to cause skeletal muscle atrophy; a loss in force and power; and, in the first few weeks, a preferential atrophy of extensors over flexors. The atrophy primarily results from a reduced protein synthesis that is likely triggered by the removal of the antigravity load. Contractile proteins are lost out of proportion to other cellular proteins, and the actin thin filament is lost disproportionately to the myosin thick filament. The decline in contractile protein explains the decrease in force per cross-sectional area, whereas the thin-filament loss may explain the observed postflight increase in the maximal velocity of shortening in the type I and IIa fiber types. Importantly, the microgravity-induced decline in peak power is partially offset by the increased fiber velocity. Muscle velocity is further increased by the microgravity-induced expression of fast-type myosin isozymes in slow fibers (hybrid I/II fibers) and by the increased expression of fast type II fiber types. SF increases the susceptibility of skeletal muscle to damage, with the actual damage elicited during postflight reloading. Evidence in rats indicates that SF increases fatigability and reduces the capacity for fat oxidation in skeletal muscles. Future studies will be required to establish the cellular and molecular mechanisms of the SF-induced muscle atrophy and functional loss and to develop effective exercise countermeasures.
Collapse
Affiliation(s)
- R H Fitts
- Department of Biology, Marquette University, Milwaukee, WI 53201, USA.
| | | | | |
Collapse
|
29
|
Edgerton VR, Roy RR, Hodgson JA, Day MK, Weiss J, Harkema SJ, Dobkin B, Garfinkel A, Konigsberg E, Koslovskaya I. How the science and engineering of spaceflight contribute to understanding the plasticity of spinal cord injury. ACTA ASTRONAUTICA 2000; 47:51-62. [PMID: 11543389 DOI: 10.1016/s0094-5765(00)00009-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Space programs support experimental investigations related to the unique environment of space and to the technological developments from many disciplines of both science and engineering that contribute to space studies. Furthermore, interactions between scientists, engineers and administrators, that are necessary for the success of any science mission in space, promote interdiscipline communication, understanding and interests which extend well beyond a specific mission. NASA-catalyzed collaborations have benefited the spinal cord rehabilitation program at UCLA in fundamental science and in the application of expertise and technologies originally developed for the space program. Examples of these benefits include: (1) better understanding of the role of load in maintaining healthy muscle and motor function, resulting in a spinal cord injury (SCI) rehabilitation program based on muscle/limb loading; (2) investigation of a potentially novel growth factor affected by spaceflight which may help regulate muscle mass; (3) development of implantable sensors, electronics and software to monitor and analyze long-term muscle activity in unrestrained subjects; (4) development of hardware to assist therapies applied to SCI patients; and (5) development of computer models to simulate stepping which will be used to investigate the effects of neurological deficits (muscle weakness or inappropriate activation) and to evaluate therapies to correct these deficiencies.
Collapse
Affiliation(s)
- V R Edgerton
- Brain Research Institute, University of California, Los Angeles,USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ohira Y. Neuromuscular adaptation to microgravity environment. THE JAPANESE JOURNAL OF PHYSIOLOGY 2000; 50:303-14. [PMID: 11016980 DOI: 10.2170/jjphysiol.50.303] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Morphological and/or functional char-acteristics of skeletal muscles have a greater adaptability in response to changes in environmental stimuli. For example, an atrophy associated with a shift of fiber characteristics toward fast-twitch type is a common adaptation of antigravity muscle to a microgravity environment. Neuromuscular responses and possible mechanisms of both neural and muscular adaptations to a microgravity environment are discussed in this article. Responses of morphological, metabolic, and contractile properties, as well as fiber phenotype, of muscles are briefly reviewed. Discussion is further extended to the patterns of electromyogram and tension development of muscle, responses of postural stability and locomotion, and/or motoneurons in order to study the mechanism for muscular adaptation to microgravity.
Collapse
Affiliation(s)
- Y Ohira
- Department of Physiology and Biomechanics, Research Center for Sports Training and Education, National Institute of Fitness and Sports, Kanoya, 891-2393, Japan.
| |
Collapse
|
31
|
Fejtek MB, Wassersug RJ. Survey of studies on how spaceflight affects rodent skeletal muscle. ADVANCES IN SPACE BIOLOGY AND MEDICINE 2000; 7:1-30. [PMID: 10660771 DOI: 10.1016/s1569-2574(08)60005-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Rodent muscles have been examined in more than 89 spaceflight studies over the last 25 years with much variation in the procedures and results. Mission duration ranged from four days to three weeks, postflight data collection ranged from a few hours to two days after landing, and there is great diversity in the number, size, and age of the rats that have flown. Several different types and sizes of animal enclosures have also been used--a significant factor because cage design affects animal activity and muscle loading. Only a small percentage (approximately 16%) of the total number of striated muscles in the rat have been examined. We have identified both substantial redundancy and inconsistencies in the results from studies to date. However, many of these appear unavoidable due to the great variation in experimental protocol of the different missions. Nevertheless these studies repeatedly confirm that exposure to spaceflight decreases the mass of limb muscles and leads to muscle atrophy. The majority of missions were flown by the former Soviet Union, but the majority of papers have been published by U.S. researchers. A relatively small number of investigators (about 50) clustered into fewer than 15 identifiable research groups worldwide account for most of the results to date. These groups have had access to rodent muscle tissue from two to seven spaceflights each. International cooperation in the post-cold war era and the publication of future work in peer-reviewed international journals should help greatly in reducing redundancy and enriching our knowledge of how gravity affects biological systems.
Collapse
Affiliation(s)
- M B Fejtek
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
32
|
Vandenburgh H, Chromiak J, Shansky J, Del Tatto M, Lemaire J. Space travel directly induces skeletal muscle atrophy. FASEB J 1999; 13:1031-8. [PMID: 10336885 DOI: 10.1096/fasebj.13.9.1031] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.
Collapse
Affiliation(s)
- H Vandenburgh
- Department of Pathology, Brown University School of Medicine and The Miriam Hospital, Providence, Rhode Island 02906, USA.
| | | | | | | | | |
Collapse
|
33
|
Cros N, Muller J, Bouju S, Piétu G, Jacquet C, Léger JJ, Marini JF, Dechesne CA. Upregulation of M-creatine kinase and glyceraldehyde3-phosphate dehydrogenase: two markers of muscle disuse. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:R308-16. [PMID: 9950906 DOI: 10.1152/ajpregu.1999.276.2.r308] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle disuse induces substantial alterations in the highly plastic skeletal muscle tissues, which occur especially in antigravity slow muscles. We differentially screened a muscle cDNA array to identify modifications in gene profile expression induced in slow rat soleus muscle mechanically unloaded by hindlimb suspension as a model for muscle disuse. This study focused on muscle creatine kinase mRNA and protein and glyceraldehyde-3-phosphate dehydrogenase mRNA, which were found to be upregulated in unweighted muscles. These upregulations were analyzed over a 4-wk time course of hindlimb suspension and compared with variations in myosin heavy chain (MHC) isoforms while specifically focusing on type IIx MHC mRNA and protein. The two metabolic marker upregulations clearly preceded IIx MHC contractile protein upregulation. Muscle creatine kinase upregulation was shown to be an excellent, and the earliest, marker of muscle disuse at mRNA and protein levels.
Collapse
Affiliation(s)
- N Cros
- Institut National de la Santé et de la Recherche Médicale U 300, Faculté Pharmacie, 34060 Montpellier cedex 01, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Martrette JM, Hartmann N, Vonau S, Westphal A. Effects of pre- and perinatal exposure to hypergravity on muscular structure development in rat. J Muscle Res Cell Motil 1998; 19:689-94. [PMID: 9742452 DOI: 10.1023/a:1005337316081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study evaluated the influence of precocious exposure to hypergravity on the expression of myosin heavy chain (MHC) protein isoforms in nape, masticatory and respiratory developmental rat muscles. Pregnant females were maintained at 1.8 g from the 11th day of gestation to the 7th day after birth. The 7-day-old rats were used for muscle sampling. Hypergravity induced a marked decrease in the weight and protein content of all six muscles. Three MHC isoforms were detected in the young rats' muscles: embryonic (E), perinatal (P) and slow type 1 MHC. In centrifuged nape and masticatory muscles, there was a decrease in MHC E and an increase in P without reduction (indeed, even an increase) in MHC 1, whereas in the respiratory muscle MHC E was increased and MHC 1 decreased. These results indicate that hypergravity produces important changes in the contractile properties not only of antigravity muscles but also masticatory and respiratory muscles. MHC P has a higher shortening velocity than MHC E, which has a higher one than MHC 1. The hypergravity-induced transformations of MHC isoforms would thus lead to increased velocity of all muscles studied. In spite of the observation of a hypergravity-induced muscle hypotrophy, the results of this study reflect the adaptational properties of developing muscles to increased gravitational forces.
Collapse
Affiliation(s)
- J M Martrette
- Département des Sciences Biologiques, Faculté de Chirurgie Dentaire, Nancy, France.
| | | | | | | |
Collapse
|
35
|
Pette D, Staron RS. Mammalian skeletal muscle fiber type transitions. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 170:143-223. [PMID: 9002237 DOI: 10.1016/s0074-7696(08)61622-8] [Citation(s) in RCA: 432] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mammalian skeletal muscle is an extremely heterogeneous tissue, composed of a large variety of fiber types. These fibers, however, are not fixed units but represent highly versatile entities capable of responding to altered functional demands and a variety of signals by changing their phenotypic profiles. This adaptive responsiveness is the basis of fiber type transitions. The fiber population of a given muscle is in a dynamic state, constantly adjusting to the current conditions. The full range of adaptive ability spans fast to slow characteristics. However, it is now clear that fiber type transitions do not proceed in immediate jumps from one extreme to the other, but occur in a graded and orderly sequential manner. At the molecular level, the best examples of these stepwise transitions are myofibrillar protein isoform exchanges. For the myosin heavy chain, this entails a sequence going from the fastest (MHCIIb) to the slowest (MHCI) isoform, and vice-versa. Depending on the basal protein isoform profile and hence the position within the fast-slow spectrum, the adaptive ranges of different fibers vary. A simple transition scheme has emerged from the multitude of data collected on fiber type conversions under a variety of conditions.
Collapse
Affiliation(s)
- D Pette
- Faculty of Biology, University of Konstanz, Germany
| | | |
Collapse
|
36
|
Germain P, Güell A, Marini JF. Muscle strength during bedrest with and without muscle exercise as a countermeasure. EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY AND OCCUPATIONAL PHYSIOLOGY 1995; 71:342-8. [PMID: 8549578 DOI: 10.1007/bf00240415] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bedrest is known to be a useful experimental model for simulating weightlessness and studying its effects on human skeletal muscle activity. We therefore conducted a study in which 12 healthy male subjects underwent 28 days of continuous exposure to 6 degrees head-down bedrest. Our main objective was to test a set of preventive countermeasures for maintaining the stability of the human body. Of the subjects 6 performed deadlifts in the supine position for 30 to 45 min each day. The isometric actions were performed for 5-30 s at 90, 120 and 150 degrees knee angles and isokinetic training at speeds of 30 and 180 degrees.s-1. In vivo quadriceps muscle strength was measured under controlled experimental conditions with a commercial dynamometer. The hypothesis that intense daily isometric and isokinetic leg exercise and lower body negative pressure (LBNP) might serve to maintain muscle strength under conditions of weightlessness was tested. Of the subjects 6, who did not perform any exercise, served as the control population under conditions of simulated weightlessness. The results showed that a significant reduction (P < or = 0.0001) in the muscle force [-10.3 (SD 6.7%)] occurred in the control group whereas no significant changes were observed in the trained group [+3.9 (6.8%)]. From these studies we conclude that intense muscle training and LBNP constitute efficient countermeasures to compensate for the biomechanical effects of weightlessness on human lower limbs and to limit other factors such as cardiovascular deconditioning.
Collapse
Affiliation(s)
- P Germain
- Aix-Marseille II Université, UFR STAPS 163, Marseille, France
| | | | | |
Collapse
|
37
|
Ohira Y, Yasui W, Kariya F, Wakatsuki T, Nakamura K, Asakura T, Edgerton VR. Metabolic adaptation of skeletal muscles to gravitational unloading. ACTA ASTRONAUTICA 1994; 33:113-117. [PMID: 11539510 DOI: 10.1016/0094-5765(94)90115-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Responses of high-energy phosphates and metabolic properties to hindlimb suspension were studied in adult rats. The relative content of phosphocreatine (PCr) in the calf muscles was significantly higher in rats suspended for 10 days than in age-matched cage controls. The Pi/PCr ratio, where Pi is inorganic phosphate, in suspended muscles was less than controls. The absolute weights of soleus and medial gastrocnemius (MG) were approximately 40% less than controls. Although the % fiber distribution in MG was unchanged, the % slow fibers decreased and the % fibers which were classified as both slow and fast was increased in soleus. The activities (per unit weight or protein) of succinate dehydrogenase and lactate dehydrogenase in soleus were unchanged but those of cytochrome oxidase, beta-hydroxyacyl CoA dehydrogenase, and citrate synthase were decreased following unloading. None of these enzyme activities in MG changed. However, the total levels of all enzymes in whole muscles decreased by suspension. It is suggested that shift of slow muscle toward fast type by unloading is associated with a decrease in mitochondrial biogenesis. Further, gravitational unloading affected the levels of muscle proteins differently even in the same mitochondrial enzymes.
Collapse
MESH Headings
- Animals
- Hindlimb Suspension/adverse effects
- Male
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/metabolism
- Muscle Fibers, Fast-Twitch/enzymology
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/ultrastructure
- Muscle Fibers, Slow-Twitch/enzymology
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/ultrastructure
- Muscle, Skeletal/anatomy & histology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Muscular Atrophy/enzymology
- Muscular Atrophy/etiology
- Muscular Atrophy/metabolism
- Muscular Atrophy/physiopathology
- Myosins/metabolism
- Phosphates/metabolism
- Phosphocreatine/metabolism
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Y Ohira
- Dept. Physiol. Biomech., Nat'l, Inst. Fit. Sports, Kanoya City, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Backup P, Westerlind K, Harris S, Spelsberg T, Kline B, Turner R. Spaceflight results in reduced mRNA levels for tissue-specific proteins in the musculoskeletal system. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:E567-73. [PMID: 8178977 DOI: 10.1152/ajpendo.1994.266.4.e567] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The purpose of the present study in growing rats was to investigate the effects of short-term spaceflight on gene expression in bone and muscle and on cortical bone histomorphometry. Two experiments were carried out; Physiological Systems Experiments 1 and 2 were 4- and 10-day flights, respectively. Radial bone growth in the humerus was unchanged during the 4-day flight and decreased during the 10-day flight. Expression of mRNA for glyceraldehyde-3-phosphate dehydrogenase was unchanged in biceps, calvarial periosteum, and long-bone periosteum after spaceflight. Similarly, no changes in ribosomal RNA levels were observed in long-bone or calvarial periosteum after spaceflight. In contrast, spaceflight decreased steady-state mRNA levels for actin in muscle (4-day flight). Osteocalcin (both spaceflights) and the prepro-alpha 2[I] chain of type I precollagen (10-day flight) mRNA levels were decreased in long-bone and calvarial periosteum after spaceflight. These results indicate that the effects of spaceflight on the musculoskeletal system include decreased expression of some muscle- and bone-specific genes as well as decreased bone formation. Interestingly, detectable reductions in gene expression for bone matrix proteins preceded histological evidence for decreased bone formation.
Collapse
Affiliation(s)
- P Backup
- Department of Orthopedic Surgery and Biochemistry, Mayo Graduate School, Rochester, Minnesota 55905
| | | | | | | | | | | |
Collapse
|
39
|
Edgerton VR, Roy RR. Neuromuscular adaptation to actual and simulated weightlessness. ADVANCES IN SPACE BIOLOGY AND MEDICINE 1994; 4:33-67. [PMID: 7757253 DOI: 10.1016/s1569-2574(08)60134-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The chronic "unloading" of the neuromuscular system during spaceflight has detrimental functional and morphological effects. Changes in the metabolic and mechanical properties of the musculature can be attributed largely to the loss of muscle protein and the alteration in the relative proportion of the proteins in skeletal muscle, particularly in the muscles that have an antigravity function under normal loading conditions. These adaptations could result in decrements in the performance of routine or specialized motor tasks, both of which may be critical for survival in an altered gravitational field, i.e., during spaceflight and during return to 1 G. For example, the loss in extensor muscle mass requires a higher percentage of recruitment of the motor pools for any specific motor task. Thus, a faster rate of fatigue will occur in the activated muscles. These consequences emphasize the importance of developing techniques for minimizing muscle loss during spaceflight, at least in preparation for the return to 1 G after spaceflight. New insights into the complexity and the interactive elements that contribute to the neuromuscular adaptations to space have been gained from studies of the role of exercise and/or growth factors as countermeasures of atrophy. The present chapter illustrates the inevitable interactive effects of neural and muscular systems in adapting to space. It also describes the considerable progress that has been made toward the goal of minimizing the functional impact of the stimuli that induce the neuromuscular adaptations to space.
Collapse
Affiliation(s)
- V R Edgerton
- Department of Physiological Science, University of California, Los Angeles, USA
| | | |
Collapse
|
40
|
Krippendorf BB, Riley DA. Distinguishing unloading- versus reloading-induced changes in rat soleus muscle. Muscle Nerve 1993; 16:99-108. [PMID: 8423838 DOI: 10.1002/mus.880160116] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Previously, solei from rats orbited 12.5 days aboard Cosmos 1887 biosatellite were biopsied 48-56 hours postflight. These atrophic muscles showed severe pathology. Designing a ground-based model of that space flight, we tested the hypothesis that 48 hours of postflight muscle reloading induced pathological changes. Rats were subjected to 12.5 days of hindlimb suspension unloading and biopsied immediately after suspension or after returning to normal weightbearing 12, 24, or 48 hours. Soleus morphological changes were quantitated on histochemically and immunohistochemically stained cross-sections. Solei from 0-hour reloaded rats showed significantly decreased wet weights, diminished myofiber cross-sectional area, angular myofibers, myofibril disruption, and more myofibers expressing fast myosin. Compared with suspension alone (0-hour reloading), reloading 12-48 hours induced slightly increased soleus wet weights, myofiber swelling, significant interstitial tissue edema, macrophage activation, and monocyte infiltration. These results suggest the degree and type of muscle degenerative changes observed postflight depend on the duration of gravity readaptation before biopsy and not solely on exposure to microgravity.
Collapse
Affiliation(s)
- B B Krippendorf
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee 53226
| | | |
Collapse
|
41
|
|
42
|
Desplanches D, Mayet MH, Ilyina-Kakueva EI, Frutoso J, Flandrois R. Structural and metabolic properties of rat muscle exposed to weightlessness aboard Cosmos 1887. EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY AND OCCUPATIONAL PHYSIOLOGY 1991; 63:288-92. [PMID: 1761023 DOI: 10.1007/bf00233864] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Male Wistar rats were subjected to 12.5 days of weightlessness aboard Cosmos 1887. Histomorphometric and biochemical analyses were investigated in soleus (SOL), plantaris (PL) and extensor digitorum longus (EDL) muscles of flight rats (group F) and compared with data from two groups of terrestrial controls: one group living free in a vivarium (group V) and another subjected to a flight simulation except for the state of weightlessness (group S). Relative to groups V and S, no alteration in the percentage distribution of fibres had occurred in SOL, PL or EDL, after the flight. In SOL muscles from group F animals, cross-sectional areas of all fibre types were reduced to a greater extent (-40%) than capillary to fibre ratio (-24%) leading to a higher capillary density (+33%) than in V and S groups. In PL, type I, IIA and IIB fibre cross-sectional areas were less decreased (-25%). In EDL, only fast-twitch fibre cross-sectional areas showed an average decrease of 30%. Capillary per fibre ratio was reduced by 15% and 28% respectively in PT and EDL muscles from group F rats compared to control groups V and S. Citrate synthase and 3-hydroxyacyl-coenzyme A dehydrogenase activities remained unchanged in SOL, PL and EDL following spaceflight. These findings indicate greater atrophy and functional alterations (capillarity) compared to those observed after 7 days of microgravity on Cosmos 1667.
Collapse
Affiliation(s)
- D Desplanches
- Unite Associée Centre National de la Recherche Scientifique 1341, Faculté de Médecine Lyon Grange-Blanche, Université Claude Bernard Lyon, France
| | | | | | | | | |
Collapse
|