1
|
Yoo C, Seol SK, Pyo J. Visualization of Microcapillary Tips Using Waveguided Light. ACS NANO 2024. [PMID: 39004820 DOI: 10.1021/acsnano.4c06987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The microcapillary, a glass tube with a nano/micrometer scale aperture, is used for manipulating small objects across diverse disciplines. A primary concern in using the microcapillary involves tip breakage upon contact. Here, we report a method for visualizing the microcapillary tip, enabling precise and instant determination of its contact with other objects. Illumination directed to the back aperture of the microcapillary induces waveguiding through the glass wall, enabling the visualization of the tip through scattering. We demonstrate that the tip scattering is sensitive to contact with an adjacent object owing to the near-field interaction of the waveguided light, providing a clear distinction between the contact and noncontact states. The key advantage of our method encompasses its minimal influence, irrespective of conductivity, and applicability to nanoscale systems. The versatility of our method is shown by the application to a wide range of tip diameters, various substrate and in-filling materials.
Collapse
Affiliation(s)
- Chanbin Yoo
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
- Electric Energy & Materials Engineering, KERI School, University of Science and Technology (UST), Changwon 51543, Korea
| | - Seung Kwon Seol
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
- Electric Energy & Materials Engineering, KERI School, University of Science and Technology (UST), Changwon 51543, Korea
| | - Jaeyeon Pyo
- Smart 3D Printing Research Team, Korea Electrotechnology Research Institute (KERI), Changwon 51543, Korea
- Electric Energy & Materials Engineering, KERI School, University of Science and Technology (UST), Changwon 51543, Korea
| |
Collapse
|
2
|
Mu X, Ono M, Nguyen HTT, Wang Z, Zhao K, Komori T, Yonezawa T, Kuboki T, Oohashi T. Exploring the Regulators of Keratinization: Role of BMP-2 in Oral Mucosa. Cells 2024; 13:807. [PMID: 38786031 PMCID: PMC11119837 DOI: 10.3390/cells13100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
The oral mucosa functions as a physico-chemical and immune barrier to external stimuli, and an adequate width of the keratinized mucosa around the teeth or implants is crucial to maintaining them in a healthy and stable condition. In this study, for the first time, bulk RNA-seq analysis was performed to explore the gene expression of laser microdissected epithelium and lamina propria from mice, aiming to investigate the differences between keratinized and non-keratinized oral mucosa. Based on the differentially expressed genes (DEGs) and Gene Ontology (GO) Enrichment Analysis, bone morphogenetic protein 2 (BMP-2) was identified to be a potential regulator of oral mucosal keratinization. Monoculture and epithelial-mesenchymal cell co-culture models in the air-liquid interface (ALI) indicated that BMP-2 has direct and positive effects on epithelial keratinization and proliferation. We further performed bulk RNA-seq of the ALI monoculture stimulated with BMP-2 in an attempt to identify the downstream factors promoting epithelial keratinization and proliferation. Analysis of the DEGs identified, among others, IGF2, ID1, LTBP1, LOX, SERPINE1, IL24, and MMP1 as key factors. In summary, these results revealed the involvement of a well-known growth factor responsible for bone development, BMP-2, in the mechanism of oral mucosal keratinization and proliferation, and pointed out the possible downstream genes involved in this mechanism.
Collapse
Affiliation(s)
- Xindi Mu
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan;
| | - Ha Thi Thu Nguyen
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan;
| | - Ziyi Wang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
| | - Kun Zhao
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
| | - Taishi Komori
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan;
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, Department of Health and Human Services, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomoko Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan;
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan;
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (X.M.); (H.T.T.N.); (Z.W.); (K.Z.); (T.Y.); (T.O.)
| |
Collapse
|
3
|
Sabapaty A, Lin P, Dunn JCY. Effect of air-liquid interface on cultured human intestinal epithelial cells. FASEB Bioadv 2024; 6:41-52. [PMID: 38344411 PMCID: PMC10853644 DOI: 10.1096/fba.2023-00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 10/28/2024] Open
Abstract
The intestinal epithelium is a dynamic barrier that allows the selective exchange of ions, hormones, proteins, and nutrients. To accomplish this, the intestinal epithelium adopts a highly columnar morphology which is partially lost in submerged culturing systems. To achieve this, small intestinal tissue samples were utilized to obtain human intestinal crypts to form enteroids. The Transwell system was subsequently employed to form a monolayer of cells that was cultured in either the submerged condition or the air-liquid Interface (ALI) condition. We found that the human intestinal monolayer under the ALI condition exhibited morphology more similar to the normal intestinal epithelium. F-actin localization and brush border formation were observed apically, and the integrity of the tight junctions was preserved in the ALI condition. Fewer apoptotic cells were observed in the ALI conditions as compared to the submerged conditions. The monolayer of cells expressed a higher level of secretory cell lineage genes in the ALI condition. The ALI condition positively contributes toward a more differentiated phenotype of epithelial cells. It serves as an amplifier that enhances the existing differentiation cue. The ALI system provides a more differentiated platform to study intestinal function compared to submerged conditions.
Collapse
Affiliation(s)
- Akanksha Sabapaty
- Division of Pediatric Surgery, Department of SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Po‐Yu Lin
- Division of Pediatric Surgery, Department of SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - James C. Y. Dunn
- Division of Pediatric Surgery, Department of SurgeryStanford University School of MedicineStanfordCaliforniaUSA
- Department of BioengineeringStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|